JPH057478B2 - - Google Patents

Info

Publication number
JPH057478B2
JPH057478B2 JP63118117A JP11811788A JPH057478B2 JP H057478 B2 JPH057478 B2 JP H057478B2 JP 63118117 A JP63118117 A JP 63118117A JP 11811788 A JP11811788 A JP 11811788A JP H057478 B2 JPH057478 B2 JP H057478B2
Authority
JP
Japan
Prior art keywords
sio
weight
corrosion resistance
plating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63118117A
Other languages
Japanese (ja)
Other versions
JPH01290796A (en
Inventor
Yoshio Shindo
Fumio Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11811788A priority Critical patent/JPH01290796A/en
Publication of JPH01290796A publication Critical patent/JPH01290796A/en
Publication of JPH057478B2 publication Critical patent/JPH057478B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高耐食性複合電気めつき鋼板に関する
ものである。 詳しくは例えば、自動車、建材、電気製品等に
使用される防錆鋼板の耐食性を向上せしめためつ
き鋼板に関するものである。 (従来の技術) すでに冷延鋼板の耐食性、塗装後の耐食性の向
上及び加工性を損なわず量産化できる表面処理鋼
板としては電気亜鉛メツキ鋼板が汎用されている
ことは周知である。 ところが近年では寒冷地帯における冬期の道路
凍結防止用の散布塩に対する自動車の防錆鋼板と
して亜鉛メツキ鋼板の使用が試みられ、苛酷な腐
食環境での耐食性の要求が増加する傾向にある。 これら亜鉛メツキ鋼板の耐食性の向上要求に対
して亜鉛のメツキ量(付着量)による耐食性の向
上が知られているが、メツキ量の増加以外の方法
として亜鉛自身の溶解を抑制するための合金メツ
キが数多く提案されている。こられの多くは、
Fe、Ni、Coといつた鉄族元素を合金成分として
含有するものであり、特に、Zn−Ni、Ni−Coめ
つき、及びZn−Fe合金めつきはその有用性が認
められ実用化に至つている。 (発明が解決しようとする課題) 最近に至つては、金属以外の物質を共析させた
複合めつきについても、種々提案されている。例
えば特開昭54−146228では、Zn−SiO2、本発明
者等の特開昭60−141898では、Zn−鉄族元素合
金めつき中に、SiO2、TiO2などを含有させる複
合めつき、特開昭60−125395、61−270398ではア
ルミナをめつき層中に含有される複合めつきが開
示されている。これらの複合めつきの耐食性は、
アルミナ、SiO2などの共析物質のめつき層内で
の均一性がポイントになつており、めつき条件
や、組成の変動によつては共析物質が凝集して塊
状に共析したり、共析量そのものが不安定となり
期待したような効果が発揮できない場合があり、
極めて不安定である。又、寒冷地帯や高温多湿地
帯の如き、厳しき腐食環境下では、なお耐食性不
足である点が指摘される。 (発明の目的) 本発明の目的は、上記従来技術の欠点を解消
し、耐食性に優れた複層電気めつき鋼板を提供し
ようとするものである。 (課題を解決するための手段) 本発明の要旨は鋼板の表面に、Cr:0.1〜10重
量%、平均粒径1〜100nmのSiO2:0.1〜10重量
%、Ni:1〜15重量%、残部Znからなる複合電
気めつき層を形成し、その上層にZnもしくはZn
系合金電気めつき層を形成せしめたことを特徴と
する高耐食性複層電気めつき鋼板である。 (作用) 先ずCrの作用について説明する。CrはZnと共
存下では不働態化せず、活性状態を維持するの
で、Znとともに鋼素地に対する犠牲防食作用に
加担する。更に、Crの腐食生成物はZnと異なり、
極めて難溶性の保護皮膜を腐食部に堆積するの
で、耐食性が大巾に向上するものと考えられる。 めつき層中のCr含有量は0.1〜10重量%が好ま
しく、3〜10重量%が特に好ましい。0.1重量%
未満では、耐食性向上効果が不十分である。3重
量%以上になると、例えば塩水噴霧試験等では白
錆発生が抑制され、効果に顕著に認められる。10
重量%を超える含有率は、安定して得られないば
かりか加工時にめつき剥離が起り易くなり、実用
上は好ましくない。 次に、SiO2は、Niイオンや、Crイオンの共存
下で、めつき層中に微細な状態で均一に析出す
る。これは、NiイオンやCrイオンがSiO2粒子の
回りに特異吸着し、SiO2が正に帯電するため、
SiO2粒子間の反発力によりSiO2の凝集が抑制さ
れると共に、陰極に電気泳動してめつき層内に共
析しやすくなるためである。SiO2は、腐食生成
物の保護作用を通して耐食性向上に寄与する。ま
た、SiO2は優れた耐アルカリ性を有するので、
塗装後耐食性を向上させる。めつき層中のSiO2
含有量は、0.1〜10重量%が好ましい。0.1重量%
未満では、耐食性向上効果がほとんど認められ
ず、10重量%超では、加工時のめつき剥離の危険
性が高まるので好ましくない。 Niは、SiO2を共析させるために不可欠である
と同時に、めつき層の電位を貴側に移行させ、塗
装後傷付部に発生する塗膜ふくれを抑制する効果
を発揮する。CrとSiO2のみをZnめつき中に共析
させた複合めつきは、特に裸耐食性が優れるもの
の塗装後の傷付部における塗膜ふくれがやや発生
し易く、総合的な意味での耐食性は不十分であ
る。CrとSiO2のみをZnめつき中に共析させた複
合めつき層の電位はZn単独めつきとほぼ同等で
あるため、耐アルカリ性に優れるSiO2の存在に
より、塗膜ふくれは、抑制されるが、まだ不十分
である。然るに、Niを含有させると確実に電位
が貴側に移行するので、塗膜ふくれは発生しにく
くなる。めつき層中のNi含有量は、1〜5重量
%が好ましい。1重量%未満では、塗膜ふくれの
抑制効果が顕著ではなく、15重量%超では、未塗
装耐食性が低下する傾向が現われ、好ましくな
い。 めつき付着量としては、10〜50g/m2で十分に
耐食性を確保できる。なお、残部は、Znからな
るものであるが、Fe、Co、Pb、Sn、Ag、In、
Bi、Cu、Sb、As、Al、Ti、Na、P、S、C等
が不可避的に微量共析していても、本質的に本発
明の効果は変わらないものである。 上層のZnもしくは、Zn系合金電気めつき層は、
りん酸塩処理において、緻密なりん酸塩皮膜を形
成する作用を持ち、この作用を通して、安定して
良好な塗装後耐食性が得られ、かつカチオン電着
塗装時の塗装欠陥発生を抑制する。 Zn系合金電気めつき層とは、従来よりあるZn
−Ni、Zn−Fe、Zn−Co等であり、Znを5%以
上含有していれば、スプレー型、浸漬型何れのり
ん酸塩処理においても、緻密なりん酸塩皮膜を形
成できる。上層のめつき付着量は、1〜5g/m2
で十分である。 製造方法に関して述べるならば、Zn2+を30〜
60g/、Ni2+を5〜60g/含有する酸性電
気めつき浴中にCr3+を1〜30g/、SiO2を5
〜50g/共存させ、PHを1〜3、浴温を40〜70
℃として、電気密度50〜300A/dm2で電気めつ
きすればよい。他に適当な電導助剤例えば、
Na2SO4、(NH42SO4やPH緩衝剤例えばほほう酸
や酢酸ナトリウムを含有させても差し支えない。
Cr源としては、硫酸酸性浴中では硫酸Crがよい。
SiO2は、水分散ゾル、コロイダルシリカ、ドラ
イシリカ、ヒユームシリカの何れを使用してもよ
いが、1次粒径1〜100nmの微細なものとする。
上層のZnもしくはZn系合金めつき層については、
周知の電気めつき方法でよい。 本発明の構造は必ずしも鋼板の両面に対して用
いる必要はなく、用途に応じて片面のみに適用
し、他の面は鋼板面のまま、もしくは他のめつき
層、あるいは有機皮膜を被覆しためつき層として
もよい。 本発明を適用する素地鋼板は通常ダル仕上げ圧
延をした軟鋼板であるが、ブライト仕上げ圧延を
した軟鋼板、鋼成分としてMn、S、P等を多く
含んだ高張力鋼板、Cr、Cu、Ni、P等を多く含
んだ腐食速度の小さい高耐食性鋼板でも適用可能
である。 (実施例) 冷延鋼板を、アルカリ脱脂し、5%硫酸で酸洗
した後、水洗し、以下の条件により、電気めつき
を行なつた。ポンプ撹拌により液流速90m/
min、極間距離10mmとし、浴温60℃、PH2の硫酸
酸性浴を用いた。めつき浴に添加するSiO2とし
ては、平均1次粒径10〜20nmのコロイダルシリ
カまたは平均粒径30〜50nmのドライシリカを用
いた。めつき層中に含有するNi、Cr、SiO2の含
有率は、めつき浴中のそれぞれの添加量及び電流
密度によりコントロールし、目付量は20g/m2
した。上層に、ZnもしくはZn系合金めつきを周
知の条件で3g/m2施した。 第1表にめつき鋼板の組成・及び耐食性評価結
果を示す。耐食性評価方法については以下の通り
である。 未塗装耐食性 めつき鋼板を裸のまま、塩水噴霧試験
(ZISZ2371)に供し、500時間後の赤錆発生面
積(%)を測定した。 0〜1% ◎ 1〜10% 〇 10〜50% △ 50%以上 × 塗装後耐食性 浸漬りん酸塩処理及びカオチン電着塗装
(20μ)及びメラミンアルキド系の自動車用中
塗、上塗塗装(各40μ)を行なつた後、地鉄に
達するクロスカツトを入れ、下記サイクル腐食
試験を50サイクル行ない、クロスカツト部のふ
くれ巾で評価した。 0〜1mm ◎ 1〜3mm 〇 3〜5mm △ 5mm以上 × サイクル試験
(Industrial Application Field) The present invention relates to a highly corrosion-resistant composite electroplated steel sheet. Specifically, the present invention relates to a tacked steel plate that improves the corrosion resistance of rust-proof steel plates used in automobiles, building materials, electrical appliances, and the like. (Prior Art) It is well known that electrogalvanized steel sheets are widely used as surface-treated steel sheets that can be mass-produced without impairing the corrosion resistance of cold-rolled steel sheets, the corrosion resistance after painting, and workability. However, in recent years, attempts have been made to use galvanized steel sheets as anti-rust steel sheets for automobiles in response to the salt sprayed on roads in winter to prevent roads from freezing in cold regions, and there is an increasing demand for corrosion resistance in harsh corrosive environments. In response to these demands for improving the corrosion resistance of galvanized steel sheets, it is known that corrosion resistance can be improved by increasing the amount of zinc plating (adhesion amount). Many have been proposed. Many of these are
It contains iron group elements such as Fe, Ni, and Co as alloy components, and in particular, Zn-Ni, Ni-Co plating, and Zn-Fe alloy plating have been recognized for their usefulness and have been put into practical use. It's reached. (Problems to be Solved by the Invention) Recently, various proposals have been made regarding composite plating in which substances other than metals are eutectoid. For example, in JP-A-54-146228, Zn-SiO 2 is used, and in JP-A-60-141898 by the present inventors, composite plating is performed in which SiO 2 , TiO 2, etc. are included in Zn-iron group element alloy plating. , JP-A-60-125395 and JP-A-61-270398 disclose composite plating in which alumina is contained in the plating layer. The corrosion resistance of these composite platings is
The key point is the uniformity of eutectoids such as alumina and SiO 2 within the plating layer, and depending on the plating conditions and variations in composition, the eutectoids may aggregate and form eutectoids in lumps. , the eutectoid amount itself may become unstable and the expected effect may not be achieved.
Extremely unstable. Furthermore, it has been pointed out that corrosion resistance is still insufficient in severe corrosive environments such as cold regions and hot and humid regions. (Objective of the Invention) An object of the present invention is to eliminate the drawbacks of the above-mentioned prior art and to provide a multilayer electroplated steel sheet with excellent corrosion resistance. (Means for Solving the Problems) The gist of the present invention is to coat the surface of a steel plate with Cr: 0.1 to 10% by weight, SiO 2 with an average grain size of 1 to 100 nm: 0.1 to 10% by weight, and Ni: 1 to 15% by weight. , a composite electroplated layer is formed with the remainder being Zn, and the top layer is Zn or Zn.
This is a highly corrosion-resistant multi-layer electroplated steel sheet characterized by having an electroplated alloy layer formed thereon. (Action) First, the action of Cr will be explained. When Cr coexists with Zn, it does not become passivated and remains active, so it participates in the sacrificial anticorrosion effect on the steel base together with Zn. Furthermore, the corrosion products of Cr are different from Zn;
It is thought that corrosion resistance is greatly improved because an extremely poorly soluble protective film is deposited on corroded areas. The Cr content in the plating layer is preferably 0.1 to 10% by weight, particularly preferably 3 to 10% by weight. 0.1% by weight
If it is less than that, the effect of improving corrosion resistance is insufficient. When the amount is 3% by weight or more, the occurrence of white rust is suppressed in, for example, a salt spray test, and the effect is noticeable. Ten
If the content exceeds % by weight, not only will it not be possible to obtain a stable result, but also plating peeling will easily occur during processing, which is not preferred in practice. Next, SiO 2 is uniformly precipitated in a fine state in the plating layer in the coexistence of Ni ions and Cr ions. This is because Ni ions and Cr ions are specifically adsorbed around SiO 2 particles, and SiO 2 becomes positively charged.
This is because the aggregation of SiO 2 is suppressed by the repulsive force between SiO 2 particles, and the SiO 2 particles are more likely to be electrophoresed to the cathode and eutectoid within the plating layer. SiO 2 contributes to improving corrosion resistance through its protective action against corrosion products. In addition, SiO 2 has excellent alkali resistance, so
Improves corrosion resistance after painting. SiO 2 in plating layer
The content is preferably 0.1 to 10% by weight. 0.1% by weight
If the content is less than 10% by weight, the effect of improving corrosion resistance will hardly be observed, and if it exceeds 10% by weight, the risk of plating peeling during processing increases, which is not preferable. Ni is indispensable for eutectoiding SiO 2 and at the same time has the effect of shifting the potential of the plating layer to the noble side and suppressing the blistering of the paint film that occurs in the scratched areas after painting. Composite plating, in which only Cr and SiO 2 are eutectoid during Zn plating, has particularly excellent bare corrosion resistance, but is somewhat prone to blistering of the paint film at scratched areas after painting, and its corrosion resistance in a comprehensive sense is poor. Not enough. The potential of a composite plating layer in which only Cr and SiO 2 are eutectoid during Zn plating is almost the same as Zn alone plating, so the presence of SiO 2 , which has excellent alkali resistance, suppresses paint film blistering. However, it is still insufficient. However, when Ni is included, the potential reliably shifts to the noble side, making it difficult for paint film blisters to occur. The Ni content in the plating layer is preferably 1 to 5% by weight. If it is less than 1% by weight, the effect of suppressing paint film blistering will not be significant, and if it exceeds 15% by weight, there will be a tendency for unpainted corrosion resistance to decrease, which is not preferable. The amount of plating deposited is 10 to 50 g/m 2 to ensure sufficient corrosion resistance. The remainder consists of Zn, but Fe, Co, Pb, Sn, Ag, In,
Even if Bi, Cu, Sb, As, Al, Ti, Na, P, S, C, etc. inevitably eutectoid in small amounts, the effects of the present invention essentially remain unchanged. The upper Zn or Zn-based alloy electroplated layer is
In phosphate treatment, it has the effect of forming a dense phosphate film, and through this effect, stable and good corrosion resistance after painting is obtained, and the occurrence of coating defects during cationic electrodeposition coating is suppressed. The Zn-based alloy electroplated layer is a Zn-based alloy electroplated layer.
-Ni, Zn-Fe, Zn-Co, etc., and if it contains 5% or more of Zn, a dense phosphate film can be formed in either spray type or immersion type phosphate treatment. The amount of plating on the upper layer is 1 to 5 g/m 2
is sufficient. Regarding the manufacturing method, Zn 2+ is
Cr 3+ 1-30 g/, SiO 2 5/ - in an acidic electroplating bath containing 60 g/, Ni 2+ 5-60 g/
~50g/coexist, pH 1-3, bath temperature 40-70
Electroplating may be carried out at an electrical density of 50 to 300 A/dm 2 . Other suitable conductive aids, such as
Na 2 SO 4 , (NH 4 ) 2 SO 4 or a PH buffer such as boric acid or sodium acetate may be contained.
As a Cr source, Cr sulfate is preferred in a sulfuric acid acid bath.
Any of water-dispersed sol, colloidal silica, dry silica, and humic silica may be used as SiO 2 , but it is fine with a primary particle size of 1 to 100 nm.
Regarding the upper Zn or Zn-based alloy plating layer,
A well-known electroplating method may be used. The structure of the present invention does not necessarily have to be applied to both sides of a steel plate, but can be applied to only one side depending on the application, and the other side can be left as the steel plate surface or coated with another plating layer or an organic film. It may also be used as a layer. The base steel sheet to which the present invention is applied is usually a mild steel sheet that has been subjected to dull finish rolling, but it can also be a mild steel sheet that has been brightly rolled, a high tensile strength steel sheet that contains a large amount of Mn, S, P, etc. as steel components, Cr, Cu, Ni, etc. It is also applicable to highly corrosion-resistant steel plates that contain a large amount of phosphorus, phosphorus, etc. and have a low corrosion rate. (Example) A cold rolled steel sheet was degreased with alkali, pickled with 5% sulfuric acid, washed with water, and electroplated under the following conditions. Liquid flow rate 90m/by pump stirring
The distance between the electrodes was 10 mm, and a sulfuric acid acid bath with a bath temperature of 60° C. and a pH of 2 was used. As SiO 2 added to the plating bath, colloidal silica with an average primary particle size of 10 to 20 nm or dry silica with an average particle size of 30 to 50 nm was used. The contents of Ni, Cr, and SiO 2 in the plating layer were controlled by the amount of each added in the plating bath and the current density, and the basis weight was 20 g/m 2 . The upper layer was plated with 3 g/m 2 of Zn or Zn-based alloy under known conditions. Table 1 shows the composition and corrosion resistance evaluation results of the plated steel sheets. The corrosion resistance evaluation method is as follows. Unpainted Corrosion Resistance The bare plated steel plate was subjected to a salt spray test (ZISZ2371), and the area (%) where red rust occurred was measured after 500 hours. 0-1% ◎ 1-10% 〇10-50% △ 50% or more × Corrosion resistance after painting Immersion phosphate treatment and cationic electrodeposition coating (20μ) and melamine alkyd automotive intermediate coating and top coating (40μ each) After performing this, a cross cut reaching the base iron was inserted, and the following cyclic corrosion test was performed for 50 cycles, and the bulge width of the cross cut portion was evaluated. 0~1mm ◎ 1~3mm 〇3~5mm △ 5mm or more × Cycle test

【表】 りん酸塩処理性 浸漬型りん酸塩処理での皮膜結晶のサイズで
評価した。 平均サイズ 10μm以下 〇 〃 20μm以下 △ 〃 20μm超 × カチオン電着性 浸漬型りん酸塩処理を施した後、印加電圧
300V、極間10cm、昇圧時間30秒、膜厚20〜25μ
mの条件でカチオン電着塗装を行ない、その外
観を評価した。 塗膜欠陥(クレーター、ガスピン)の発生個数 2個/dm2以下:〇 10個/dm2以下:△ 10個/dm2超:× 本発明の実施例は、比較例に比して、耐食性、
りん酸塩処理性、カチオン電着性共に明らかに良
好である。
[Table] Phosphate treatment properties Evaluated by the size of film crystals in immersion type phosphate treatment. Average size 10μm or less 〃 20μm or less △ 〃 More than 20μm × Cationic electrodepositability After immersion phosphate treatment, applied voltage
300V, electrode gap 10cm, voltage increase time 30 seconds, film thickness 20~25μ
Cationic electrodeposition coating was performed under the conditions of m, and the appearance was evaluated. Number of paint film defects (craters, gas pins): 2 or less/dm 2 : 〇 10/dm 2 or less: △ More than 10/dm 2 : × The examples of the present invention have better corrosion resistance than the comparative examples. ,
Both phosphate treatment properties and cationic electrodeposition properties are clearly good.

【表】 (発明の効果) 以上説明した如く、本発明の複層めつき鋼板
は、電気Znめつき層中に、Cr、SiO2、Niiを適量
複合化させることにより、従来のめつき鋼板に比
べ耐食性を飛躍的に向上させることができ、2層
構造とすることにより、りん酸塩処理性、カチオ
ン電着性にも優れたものであり、自動車、あるい
は家電製品等に好適である。
[Table] (Effects of the invention) As explained above, the multi-layer plated steel sheet of the present invention has the advantage of combining appropriate amounts of Cr, SiO 2 and Ni in the electrolytic Zn plating layer. The corrosion resistance can be dramatically improved compared to the conventional method, and due to the two-layer structure, it has excellent phosphate treatment properties and cationic electrodeposition properties, and is suitable for automobiles, home appliances, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板の表面に、Cr:0.1〜10重量%、平均粒
径1〜100nmのSiO2:0.1〜10重量%、Ni:1〜
15重量%、残部Znからなる複合電気めつき層を
形成し、その上層にZnもしくはZn系合金電気め
つき層を形成せしめたことを特徴とする高耐食性
複層電気めつき鋼板。
1. On the surface of the steel plate, Cr: 0.1-10% by weight, SiO 2 with an average grain size of 1-100 nm: 0.1-10% by weight, Ni: 1-10% by weight.
A highly corrosion-resistant multilayer electroplated steel sheet characterized by forming a composite electroplated layer consisting of 15% by weight and the balance being Zn, and on top of that a Zn or Zn-based alloy electroplated layer.
JP11811788A 1988-05-17 1988-05-17 Electroplated steel sheet having high corrosion resistance Granted JPH01290796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11811788A JPH01290796A (en) 1988-05-17 1988-05-17 Electroplated steel sheet having high corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11811788A JPH01290796A (en) 1988-05-17 1988-05-17 Electroplated steel sheet having high corrosion resistance

Publications (2)

Publication Number Publication Date
JPH01290796A JPH01290796A (en) 1989-11-22
JPH057478B2 true JPH057478B2 (en) 1993-01-28

Family

ID=14728451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11811788A Granted JPH01290796A (en) 1988-05-17 1988-05-17 Electroplated steel sheet having high corrosion resistance

Country Status (1)

Country Link
JP (1) JPH01290796A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147169A (en) * 1997-03-25 2000-11-14 Kansai Paint Co., Ltd. Curable coating composition
CN112899741B (en) * 2021-01-21 2022-03-15 长春理工大学 Method for processing silicon dioxide-nickel composite hydrophobic corrosion-resistant coating on metal surface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146228A (en) * 1978-05-08 1979-11-15 Nippon Steel Corp Zinc-plated steel sheet with superior corrosion resistance
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS626758A (en) * 1985-07-03 1987-01-13 Honda Motor Co Ltd Member made of carbon fiber reinforced magnesium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146228A (en) * 1978-05-08 1979-11-15 Nippon Steel Corp Zinc-plated steel sheet with superior corrosion resistance
JPS54159342A (en) * 1978-06-08 1979-12-17 Nippon Steel Corp Manufacture of corrosion resistant zinc composite- electroplated steel products
JPS626758A (en) * 1985-07-03 1987-01-13 Honda Motor Co Ltd Member made of carbon fiber reinforced magnesium alloy

Also Published As

Publication number Publication date
JPH01290796A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
JPH0610358B2 (en) Multi-layer electric plated steel sheet
JPS60125395A (en) Zn-alumina composite electroplated steel sheet having high corrosion resistance
JPH057478B2 (en)
JPS63243295A (en) Rust preventive steel sheet having superior corrosion resistance
JPH025839B2 (en)
KR910007951B1 (en) Zn - ni based composite electroplated steel sheet and multi - layer composite plated steel sheet
JPS6026835B2 (en) Zinc-manganese alloy electroplated steel sheet with excellent corrosion resistance in salt water environments
JPH055914B2 (en)
JPH0536518B2 (en)
JPS61194195A (en) Highly-corrosion resistant two-layer plated steel plate
JPH01230797A (en) Zn-ni composite electroplated steel sheet having superior corrosion resistance and workability
JPH07103476B2 (en) Method for producing Zn-Ni alloy electroplated steel sheet excellent in workability
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
JPS63143294A (en) Double-layer electroplated steel sheet having excellent corrosion resistance
JPH04337098A (en) Zn-ni-mo multi-ply electrogalvanized steel sheet excellent in corrosion resistance and plating adhesion
JP2532999B2 (en) Highly corrosion resistant surface treated steel sheet
JP2707477B2 (en) High corrosion resistant multi-layer electroplated steel sheet
JPH0610359B2 (en) High corrosion resistant Zn-based multi-layer electric steel sheet
JPS58224740A (en) Weldable painted steel plate
JPS61119694A (en) Production of electroplated steel plate
JPS6043498A (en) Galvanized steel sheet having high corrosion resistance and its production
JPH01177393A (en) Production of high corrosion resistant electrogalvanized steel sheet
JPH0340120B2 (en)
JPH0684559B2 (en) Method for producing zinc-based plated steel sheet
JPS60177186A (en) Steel sheet provided with superior bare corrosion resistance by chemical conversion treatment