JPH0465918B2 - - Google Patents

Info

Publication number
JPH0465918B2
JPH0465918B2 JP63232266A JP23226688A JPH0465918B2 JP H0465918 B2 JPH0465918 B2 JP H0465918B2 JP 63232266 A JP63232266 A JP 63232266A JP 23226688 A JP23226688 A JP 23226688A JP H0465918 B2 JPH0465918 B2 JP H0465918B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
weight
organic
film
iron group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63232266A
Other languages
Japanese (ja)
Other versions
JPH0280598A (en
Inventor
Yoshio Shindo
Fumio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23226688A priority Critical patent/JPH0280598A/en
Priority to CA000599581A priority patent/CA1337555C/en
Priority to EP89108750A priority patent/EP0342585B1/en
Priority to DE89108750T priority patent/DE68908471T2/en
Priority to JP2061149A priority patent/JPH02277799A/en
Publication of JPH0280598A publication Critical patent/JPH0280598A/en
Priority to US07/642,541 priority patent/US5188905A/en
Priority to US07/901,033 priority patent/US5242572A/en
Publication of JPH0465918B2 publication Critical patent/JPH0465918B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は自動車、家電、建材等に使用される耐
食性、特に加工部の耐食性に優れた防錆用の有機
複合めつき鋼板に関する。 (従来の技術) 冷延鋼板の加工性や強度を損なうことなく量産
化できる表面処理鋼板として電気亜鉛めつき鋼板
が汎用されていることは周知である。 近年では冷寒地帯における冬期の道路凍結防止
用の散布塩に対する自動車の防錆鋼板として亜鉛
めつき鋼板の使用が試みられ、苛酷な腐食環境で
の耐食性の要求が増加する傾向にある。 これら亜鉛めつき鋼板の耐食性の向上要求に対
して亜鉛のめつき量(付着量)による耐食性の向
上が知られているが、めつき量の増加以外の方法
として亜鉛自身の溶解を抑制するための合金めつ
きが数多く提案されている。これらの多くは、
Fe、Ni、Coといつた鉄族元素を合金成分として
含有するものである。これらの亜鉛−鉄族系電気
めつき鋼板は未塗装あるいは塗装後の耐食性が優
れる特徴があり、工業的に生産、実用されている
が、耐食性を更に向上させることが強く望まれて
いる。 この要求に対して、自動車用途などでは亜鉛系
めつき鋼板にクロメート処理を行い、その上層に
有機皮膜を被覆する有機複合めつき鋼板が開発さ
れてきた。 このような有機複合めつき鋼板においては、主
として最上層の有機皮膜を形成する塗料組成物の
改良が進められてきたが、耐食性、プレス加工
性、スポツト溶接性等における要求品質を充分満
たすものではなかつた。 即ち、ジンクリツチ塗料を被覆したものはプレ
ス加工性が悪く、耐食性、溶接性も不充分であ
り、導電顔料配合の塗料を被覆したものはプレス
加工性、溶接性が改善されているが、まだ充分で
はなかつた。 (発明が解決しようとする課題) これは有機皮膜厚さが何れも5μを超える比較
的厚膜タイプの有機複合鋼板であるが、最近では
プレス加工性、溶接性の点から薄膜化志向が強ま
り、膜厚5μ以下の薄膜タイプの有機複合めつき
鋼板が開示されている。このような薄膜型にあつ
ては、耐食性を、有機皮膜中に防錆顔料を配する
ことにより向上させようとしている。例えば、特
開昭59−162278号公報等では水分散性エマルジヨ
ン樹脂に防錆顔料としてクロム化合物を配合した
有機皮膜が、特開昭60−50181号公報では防錆顔
料としてシリカを配合した有機皮膜が利用されて
いるが、耐食性は十分ではない。 有機複合めつき鋼板においては、その耐食性は
本来有機皮膜に負うところが大きかつたが、プレ
ス加工性、溶接性の点から上述の如き薄膜化が進
むと、耐食性の点ではめつき層の改良も必要とな
つてくる。 即ち、上記有機複合めつき鋼板の下地めつきと
しては、Znめつき、Zn−Ni、Zn−Fe合金めつき
等が開示されているが、薄膜型においては、プレ
ス加工を行うと有機皮膜層がさらに薄くなるた
め、及び疵やクラツクが入ると部分的にめつき層
や鋼素地が露出するため、めつき層の耐食性に負
うところが大きくなるが、従来の下地めつきでは
十分な耐食性はなく、特に加工後の耐食性に信頼
性がない。 本発明は上記問題点を解決し、耐食性、特に加
工後の耐食性を向上させた有機複合めつき鋼板を
提供する。 (課題を解決するための手段) 本発明は、塗膜欠陥部や加工部が腐食したとき
に優れた保護作用を有する腐食生成物を形成する
ことのできるZn−Cr−鉄族金属系複合電気めつ
き層を下地めつき層とし、クロメート皮膜、有機
皮膜を適当量上層に形成することにより、耐食
性、特に加工部耐食性が飛躍的に向上し、加工
性、溶接性にも優れた有機複合めつき鋼板を提供
する。 本発明の要旨は、 鋼板の表面に、Cr1〜30重量%、鉄族金属1〜
10重量%、酸化物微粒子0.1〜10重量%、カチオ
ンポリマー0.001〜5重量%、残部Znとする複合
電気めつき層を形成し、その上層にクロメート皮
膜を総Cr量で10〜150mg/m2形成し、更にその上
層に有機皮膜を0.3〜3μ形成したことを特徴とす
る耐食性に優れた有機複合めつき鋼板、 酸化物微粒子が、Si、Al、Zr、Ti、Cr、Mo、
Wの酸化物の1種以上からなる上記耐食性に優れ
た有機複合めつき鋼板、 複合電気めつき層中のカチオンポリマーが、4
級アミンポリマーである上記耐食性優れた有機複
合めつき鋼板である。 (作用) まず、下地めつきのZn−Cr−鉄族金属系複合
電気めつき層について述べる。 CrはZnと共析することによつて不働態化せず、
活性状態を維持してZnとともに鋼素地に対する
犠牲防食作用に加担する。更にCrの腐食生成物
が難溶性であり、腐食が進行している局部に保護
皮膜を沈積するので、耐食性が極めて高くなる。 有機複合めつき鋼板の下地めつき層として適用
されると、この保護皮膜の生成によつて有機皮膜
との相乗作用により極めて高い耐食性を示すこと
になる。即ち、腐食環境に曝されると、有機皮膜
のピンホール等の欠陥を通じて下地のめつき層が
先ず腐食を受ける。腐食によつてめつき層にクラ
ツクが生じ、このクラツクの伝播とともに有機皮
膜下に腐食が拡大され、最終的には鋼素地が腐食
を受け赤錆が発生する。Crの腐食生成物は、ク
ラツクを埋めるいわゆる錆詰り作用によつて、
水、酸素、塩素イオン等の腐食因子の侵入を防止
するので、有機皮膜とともにバリアーとなつて腐
食の進行を妨げるのである。 プレス等によつて加工を施した成形品では、加
工部の膜厚が薄くなることはもとより、疵やクラ
ツクが入ることにより部分的に下地めつき層や鋼
素地が露出しており、従来の有機複合めつき鋼板
では、有機皮膜のバリアー効果が減殺されること
が致命的欠陥であつた。Zn−Cr−鉄族金属系複
合めつき層は、このような加工部においても保護
皮膜を沈積して腐食を停止させる作用を有するも
のである。この作用は従来から有機複合めつき鋼
板の下地めつき層として使用されたZn、Zn−
Ni、Ze−Feめつき層では期待できない。特に、
有機皮膜が薄膜の場合にはピンホール等の塗膜欠
陥が本来的に多いこと、加工部ではさらに薄膜化
し、バリアー効果が小さくなり、かつ疵やクラツ
クが入ると、容易にめつき層や錆素地が露出して
しまうことから、Zn−Cr−鉄族金属系複合めつ
き層の作用は加工部のみならず未加工部の耐食性
を向上させる上でも極めて有効である。 Zn−Cr−鉄族金属系複合めつき層のCr含有率
は1〜30重量%とする。1重量%未満では耐食性
向上に有効ではない。5重量%を超えると、塩水
噴霧試験等では、赤錆発生が大きく抑制され、画
期的な効果が現われてくる。また、Cr含有率が
30重量%を超えると、耐食性は良いものの、後述
するカチオンポリマーの共析による作用をもつて
してもプレス加工等の加工時のめつき層が剥離す
る所謂ゆるパウダリング性の劣化を防止し得ず、
実用上は適用が難しい。なお、耐食性及び加工性
の観点からは、Cr含有率は5〜20重量%がより
好ましい。 鉄族金属とはNi、Fe、Coをさす。鉄族金属を
含有させることによりNi2+、Fe2+、Co2+といつ
た鉄族金属イオンはめつき層内に共析し、耐食性
と溶接性を向上させることができる。耐食性につ
いては、Crの腐食生成物中に鉄族金属が入りこ
むことにより、腐食生成物を更に緻密化、安定化
させることによると推定される。溶接性について
は、Zn−Cr−鉄族金属系複合めつき層は鉄族金
属によりめつき層の電気抵抗が高まり発熱しやす
くなること、及びめつき層が硬くなるため電極チ
ツプの圧力によるめつき層の変形が小さくなり、
溶接部に電流が集中しやすくなることが考えられ
る。 この場合、鉄族金属の含有率は1〜10重量%と
する。鉄族金属の含有率が1重量%未満では、鉄
族金属の添加効果が顕著に現われず、10重量%を
上回ると鉄族金属の性質が強くなり、加工部で赤
錆が発生し易くなる。 鉄族金属は、めつき浴中でこれらのイオンが酸
化物微粒子に吸着して、酸化物微粒子の共析を容
易にするという利点がある。但し、Crと鉄族金
属の総量が多くなると、加工性が劣化するので、
Crと鉄族金属の総量は、30重量%以下とするの
が好ましい。 鉄族金属は1種でもよいし2種以上を同時に含
有させてもよいが、特にNiを含有させると耐食
性向上に最も効果的である。 酸化物微粒子は、腐食生成物の中に入りこみ、
酸素結合によりこれと強く結合することで、保護
作用を有するZn−Cr−鉄族金属の腐食生成物の
安定化を更に向上させる他、酸化物微粒子そのも
のが腐食因子に対するバリアー効果を発揮するの
で、加工部を中心として、有機複合めつき鋼板の
耐食性を向上させる上で有効である。 酸化物微粒子の含有率は、0.1〜10重量%とす
る。0.1重量%未満では、耐食性向上に有効では
なく、10重量%超では、加工性が劣化する。耐食
性、加工性の観点からは、0.1〜5重量%がより
好ましい。 酸化物微粒子の種類としては、金属や半金属の
酸化物等種々あるが、Si、Al、Zr、Ti、Cr、
Mo、Wの酸化物が特に好ましく、これを1種も
しくは、2種以上混合して用いてよい。大きさ
は、平均粒径1μm以下が好ましく、1μm超のも
のでは、めつき層中に共析し難い。 カチオンポリマーはCrの析出促進剤であり、
かつCrと共に微量めつき層内に共析することに
よりプレス加工時の耐パウダリング性を向上させ
る。このようなカチオンポリマーの共析効果は、
CrイオンがZnの均一な電析成長を阻害し、均一
性、平滑性に欠けためつき構造となつてしまうこ
とを防止する点にあると推定される。即ち、共析
したカチオンポリマーを介することによつて、
ZnとCrと鉄族金属が均一に混合もしくは合金化
した緻密なめつき層が形成されると考えられる。
カチオンポリマーの含有量は0.001〜5重量%と
する。0.001重量%未満では上述の耐パウダリン
グ性に対して効果が乏しく、また5重量%超の含
有量はめつき浴中のカチオンポリマー濃度を増し
ても得られ難いのみならず、多量に共析するとめ
つき密着性が低下する原因となる。耐パウダリン
グ性の観点からは、Cr含有率の1/1000以上の含
有率でカチオンポリマーを共析させることが望ま
しい。 本発明に用いる水溶性のカチオンポリマーとし
ては4級アミンの重合物が効果的なポリマーであ
り、分子量は、この場合、103〜106が望ましい。
次に示すアミンポリマーの内、ポリアミンスルホ
ン(PAS)およびポリアミン(PA)がCr析出促
進剤として最も効果的である。アミン基による吸
着作用と、スルホン基と金属イオンもしくは金属
の結合が寄与していると考えられる。基本的には
次に示す4級アミンの塩(アンモニウム塩) あるいはコポリマーで構成されている。 以下具体的にいくつかの化合物を列挙する。 ジアリルアミンから得られる高分子があげられ
る。R1、R2はアルキル基を示し、XはCl-
HSO4 -、H2PO4 -、R−SO3 -(RはC1〜C4のアル
キル基)、NO3 -のアニオンを示す。 あるいはビニルベンジルから合成される高分子
があげられる。R1、R2、R3は炭化水素を示し、
XはCl-、HSO4 -、H2PO4 -、R−SO3 -、NO3 -
アニオンを示す。 あるいはアリルアミンポリマーがあげられる。
R1、R2、R3は炭化水素を示し、XはCl-
HSO4 -、H2PO4 -、R−SO3 -、NO3 -のアニオン
を示す。 この他1、2、3級アミンのポリマーも前述の
4級アミンポリマーに及ばないがCr析出促進剤
として効果がある。 めつき付着量は、5〜50g/m2で十分耐食性を
確保できる。また、Zn、Cr、鉄族金属、酸化物
微粒子、カチオンポリマー以外にもPb、Sn、
Ag、In、Bi、Cu、Sb、As、Na、P、S等が不
可避的に微量共析していても本質的に下地めつき
層の効果は変わらない。 次に、Zn−Cr−鉄族金属系複合電気めつき層
の製造方法であるが、Zn2+イオンCr3+イオン、
Ni2+、Fe2+、Co2+といつた鉄族金属イオン、
SiO2、TiO2、Al2O3の如き酸化物微粒子及び
PASの如き4級アミンの重合物等の水溶性カチ
オンポリマーを0.01〜20g/含むPH0.5〜3、
浴温40〜70℃の酸性めつき浴を用いて20A/dm2
以上で電気めつきすればよい。めつき浴中には、
更にNa+、K+、NH4 +イオン等の塩を添加するこ
とは浴の電導度を高めるために有効である。 めつき層の上に施されるクロメート層は、有機
皮膜との密着性を確保する効果がある。 Zn−Cr−鉄族金属系複合めつき層は、Cr+6
よびまたはCr+3からなる酸性処理液との反応性が
良いので、従来から公知の塗布型クロメート処
理、反応型クロメート処理および電解型クロメー
ト処理等はいずれも適用できる。 塗布型、反応型クロメート処理としては、
Cr+6、Cr+3の他に無機コロイド類を添加するも
の、りん酸等の酸類、ふつ化物類を添加するも
の、あるいは水溶性ないしエマルジヨン型の有機
樹脂を添加するものが適用できる。 例えば、りん酸、ふつ化物を含む処理液として
は、クロム酸30g/、りん酸10g/、ふつ化
チタンカリ4g/、ふつ化ナトリウム0.5g/
、シリカを含む処理液としては、クロム酸50
g/(うち3価のクロム40%)、SiO2100g/
がある。無機コロイド類としては、例えば
SiO2、Al2O3、TiO2、ZrO2等のコロイド類、ま
たはモリブテン酸、タングステン酸、バナジン酸
等の酸素酸およびその塩類、またはめつきの亜鉛
と反応して難溶性塩をつくるりん酸、ポリりん酸
などのりん酸類、または加水分解などの反応によ
り難溶性塩をつくるケイふつ化物、チタンふつ化
物、りん酸塩などを1種類以上含むものである。
これらコロイド類は、クロメート皮膜中に少量の
6価のクロムを固定するうえで有効である。ま
た、特にりん酸等のりん酸類およびふつ化物類は
めつき層とクロメートの反応を促進する上で有効
である。これら無機コロイド類の添加量は添加時
の種類によつてことなるが、例えばりん酸類では
1〜200g/、SiO2では、1〜800g/であ
る。 なお場合によつては、アクリル樹脂等のクロメ
ートに安定に混合可能な有機樹脂を添加してもよ
い。 電解クロメート処理としては、クロム酸に加え
て硫酸、りん酸、ハロゲンイオン等を添加するも
の、あるいはさらにSiO2、Al2O3等の無機コロイ
ド類を添加するもの、Co、Mg等のカチオンを添
加するものも適用できる。通常陰極電解を施す
が、陽極電解、交流電解を付加することもでき
る。 クロメート皮膜の付着量は総Cr量として10〜
150mg/m2とする。10mg/m2未満では有機皮膜の
密着性が不十分であり、150mg/m2を超えると溶
接性、プレス加工性が悪化し、実用上好ましくな
い。より好ましい範囲は総Cr量として20〜100
mg/m2である。 なお、クロメート皮膜からの溶出クロムによる
化成処理液等の汚染、これに伴う排水処理等の作
業の繁雑化をさけるためには、クロメート皮膜の
水可溶分が5%以下の難溶性クロメート皮膜を形
成させるとよく、これには電解型クロメート処理
が好適である。 このクロメート皮膜の上層には有機皮膜を施
す。有機皮膜の厚みは0.3〜3μとする。0.3μ未満
では耐食性が十分ではなく、3μを超えては溶接
性、プレス加工性が劣化することがある。より好
ましい範囲は0.5〜2μである。 有機皮膜は溶剤型、水溶性型何れでもよく、例
えばエポキシ、アクリル、ポリエステル、ウレタ
ン、アクリルオレフイン等や、これらの共重合誘
導体等が使用できる。また、SiO2やBaCrO4等の
防錆顔料、焼付硬化型皮膜にあつては硬化剤、あ
るいはプレス加工性を一段と向上させる潤滑剤等
の各種添加剤を加えてもよい。本発明で適用でき
る最も好ましい有機皮膜の一例を次にあげる。 主樹脂:ビスフエノール型エポキシ樹脂(平均分
子量:300〜100000)皮膜中含有率30重量%以
上 硬化剤:ブロツクポリイソシアネート化合物主樹
脂に対して重量比1/10〜20/10 防錆顔料:ドライシリカ(平均1次粒径1〜
100mμ)皮膜中含有率5〜50重量% 潤滑剤:ポリエチレンワツクス皮膜中含有率0.1
〜10重量% 溶剤:ケトン系有機溶剤 被覆方法はロールコート、スプレーコート、カ
ーテンフローコートなど公知の何れの方法であつ
てもよい。 本発明の構造は必ずしも鋼板の両面に対して用
いる必要はなく、用途に応じて片面のみに適用
し、他の面は錆板面のまま、もしくはZn−Cr−
鉄族金属系複合めつき層だけでもよい。 本発明を適用する素地鋼板は通常ダル仕上げ圧
延をした軟鋼板であるが、ブライト仕上げ圧延を
した軟鋼板、鋼成分としてMn、S、P等を多く
含んだ高張力鋼板、Cr、Cu、Ni、P等を多く含
んだ腐食速度の小さい高耐食性鋼板でも適用可能
である。 (実施例) 実施例の処理条件を以下に述べる。 〔1〕 めつき条件 板厚0.8mmの冷延鋼板をアルカリ脱脂し、5
%硫酸で酸洗した後、水洗し、以下の条件によ
り電気めつきを行つた。ポンプ撹拌により液流
速90m/min、極間距離10mmとし、浴温60℃、
PH2の硫酸酸性浴を用いた。めつき浴組成は
Zn2+イオン70g/、Cr3+イオン1〜30g/
、鉄族金属の2価イオン5〜50g/、酸化
物微粒子(SiO2、Al2O3、ZrO2、TiO2は、平
均粒径0.02〜0.05μm、Cr2O3、WO3は、平均粒
径0.1〜0.5μ)を10〜100g/、カチオンポリ
マー(分子量5万のポリアミンポリマー
(PA)、あるいは分子量10万のポリアミンスル
ホンポリマー(PAS))0.01〜20g/、Na+
イオン16g/とし、Cr、鉄族金属、酸化物
微粒子及びカチオンポリマーの含有率はそれぞ
れの添加量及び電流密度によりコントロール
し、めつき付着量は20g/m2とした。 〔2〕 クロメート処理 電解型クロメート クロム酸30g/、硫酸0.2g/、浴温
40℃の処理液を用いて、電流密度10A/dm2
でめつき板に陰極電解し、水洗、乾燥した。
クロメートの付着量はクーロン量で調節し
た。 塗布型クロメート クロム酸50g/(うちCr3+40%)、SiO2
コロイド100g/、浴温40℃の処理液にめ
つき板を浸漬し、エアーワイプを行つた後、
100℃、1分で乾燥した。クロメートの付着
量は処理液の希釈率とエアーワイプの圧力に
より調節した。 反応型クロメート クロム酸50g/、リン酸10g/、
NaF0.5g/、K2TiF64g/、浴温60℃
の処理液をめつき板にスプレーし、水洗後60
℃で乾燥した。クロメートの付着量は処理液
の希釈率とスプレー時間で調節した。 〔3〕 有機皮膜被覆条件 第1表には主体となる樹脂系のみを記した
が、各樹脂系に対しSiO2等の防錆顔料、硬化
剤、触媒、潤滑剤、水漏れ改質剤等を配合して
塗料化したものを用いた。クロメート処理した
めつき板にロールコーターで塗布し、焼付乾燥
した。焼付条件は樹脂系にもよるが、最終到達
板温100〜200℃とした。 このようにして製造した有機複合めつき鋼板の
構成及び耐食性、加工性、溶接性評価結果を第1
表に示す。評価方法は以下の通りである。 (a) 平板耐食性
(Industrial Field of Application) The present invention relates to an organic composite plated steel sheet for use in automobiles, home appliances, building materials, etc., which has excellent corrosion resistance, particularly corrosion resistance in processed parts. (Prior Art) It is well known that electrogalvanized steel sheets are widely used as surface-treated steel sheets that can be mass-produced without impairing the workability or strength of cold-rolled steel sheets. In recent years, attempts have been made to use galvanized steel sheets as anti-corrosive steel sheets for automobiles in response to salt sprayed to prevent roads from freezing during the winter in cold regions, and there is an increasing trend in the demand for corrosion resistance in harsh corrosive environments. In response to these demands for improving the corrosion resistance of galvanized steel sheets, it is known that the corrosion resistance can be improved by increasing the amount of zinc plating (adhesion amount). Many alloy plating methods have been proposed. Many of these are
It contains iron group elements such as Fe, Ni, and Co as alloying components. These zinc-iron group electroplated steel sheets are characterized by excellent corrosion resistance either unpainted or after painting, and are industrially produced and put to practical use, but it is strongly desired to further improve their corrosion resistance. In response to this demand, organic composite plated steel sheets have been developed for automotive applications, in which a zinc-based plated steel sheet is subjected to chromate treatment and an organic film is coated on top of the chromate treatment. For such organic composite plated steel sheets, progress has been made mainly in improving the coating composition that forms the top layer organic film, but it has not yet fully satisfied the required qualities in terms of corrosion resistance, press workability, spot weldability, etc. Nakatsuta. In other words, those coated with zinc-rich paint have poor press workability, and have insufficient corrosion resistance and weldability, while those coated with conductive pigment-containing paint have improved press workability and weldability, but are still insufficient. It wasn't. (Problem to be solved by the invention) This is a relatively thick organic composite steel sheet with an organic coating thickness of more than 5μ, but recently there has been an increasing trend toward thinner coatings from the viewpoint of press workability and weldability. , a thin film type organic composite plated steel sheet with a film thickness of 5 μm or less is disclosed. In the case of such a thin film type, attempts are being made to improve the corrosion resistance by disposing a rust preventive pigment in the organic film. For example, JP-A-59-162278 discloses an organic film containing a water-dispersible emulsion resin containing a chromium compound as a rust-preventing pigment, while JP-A-60-50181 discloses an organic film containing silica as a rust-preventive pigment. is used, but its corrosion resistance is not sufficient. Corrosion resistance of organic composite plated steel sheets originally depended largely on the organic coating, but as the films became thinner as described above from the viewpoint of press workability and weldability, it became possible to improve the corrosion resistance of the plating layer. It becomes necessary. That is, Zn plating, Zn-Ni, Zn-Fe alloy plating, etc. have been disclosed as the base plating for the above-mentioned organic composite plated steel sheet, but in the thin film type, when press working is performed, the organic film layer As the steel becomes thinner, and if there is a flaw or crack, the plating layer or steel base is partially exposed, so the corrosion resistance of the plating layer becomes more important, but conventional base plating does not have sufficient corrosion resistance. In particular, the corrosion resistance after processing is unreliable. The present invention solves the above problems and provides an organic composite plated steel sheet with improved corrosion resistance, particularly corrosion resistance after working. (Means for Solving the Problems) The present invention provides a Zn-Cr-iron group metal composite electrolyte that can form a corrosion product having an excellent protective effect when a defective part of a coating film or a processed part corrodes. By using the plating layer as the base plating layer and forming an appropriate amount of chromate film and organic film on the upper layer, corrosion resistance, especially corrosion resistance of processed parts, is dramatically improved, and the organic composite material has excellent workability and weldability. We provide steel plates with attached parts. The gist of the present invention is that 1 to 30% by weight of Cr and 1 to 30% of iron group metals are added to the surface of the steel plate.
Form a composite electroplated layer consisting of 10% by weight, 0.1 to 10% by weight of oxide fine particles, 0.001 to 5% by weight of cationic polymer, and the balance Zn, and a chromate film on the top layer with a total Cr content of 10 to 150mg/m 2 An organic composite plated steel sheet with excellent corrosion resistance characterized by forming an organic film of 0.3 to 3 μm on the upper layer.
The above-mentioned organic composite plated steel sheet with excellent corrosion resistance consisting of one or more types of oxides of W, wherein the cationic polymer in the composite electroplated layer is 4
This organic composite plated steel sheet is made of grade amine polymer and has excellent corrosion resistance. (Function) First, the Zn-Cr-iron group metal composite electroplated layer for base plating will be described. Cr is not passivated by eutectoid with Zn,
It maintains an active state and, together with Zn, participates in the sacrificial anticorrosion effect on the steel substrate. Furthermore, since the corrosion products of Cr are poorly soluble and deposit a protective film in localized areas where corrosion is progressing, corrosion resistance is extremely high. When applied as the base plating layer of an organic composite plated steel sheet, the formation of this protective film exhibits extremely high corrosion resistance due to the synergistic effect with the organic film. That is, when exposed to a corrosive environment, the underlying plating layer first undergoes corrosion through defects such as pinholes in the organic film. Cracks occur in the plating layer due to corrosion, and as these cracks propagate, corrosion spreads beneath the organic film, and eventually the steel base is corroded and red rust occurs. Corrosion products of Cr fill the cracks by the so-called rust clogging effect.
Since it prevents the entry of corrosive factors such as water, oxygen, and chlorine ions, it acts as a barrier together with the organic film to prevent the progress of corrosion. Molded products processed by pressing, etc. not only have thinner coatings in the processed areas, but also have flaws and cracks that partially expose the base plated layer and steel base, making it difficult to use conventional methods. A fatal flaw in organic composite plated steel sheets is that the barrier effect of the organic film is diminished. The Zn-Cr-iron group metal composite plating layer has the effect of depositing a protective film and stopping corrosion even in such processed parts. This effect is due to the Zn, Zn-
This cannot be expected with Ni and Ze-Fe plated layers. especially,
When the organic film is thin, it inherently has many coating defects such as pinholes, and in processed areas, the film becomes even thinner, reducing its barrier effect, and if it becomes scratched or cracked, it can easily cause a plated layer or rust. Since the base material is exposed, the action of the Zn-Cr-iron group metal composite plating layer is extremely effective in improving the corrosion resistance not only of the processed parts but also of the unprocessed parts. The Cr content of the Zn-Cr-iron group metal composite plating layer is 1 to 30% by weight. If it is less than 1% by weight, it is not effective in improving corrosion resistance. When the amount exceeds 5% by weight, the occurrence of red rust is greatly suppressed in salt spray tests, etc., and an epoch-making effect appears. In addition, the Cr content
If it exceeds 30% by weight, corrosion resistance is good, but even with the eutectoid effect of the cationic polymer described below, it is difficult to prevent the deterioration of so-called powdering properties in which the plating layer peels off during processing such as press processing. I don't get it,
It is difficult to apply in practice. In addition, from the viewpoint of corrosion resistance and processability, the Cr content is more preferably 5 to 20% by weight. Iron group metals refer to Ni, Fe, and Co. By containing iron group metals, iron group metal ions such as Ni 2+ , Fe 2+ , and Co 2+ are eutectoid in the plating layer, thereby improving corrosion resistance and weldability. The corrosion resistance is presumed to be due to the incorporation of iron group metals into the corrosion products of Cr, thereby further densifying and stabilizing the corrosion products. In terms of weldability, Zn-Cr-iron group metal composite plating layers have iron group metals that increase the electrical resistance of the plating layer, making it easier to generate heat, and because the plating layer becomes hard, it is less likely to be heated due to the pressure of the electrode tip. The deformation of the attached layer becomes smaller,
It is thought that the current tends to concentrate in the welded part. In this case, the content of iron group metals is 1 to 10% by weight. If the content of iron group metals is less than 1% by weight, the effect of adding iron group metals will not be noticeable, and if it exceeds 10% by weight, the properties of iron group metals will become stronger and red rust will easily occur in processed parts. Iron group metals have the advantage that these ions are adsorbed to oxide fine particles in a plating bath, facilitating eutectoid deposition of oxide fine particles. However, as the total amount of Cr and iron group metals increases, the workability deteriorates.
The total amount of Cr and iron group metal is preferably 30% by weight or less. One kind of iron group metal may be used, or two or more kinds thereof may be contained at the same time, but the inclusion of Ni is particularly effective in improving corrosion resistance. The oxide particles penetrate into the corrosion products,
By strongly bonding with oxygen, it further improves the stabilization of corrosion products of Zn-Cr-iron group metals, which have a protective effect, and the oxide fine particles themselves exert a barrier effect against corrosion factors. It is effective in improving the corrosion resistance of organic composite plated steel sheets, especially in processed parts. The content of oxide fine particles is 0.1 to 10% by weight. If it is less than 0.1% by weight, it is not effective in improving corrosion resistance, and if it exceeds 10% by weight, workability deteriorates. From the viewpoint of corrosion resistance and processability, 0.1 to 5% by weight is more preferable. There are various types of oxide fine particles, such as metal and metalloid oxides, but they include Si, Al, Zr, Ti, Cr,
Oxides of Mo and W are particularly preferred, and these may be used alone or in combination of two or more. The average particle size is preferably 1 μm or less, and if the particle size exceeds 1 μm, it is difficult to eutectoid in the plating layer. Cationic polymer is a precipitation accelerator for Cr,
In addition, by eutectoiding a small amount of Cr in the plating layer, it improves powdering resistance during press working. This eutectoid effect of cationic polymers is
It is presumed that the purpose is to prevent Cr ions from inhibiting uniform electrodeposition growth of Zn and resulting in a flecked structure lacking uniformity and smoothness. That is, through the eutectoid cationic polymer,
It is thought that a dense plating layer is formed in which Zn, Cr, and iron group metals are uniformly mixed or alloyed.
The content of the cationic polymer is 0.001 to 5% by weight. If the content is less than 0.001% by weight, the effect on the above-mentioned powdering resistance is poor, and if the content exceeds 5% by weight, it is not only difficult to obtain even if the concentration of the cationic polymer in the plating bath is increased, but also if a large amount is eutectoid. This causes a decrease in plating adhesion. From the viewpoint of powdering resistance, it is desirable to eutectoid the cationic polymer at a content of 1/1000 or more of the Cr content. As the water-soluble cationic polymer used in the present invention, a quaternary amine polymer is effective, and the molecular weight is preferably 10 3 to 10 6 in this case.
Among the following amine polymers, polyamine sulfone (PAS) and polyamine (PA) are the most effective as Cr precipitation promoters. It is thought that the adsorption effect by the amine group and the bond between the sulfone group and the metal ion or metal contribute. Basically, the following quaternary amine salts (ammonium salts) Or it is composed of a copolymer. Some compounds will be specifically listed below. Examples include polymers obtained from diallylamine. R 1 and R 2 represent an alkyl group, X is Cl - ,
It represents an anion of HSO4- , H2PO4- , R- SO3- (R is a C1 - C4 alkyl group), and NO3- . Another example is a polymer synthesized from vinylbenzyl. R 1 , R 2 , R 3 represent hydrocarbons,
X represents an anion of Cl - , HSO 4 - , H 2 PO 4 - , R-SO 3 - , NO 3 - . Alternatively, allylamine polymer can be mentioned.
R 1 , R 2 , R 3 represent hydrocarbons, X is Cl - ,
It represents an anion of HSO 4 - , H 2 PO 4 - , R-SO 3 - , NO 3 - . In addition, polymers of primary, secondary, and tertiary amines are also effective as Cr precipitation promoters, although they are not as effective as the above-mentioned quaternary amine polymers. The amount of plating deposited is 5 to 50 g/m 2 to ensure sufficient corrosion resistance. In addition to Zn, Cr, iron group metals, oxide fine particles, and cationic polymers, Pb, Sn,
Even if a small amount of Ag, In, Bi, Cu, Sb, As, Na, P, S, etc. inevitably eutectoid, the effect of the base plating layer does not essentially change. Next, there is a method for producing a Zn-Cr-iron group metal composite electroplated layer, in which Zn 2+ ions, Cr 3+ ions,
Iron group metal ions such as Ni 2+ , Fe 2+ , Co 2+ ,
Oxide fine particles such as SiO 2 , TiO 2 , Al 2 O 3 and
PH0.5-3 containing 0.01-20g/water-soluble cationic polymer such as a polymer of quaternary amine such as PAS,
20A/dm 2 using an acidic plating bath with a bath temperature of 40 to 70℃
All you need to do is electroplating. During the pampering bath,
Furthermore, it is effective to add salts such as Na + , K + , NH 4 + ions, etc. to increase the conductivity of the bath. The chromate layer applied on the plating layer has the effect of ensuring adhesion with the organic film. Since the Zn-Cr-iron group metal composite plating layer has good reactivity with acidic treatment solutions consisting of Cr +6 and/or Cr +3 , it has been widely used in conventional coating-type chromate treatment, reactive chromate treatment, and electrolytic treatment. Any type chromate treatment etc. can be applied. For coating type and reactive chromate treatment,
In addition to Cr +6 and Cr +3 , inorganic colloids, acids such as phosphoric acid, and fluorides may be added, or water-soluble or emulsion type organic resins may be added. For example, as a treatment liquid containing phosphoric acid and fluoride, chromic acid 30g/, phosphoric acid 10g/, titanium potassium fluoride 4g/, sodium fluoride 0.5g/
, as a treatment liquid containing silica, chromic acid 50
g/(trivalent chromium 40%), SiO 2 100g/
There is. Examples of inorganic colloids include
Phosphoric acid that reacts with colloids such as SiO 2 , Al 2 O 3 , TiO 2 , ZrO 2 , oxygen acids such as molybtic acid, tungstic acid, vanadate and their salts, or zinc in plating to form poorly soluble salts. , phosphoric acids such as polyphosphoric acid, or silicides, titanium fluorides, phosphates, etc. that form poorly soluble salts through reactions such as hydrolysis.
These colloids are effective in fixing small amounts of hexavalent chromium in the chromate film. In addition, phosphoric acids such as phosphoric acid and fluorides are particularly effective in promoting the reaction between the plating layer and chromate. The amount of these inorganic colloids added varies depending on the type at the time of addition, but is, for example, 1 to 200 g/for phosphoric acids and 1 to 800 g/ for SiO 2 . In some cases, an organic resin that can be stably mixed with chromate such as acrylic resin may be added. Electrolytic chromate treatments include those that add sulfuric acid, phosphoric acid, halogen ions, etc. in addition to chromic acid, those that add inorganic colloids such as SiO 2 and Al 2 O 3 , and those that add cations such as Co and Mg. Additives can also be applied. Usually, cathodic electrolysis is applied, but anodic electrolysis and alternating current electrolysis can also be added. The amount of chromate film deposited is 10 to 10% as the total Cr amount.
150mg/ m2 . If it is less than 10 mg/m 2 , the adhesion of the organic film is insufficient, and if it exceeds 150 mg/m 2 , weldability and press workability deteriorate, which is not preferred in practice. A more preferable range is 20 to 100 as the total Cr content.
mg/ m2 . In addition, in order to avoid contamination of chemical conversion treatment liquids, etc. by chromium eluted from the chromate film and the associated complication of work such as wastewater treatment, it is necessary to use a poorly soluble chromate film with a water-soluble content of 5% or less. Electrolytic chromate treatment is suitable for this purpose. An organic film is applied on top of this chromate film. The thickness of the organic film is 0.3 to 3μ. If it is less than 0.3μ, corrosion resistance will not be sufficient, and if it exceeds 3μ, weldability and press workability may deteriorate. A more preferable range is 0.5 to 2μ. The organic coating may be either solvent-based or water-soluble, and may be made of, for example, epoxy, acrylic, polyester, urethane, acrylic olefin, or copolymer derivatives thereof. In addition, various additives such as rust-preventing pigments such as SiO 2 and BaCrO 4 , a hardening agent in the case of a bake-curable film, or a lubricant to further improve press workability may be added. An example of the most preferable organic coating that can be applied in the present invention is listed below. Main resin: Bisphenol type epoxy resin (average molecular weight: 300 to 100,000) Content in film: 30% by weight or more Curing agent: Block polyisocyanate compound Weight ratio of 1/10 to 20/10 to the main resin Rust preventive pigment: Dry Silica (average primary particle size 1~
100mμ) Content in film 5-50% by weight Lubricant: Polyethylene wax content in film 0.1
~10% by weight Solvent: Ketone organic solvent The coating method may be any known method such as roll coating, spray coating, curtain flow coating, etc. The structure of the present invention does not necessarily have to be used on both sides of a steel plate, but can be applied to only one side depending on the application, and the other side may be left as a rust plate surface or Zn-Cr-
Only an iron group metal composite plating layer may be used. The base steel sheet to which the present invention is applied is usually a mild steel sheet that has been subjected to dull finish rolling, but it can also be a mild steel sheet that has been brightly rolled, a high tensile strength steel sheet that contains a large amount of Mn, S, P, etc. as steel components, Cr, Cu, Ni, etc. It is also applicable to highly corrosion-resistant steel plates that contain a large amount of phosphorus, phosphorus, etc. and have a low corrosion rate. (Example) The processing conditions of the example will be described below. [1] Plating conditions A cold-rolled steel sheet with a thickness of 0.8 mm was degreased with alkaline, and
After pickling with % sulfuric acid, washing with water, electroplating was performed under the following conditions. The liquid flow rate was 90 m/min by pump stirring, the distance between poles was 10 mm, and the bath temperature was 60°C.
A sulfuric acid acid bath of pH 2 was used. The composition of the plating bath is
Zn 2+ ion 70g/, Cr 3+ ion 1~30g/
, 5 to 50 g of divalent ions of iron group metals, oxide fine particles (SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 have an average particle size of 0.02 to 0.05 μm, Cr 2 O 3 , WO 3 have an average particle size of 10 to 100 g of particle size 0.1 to 0.5 μ), 0.01 to 20 g of cationic polymer (polyamine polymer (PA) with a molecular weight of 50,000, or polyamine sulfone polymer (PAS) with a molecular weight of 100,000), Na +
The content of Cr, iron group metal, oxide fine particles, and cationic polymer was controlled by the respective additive amounts and current density, and the plating amount was 20 g/m 2 . [2] Chromate treatment Electrolytic chromate Chromic acid 30g/, sulfuric acid 0.2g/, bath temperature
Current density 10A/dm 2 using treatment solution at 40℃
A plated plate was subjected to cathode electrolysis, washed with water, and dried.
The amount of chromate deposited was adjusted by the amount of coulombs. Coating type chromate Chromic acid 50g/(including Cr 3+ 40%), SiO 2
After immersing the plated plate in a treatment solution containing 100 g of colloid and a bath temperature of 40°C and performing air wiping,
It was dried at 100°C for 1 minute. The amount of chromate deposited was adjusted by the dilution rate of the treatment solution and the pressure of the air wipe. Reactive chromate chromic acid 50g/, phosphoric acid 10g/,
NaF0.5g/, K 2 TiF 6 4g/, bath temperature 60℃
Spray the treatment solution on the plating board, wash it with water, and then
Dry at °C. The amount of chromate deposited was adjusted by the dilution rate of the treatment solution and the spray time. [3] Organic film coating conditions Only the main resin systems are listed in Table 1, but for each resin system, rust preventive pigments such as SiO 2 , curing agents, catalysts, lubricants, water leakage modifiers, etc. A paint made by blending the following was used. It was applied to a chromate-treated taming plate using a roll coater and baked to dry. Baking conditions depended on the resin system, but the final board temperature was 100 to 200°C. The structure and corrosion resistance, workability, and weldability evaluation results of the organic composite plated steel sheet manufactured in this way were evaluated in the first
Shown in the table. The evaluation method is as follows. (a) Flat plate corrosion resistance

【表】 上記サイクルを1サイクルとし、3000サイクル
後の板厚減少量で評価した。 0.1mm以下:◎ 0.1mm超〜0.2mm以下:○ 0.2mm超〜0.3mm以下:△ 0.3mm超:× (b) 加工部耐食性 50mmφ×25mmHの円筒プレス成形後、塩水噴
霧試験(JIS Z2371)を3000時間行い、加工部
の赤錆発生面積で評価した。 1%以下:◎ 1%超〜5%以下:○ 5%超〜10%以下:△ 10%超:× (c) プレス加工性 50φ×25Hの円筒プレス成形を行つた後、加
工面についてテープ剥離を行い、重量減少量で
評価した。 2mg以下:◎ 2mg超〜5mg以下:○ 5mg超〜8mg以下:△ 8mg超:× (d) スポツト溶接性 溶接条件は以下の通りである。 電 流:8KA サイクル数:10サイクル 加圧力:200Kg 溶接チツプ形状:第1図に示す(Aは12mmφ、
Bは6mmφ、θは30゜である)。 連続打点数5000点以上:◎ 4000点以上〜5000点未満:○ 3000点以上〜4000点未満:△ 3000点未満:× まず比較例についていえば、No.17は下地めつき
中の鉄族金属(Ni)含有率が多すぎるため、No.
18は下地めつき中に酸化物微粒子を含有しないた
め、No.20は有機皮膜が薄すぎるため、No.21は下地
めつき中にCrを含有しないため、それぞれ耐食
性が不良である。また、No.19はクロメート皮膜量
が少なすぎるため、それぞれプレス加工性が不良
であり、それに伴なつて加工部耐食性も低下して
いる。 これらに対して、本発明例の、No.1〜No.16は何
れも耐食性、加工性、溶接性ともに良好であつ
た。
[Table] The above cycle was considered as one cycle, and evaluation was made based on the amount of plate thickness reduction after 3000 cycles. 0.1mm or less: ◎ More than 0.1mm to 0.2mm or less: ○ More than 0.2mm to 0.3mm or less: △ More than 0.3mm: × (b) Corrosion resistance of processed parts Salt water spray test (JIS Z2371) after cylindrical press forming of 50mmφ x 25mmH The test was carried out for 3,000 hours and evaluated based on the area of red rust on the processed parts. 1% or less: ◎ More than 1% to less than 5%: ○ More than 5% to less than 10%: △ More than 10%: × (c) Press workability After performing cylindrical press forming of 50φ x 25H, tape the processed surface. Peeling was performed and the amount of weight loss was evaluated. 2 mg or less: ◎ More than 2 mg to 5 mg or less: ○ More than 5 mg to 8 mg: △ More than 8 mg: × (d) Spot weldability The welding conditions are as follows. Current: 8KA Number of cycles: 10 cycles Pressure force: 200Kg Welding tip shape: As shown in Figure 1 (A is 12mmφ,
B is 6mmφ and θ is 30°). Continuous score of 5,000 points or more: ◎ 4,000 points or more to less than 5,000 points: ○ 3,000 points or more to less than 4,000 points: △ Less than 3,000 points: × First, regarding the comparative example, No. 17 is a ferrous metal during base plating. (Ni) content is too high, so No.
No. 18 contains no oxide fine particles in the base plating, No. 20 has too thin an organic film, and No. 21 does not contain Cr in the base plating, so the corrosion resistance is poor. Moreover, since the amount of chromate film in No. 19 was too small, the press workability was poor, and the corrosion resistance of the processed parts was also reduced accordingly. In contrast, all of the invention examples No. 1 to No. 16 had good corrosion resistance, workability, and weldability.

【表】 (発明の効果) 以上説明した如く、本発明の有機複合めつき鋼
板は、下地めつきを酸化物微粒子を含有するZn
−Cr−鉄属金属系複合電気めつき層とすること
により、従来の薄膜型の有機複合めつき鋼板の問
題点であつた耐食性、特に加工部耐食性を大巾に
向上させたものであり、プレス加工性やスポツト
溶接性にも優れることから、高度な品質を要求さ
れる自動車をはじめ、家電、建材などに広く利用
することができる。
[Table] (Effects of the Invention) As explained above, the organic composite plated steel sheet of the present invention uses Zn containing oxide fine particles as the base plating.
- By using a Cr-ferrous metal composite electroplated layer, the corrosion resistance, which was a problem with conventional thin film type organic composite plated steel sheets, has been greatly improved, especially the corrosion resistance of processed parts, Because it has excellent press workability and spot weldability, it can be widely used in automobiles, home appliances, building materials, etc. that require a high level of quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例においてスポツト溶接性を評価
するために用いた溶接チツプ形状を示す図であ
る。
FIG. 1 is a diagram showing the shape of a welding tip used to evaluate spot weldability in Examples.

Claims (1)

【特許請求の範囲】 1 鋼板の表面に、Cr1〜30重量%、鉄族金属1
〜10重量%、酸化物微粒子0.1〜10重量%、カチ
オンポリマー0.001〜5重量%、残部Znとする複
合電気めつき層を形成し、その上層にクロメート
皮膜を総Cr量で10〜150mg/m2形成し、更にその
上層に有機皮膜を0.3〜3μ形成したことを特徴と
する耐食性に優れた有機複合めつき鋼板。 2 酸化物微粒子が、Si、Al、Zr、Ti、Cr、
Mo、Wの酸化物の1種以上からなる特許請求の
範囲第1項記載の耐食性に優れた有機複合めつき
鋼板。 3 複合電気めつき層中のカチオンポリマーが、
4級アミンポリマーである特許請求の範囲第1項
記載の耐食性に優れた有機複合めつき鋼板。
[Claims] 1. On the surface of the steel plate, 1 to 30% by weight of Cr, iron group metal 1
~10% by weight, 0.1 to 10% by weight of oxide fine particles, 0.001 to 5% by weight of cationic polymer, and the balance Zn. A chromate film is formed on top of this layer with a total Cr content of 10 to 150mg/m. 2 , and an organic composite plated steel sheet with excellent corrosion resistance, which is characterized by forming an organic film of 0.3 to 3 μm on the upper layer. 2 Oxide fine particles include Si, Al, Zr, Ti, Cr,
An organic composite plated steel sheet with excellent corrosion resistance as claimed in claim 1, comprising one or more of Mo and W oxides. 3 The cationic polymer in the composite electroplating layer is
An organic composite plated steel sheet with excellent corrosion resistance according to claim 1, which is a quaternary amine polymer.
JP23226688A 1988-05-17 1988-09-19 Organic composite plated steel sheet having superior corrosion resistance Granted JPH0280598A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23226688A JPH0280598A (en) 1988-09-19 1988-09-19 Organic composite plated steel sheet having superior corrosion resistance
CA000599581A CA1337555C (en) 1988-05-17 1989-05-12 Coated steel sheets and process for producing the same
EP89108750A EP0342585B1 (en) 1988-05-17 1989-05-16 Coated steel sheets and process for producing the same
DE89108750T DE68908471T2 (en) 1988-05-17 1989-05-16 Coated steel sheets and process for their manufacture.
JP2061149A JPH02277799A (en) 1988-09-19 1990-03-14 Organic composite plated steel sheet excellent in corrosion resistance
US07/642,541 US5188905A (en) 1988-05-17 1991-01-17 Coated steel sheets
US07/901,033 US5242572A (en) 1988-05-17 1992-06-19 Coated steel sheets and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23226688A JPH0280598A (en) 1988-09-19 1988-09-19 Organic composite plated steel sheet having superior corrosion resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2061149A Division JPH02277799A (en) 1988-09-19 1990-03-14 Organic composite plated steel sheet excellent in corrosion resistance

Publications (2)

Publication Number Publication Date
JPH0280598A JPH0280598A (en) 1990-03-20
JPH0465918B2 true JPH0465918B2 (en) 1992-10-21

Family

ID=16936556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23226688A Granted JPH0280598A (en) 1988-05-17 1988-09-19 Organic composite plated steel sheet having superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPH0280598A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939515A (en) * 1982-08-31 1984-03-03 Sumitomo Heavy Ind Ltd Manufacture of laminated web
JPS6314890A (en) * 1986-07-05 1988-01-22 Nippon Steel Corp Decorative galvanized steel sheet and its production
JPS6322637A (en) * 1986-03-27 1988-01-30 日本鋼管株式会社 High corrosion resistance surface-treated steel plate
JPS6335798A (en) * 1986-07-31 1988-02-16 Nippon Steel Corp Organic composite steel sheet having excellent cation electrodeposition paintability
JPS63203798A (en) * 1987-02-19 1988-08-23 Nippon Steel Corp Composite plated steel sheet having excellent workability
JPS63317696A (en) * 1987-02-19 1988-12-26 Nippon Steel Corp Composite plated steel sheet having excellent workability and corrosion resistance
JPH01209133A (en) * 1988-02-18 1989-08-22 Nippon Steel Corp Highly corrosion-resistant double-layer composite plated steel pate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5939515A (en) * 1982-08-31 1984-03-03 Sumitomo Heavy Ind Ltd Manufacture of laminated web
JPS6322637A (en) * 1986-03-27 1988-01-30 日本鋼管株式会社 High corrosion resistance surface-treated steel plate
JPS6314890A (en) * 1986-07-05 1988-01-22 Nippon Steel Corp Decorative galvanized steel sheet and its production
JPS6335798A (en) * 1986-07-31 1988-02-16 Nippon Steel Corp Organic composite steel sheet having excellent cation electrodeposition paintability
JPS63203798A (en) * 1987-02-19 1988-08-23 Nippon Steel Corp Composite plated steel sheet having excellent workability
JPS63317696A (en) * 1987-02-19 1988-12-26 Nippon Steel Corp Composite plated steel sheet having excellent workability and corrosion resistance
JPH01209133A (en) * 1988-02-18 1989-08-22 Nippon Steel Corp Highly corrosion-resistant double-layer composite plated steel pate

Also Published As

Publication number Publication date
JPH0280598A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
JP2006255540A (en) Coating method of metal material
JP2009068115A (en) Production method of surface-treated steel sheet, surface-treated steel sheet and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
JPH10251509A (en) Metal surface treating solution and surface treated metal plate
JP4615807B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet
US5188905A (en) Coated steel sheets
US5242572A (en) Coated steel sheets and process for producing the same
JPH0536518B2 (en)
JPH0465918B2 (en)
EP0342585B1 (en) Coated steel sheets and process for producing the same
JPH0545678B2 (en)
JP2533000B2 (en) Highly corrosion resistant surface treated steel sheet
JPH055914B2 (en)
JPH0512439B2 (en)
JPH02277799A (en) Organic composite plated steel sheet excellent in corrosion resistance
JPH01177386A (en) Chromated zinc-chromium electroplated steel sheet
JPH0468140B2 (en)
JP2532999B2 (en) Highly corrosion resistant surface treated steel sheet
JPH0387399A (en) Organic composite plated steel sheet excellent in corrosion resistance
JP3330423B2 (en) Cathode electrolytic resin chromate type metal surface treatment method
JPH0788584B2 (en) Resin coated zinc-chromium electroplated steel sheet
JPH0551787A (en) Chromate treated steel plate excellent in weldability and corrosion resistance, pitting resistance after coating.
JPH0536516B2 (en)
JPH058280B2 (en)
JPH03166396A (en) Highly corrosion resistant composite electroplated steel sheet excellent in chemical conversion treating property and its production
JPH057478B2 (en)