JPH0465534B2 - - Google Patents

Info

Publication number
JPH0465534B2
JPH0465534B2 JP62130595A JP13059587A JPH0465534B2 JP H0465534 B2 JPH0465534 B2 JP H0465534B2 JP 62130595 A JP62130595 A JP 62130595A JP 13059587 A JP13059587 A JP 13059587A JP H0465534 B2 JPH0465534 B2 JP H0465534B2
Authority
JP
Japan
Prior art keywords
ball
wire
alloy wire
alloy
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62130595A
Other languages
Japanese (ja)
Other versions
JPS63301535A (en
Inventor
Toshinori Kogashiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP62130595A priority Critical patent/JPS63301535A/en
Priority to GB8800518A priority patent/GB2201545B/en
Publication of JPS63301535A publication Critical patent/JPS63301535A/en
Publication of JPH0465534B2 publication Critical patent/JPH0465534B2/ja
Priority to US07/970,232 priority patent/US5384090A/en
Priority to US08/315,577 priority patent/US5514912A/en
Priority to US08/315,575 priority patent/US5514334A/en
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は半導体材料の接続方法、詳しくはワイ
ヤレスボンデイング法、特にフリツプチツプボン
デイング法またはテープキヤリアボンデイング法
により半導体チツプを基板にボンデイングする際
の接続方法及びそれに用いる接続材料に関する。 (従来技術とその問題点) 従来、ワイヤボンダを用いてバンプ電極を形成
する方法には特開昭61−43438号公報があるが、
この方法では亜鈴形状のバンプ電極をボンデイン
グした後に、ワイヤーを切断するために電気トー
チ等で切断する工程を必要としている。 又、現在バンプ電極材料としては、
PbSn5wt%,PbSn40wt%などを用いているが、通
常の鋳造法により作製した前記合金をダイス引き
によによりワイヤー化した合金ワイヤーを、ワイ
ヤーボンダを用いて接続したところ、ワイヤーが
ボールの根本部ではなくワイヤー部の途中で切断
することが多く、また長さのバラツキも大きくバ
ンプ電極としての使用に不適であることが判明し
た。 上記合金ワイヤーがワイヤー部で切断するの
は、ボール根本部の引張り強度がワイヤー部の引
張り強度に較べて十分小さくないことが原因して
いる。 (発明が解決しようとする技術的課題) 本発明は叙上従来問題点を解決して、ワイヤー
ボンダを用いたバンプ電極の形成を可能にし、作
業性の高い半導体の接続方法を提供するとともに
該方法に用いる接続材料を提供することを目的と
する。 (技術的課題を達成するための技術的手段) 斯る本発明の技術的手段は、Pb,Sn,Inの何
れか1つを主要元素として、かつ急冷凝固法によ
り作製された細い合金ワイヤーの先端を加熱して
ボールを形成し該ボールを配線上面又は半導体材
料上面に接着させた状態で合金ワイヤーを引張る
ことにより、ボールがその根本部から切断されて
配線上面又は半導体材料上面にバンプ電極を形成
せしめ、そのバンプ電極を介して半導体材料を接
続する半導体材料の接続方法に係り、また本発明
の接続材料は、Pb,Sn,Inの何れか1つを主要
元素とし、それに添加元素を配合した合金を急冷
凝固法により細いワイヤー状に作製してなること
を特徴とする。 (作用) 本発明によれば、急冷凝固法により作製された
合金ワイヤーは、多くの格子欠陥の導入,結晶粒
の微細化,非平衡相の生成,元素相互間の強制固
溶を有する組織状態となつて引張り強度を著しく
高める。 そして、上記合金ワイヤーの先端を加熱してボ
ールを形成したこときに、該ボールの根本部にお
いて、非平衡相が消失し、元素相互間の強制固溶
が解放し、格子欠陥が解放し、さらに結晶粒が粗
大化するなどの現象が生じてボール根本部の引張
り強度を減少せしめ、該部分の降伏,破断が起り
易い状態ならしめる。 従つて、上記ワイヤーを引張ることによつてボ
ールがその根本部から切断され、半導体材料上面
又は配線上面にワイヤーから切離してなるボール
によりバンプ電極を形成する。 (実施例) 以下、本発明の実施例を図面により説明する。 〔実施例 〕 本実施例で使用する半導体装置Aは第11図に
示す如く、所謂フリツプチツプボンデイング型で
あり、基板1がアルミナ又はガラスエポキシ樹脂
等絶縁性樹脂で形成され、該基板1の上面には
Cu又はCr・Cu又はPt又はPd又はAg又はPd・Ag
又はAu又はAl又はNi等の導電性材料からなる配
線2が配線されると共に基板1中央部には半導体
材料としてのチツプ3が搭載されてバンプ電極7
aを介して前記配線2と電気的に接続されてい
る。 さらに、前記半導体チツプ3と配線2の一部と
がシリコン等の保護樹脂で封止して形成されてい
る。 また、第1図〜第5図は前記半導体装置Aにお
いて、本発明の半導体材料の接続方法を示した断
面図である。 第1図はワイヤボンダのキヤピラリ4に挿通さ
れている接続材料としての合金ワイヤー5を示
し、この合金ワイヤーの先端を電気トーチ6で加
熱することによつてボール7を形成する。合金ワ
イヤー5は半田材料、すなわちPb,Sn,Inの何
れか1つを主要元素とし、それに添加元素を配合
せしめた合金であり、かつ急冷凝固法により作製
された細線である。すなわち急冷凝固法として、
従来知られた液中紡糸法により直接にワイヤーを
成形するか、あるいは単ロール法により得られた
合金材料を冷間プレスし、さらに押出し成形して
ワイヤーを成形するなどの方法による。そして、
得られたワイヤーに線引き加工を施して所定の細
線径とし前記合金ワイヤー5を作製する。 合金ワイヤー5の添加元素としては、Be,B,
C,Mg,Al,Si,P,Ca,Ti,V,Cr,Mn,
Fe,Co,Ni,Cu,Zn,Ga,Ge,Se,Zr,Nb,
Mo,Pd,Ag,Cd,Sb,Te,Ir,Pt,Au,Tl,
Bi中の1種又は2種以上を配合せしめ、また主
要元素Pb,Sn,Inをそれを含まない主要元素中
に添加することもよい。 上記合金ワイヤー5は前記急冷処理によつて、
多くの格子欠陥が導入され、結晶粒が微細化し、
非平衡相が生成し、元素相互間に強制固溶に生じ
た組織状態にあり、さらに線引き加工によつて、
加工硬化に伴う格子欠陥が導入され、添加元素に
よつて固溶硬化した組織状態にある。 次に第2図及び第3図に示す如く、キヤピラリ
4を下降させて合金ワイヤー5先端に形成された
ボール7を配線2に付着させた状態でキヤピラリ
4を引き上げることにより、ボール7の根本部で
合金ワイヤー5から切断され配線2上にボール7
が供給されてバンプ電極7aが形成される。 そして、この様な方法により基板1上面の配線
2全線にバンプ電極7aが連続的に形成される。 上記合金ワイヤー5の切断は、ボール7を加熱
形成した際に、ボール7の根本部において、前記
非平衡相が消失し、元素相互間の強制固溶が解放
し、格子欠陥が解放し、結晶粒が粗大化した組織
状態となつているため、その部分の引張り強度が
減少し、キヤピラリ4により合金ワイヤー5を引
き上げるだけでボール7がその根本部で降伏,破
断することによつて起こる。 次に、第4図に示す如くこれら配線2上面に供
給し付着されたバンプ電極7aを半導体チツプ3
表面に配設された電極3aに接着させることによ
り、該配線2と電極3aとが電気的に接続される
と共に該半導体チツプ3が取り付けられる。 又、第5図に示す如く、前記配線2とバンプ電
極7aまたはバンプ電極7aと半導体チツプ表面
の電極3aとを電気的に低抵抗で、機械的には強
固に接合する為には、それらの材料と合金を形成
し易い下地金属層3b,3cが蒸着法又はスパツ
タリング法又はメツキ法等により形成される。例
えば、半導体チツプの電極3aの材料がAlなら
ば下地金属層3bにはCr又はTi又はCu又はNi又
はPd又はAg又はPt又はAu等を用いた単層又は
積層界面を形成する。又、実施例ではバンプ電極
7aを配線2上に形成する為にボール7を配線2
上に付着させたが、一方バンプ電極7aを半導体
チツプ3の電極3a上に形成する為にボール7を
電極3a上に付着させることも可能である。 〔実施例 〕 本実施例で使用する半導体装置Bは、第12図
に示す如く、所謂テープキヤリアボンデイング型
であり、半導体材料としてのチツプ3の電極3a
上にバンプ電極7aを形成し、これにフイルムリ
ード10を接合せしめ、基板9上の配線8と前記
フイルムリード10とを接合したものである。 又、第6図〜第10図は前記半導体装置Bにお
いて、本発明の半導体材料の接続方法を示した断
面図である。 第6図はワイヤボンダのキヤピラリ4に挿通さ
れている接続材料としての合金ワイヤー5を示
し、この合金ワイヤーの先端を電気トーチ6で加
熱することによつてボール7を形成する。合金ワ
イヤー5は半田材料、すなわちPb,Sn,Inの何
れか1つを主要元素とし、それに添加元素を配合
せしめた合金であり、かつ急冷凝固法により作製
された細線である。すなわち急冷凝固法として
は、従来知られた液中紡糸法により直接にワイヤ
ーを成形するか、あるいは単ロール法により得ら
れた合金材料を冷間プレスし、さらに押出し成形
してワイヤーを成形するなどの方法による。そし
て、得られたワイヤーに線引き加工を施して所定
の細線径とし前記合金ワイヤー5を作製する。 合金ワイヤー5の添加元素としては、Be,B,
C,Mg,Al,Si,P,Ca,Ti,V,Cr,Mn,
Fe,Co,Ni,Cu,Zn,Ga,Ge,Se,Zr,Nb,
Mo,Pd,Ag,Cd,Sb,Te,Ir,Pt,Au,Tl,
Bi中の1種又は2種以上を配合せしめ、また主
要元素Pb,Sn,Inをそれを含まない主要元素中
に添加することもよい。 上記合金ワイヤー5は前記急冷処理によつて、
多くの格子欠陥が導入され、結晶粒が微細化し、
非平衡相が生成し、元素相互間に強制固溶が生じ
た組織状態にあり、さらに線引き加工によつて、
加工硬化に伴う格子欠陥が導入され、添加元素に
よつて固溶硬化した組織状態にある。 次に第7図及び第8図に示す如く、キヤピラリ
4を下降させて合金ワイヤー5先端に形成された
ボール7をフイルムリード10に付着させた状態
でキヤピラリ4を引き上げることにより、ボール
7の根本部で合金ワイヤー5から切断されフイル
ムリード10上にボール7が供給されてバンプ電
極7aが形成される。 そして、この様な方法によりフイルムリード1
0全線にバンプ電極7aが連続的に形成される。 上記合金ワイヤー5の切断は、ボール7を加熱
形成した際に、ボール7の根本部において、前記
非平衡相が消失し、元素相互間の強制固溶が解放
し、格子欠陥が解放し、結晶粒が粗大化した組織
状態となつているため、その部分の引張り強度が
減少し、キヤピラリ4により合金ワイヤー5を引
き上げるだけでボール7がその根本部で降伏,破
断することによつて起こる。 次に、第9図に示す如くこれらフイルムリード
10上面に供給し付着されたバンプ電極7aを半
導体チツプ3表面に配設された電極3aに接着さ
せることにより、該フイルムリード10と電極3
aとが電気的に接続されると共に該半導体チツプ
3が取り付けられる。 又、第10図に示す如く、前記フイルムリード
10とバンプ電極7aまたはバンプ電極7aと半
導体チツプ表面の電極3aとを電気的に低抵抗
で、機械的には強固に接合する為には、それらの
材料と合金を形成し易い下地金属層3b,3cが
蒸着法又はスパツタリング法又はメツキ法等によ
り形成される。例えば、半導体チツプの電極3a
の材料がAlならば下地金属層3bにはCr又はTi
又はCu又はNi又はPd又はAg又はPt又はAu等を
用いた単層又は積層界面を形成する。又、実施例
ではバンプ電極7aをフイルムリード10上に形
成する為にボール7をフイルムリード10上に付
着させたが、一方バンプ電極7aを半導体チツプ
3の電極3a上に形成する為にボール7を電極3
a上に付着させることも可能である。 以下に、本発明の合金ワイヤー5の種類、加工
性,ボール形成能,引張り強度,伸び,ボール硬
さ及びボール根本部における切断の可・不可を、
従来鋳造法により作製された比較品の場合と共に
示す。 尚、本発明合金ワイヤーにおける急冷凝固時の
冷却速度は103〜105℃/secであり、本発明実施
品及び比較品のワイヤーは何れも線径60um〓に作
製したものを試料とした。 上記試料の特性中、加工性とは、60um〓まで熱
処理無しで伸線加工が可能か否かを次の2段階で
評価したものである。すなわち評価が○印は加工
が可能であり、評価が×印は断線が多い等加工性
に難点があつたものである。 又、ボール形成能とは、各試料をセラミツクス
製のキヤピラリに通し、アルゴンガスに5vol%水
素ガスを加えたガス噴出下で、試料の先端近くに
設けた電極と試料との間のアーク放電によりボー
ルを形成させ、そのボールの形成状況を次の2段
階で評価したものである。すなわち評価○印は真
球度が良く、表面形伏の滑らかなボールが形成で
きたもの、評価×印は真球度が悪く、ばらつきが
大きく、表面形状が優れなかつたものである。
(Industrial Application Field) The present invention relates to a method for connecting semiconductor materials, specifically a method for bonding a semiconductor chip to a substrate by a wireless bonding method, particularly a flip-chip bonding method or a tape carrier bonding method, and a connecting material used therein. Regarding. (Prior art and its problems) A conventional method for forming bump electrodes using a wire bonder is disclosed in Japanese Patent Laid-Open No. 61-43438.
This method requires a step of cutting the wire with an electric torch or the like after bonding the dumbbell-shaped bump electrode. In addition, the current bump electrode materials include:
PbSn 5wt %, PbSn 40wt %, etc. are used, but when the alloy wire produced by the normal casting method was made into a wire by drawing a die and was connected using a wire bonder, the wire bonded to the base of the ball. It was found that the wire was often cut in the middle of the wire rather than at the end, and the length varied widely, making it unsuitable for use as a bump electrode. The reason why the alloy wire breaks at the wire portion is that the tensile strength of the base of the ball is not sufficiently smaller than the tensile strength of the wire portion. (Technical Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems, makes it possible to form bump electrodes using a wire bonder, and provides a method for connecting semiconductors with high workability. The object of the present invention is to provide a connecting material for use in the method. (Technical Means for Achieving the Technical Problem) The technical means of the present invention is a thin alloy wire made of one of Pb, Sn, and In as a main element and produced by a rapid solidification method. By heating the tip to form a ball and pulling the alloy wire while adhering the ball to the upper surface of the wiring or the upper surface of the semiconductor material, the ball is cut from its root and a bump electrode is formed on the upper surface of the wiring or the semiconductor material. The connecting material of the present invention has one of Pb, Sn, and In as a main element, and an additive element is added thereto. The alloy is made into a thin wire shape using a rapid solidification method. (Function) According to the present invention, the alloy wire produced by the rapid solidification method has a structure state in which many lattice defects are introduced, crystal grains are refined, non-equilibrium phases are formed, and elements are forced into solid solution. This significantly increases the tensile strength. When the tip of the alloy wire is heated to form a ball, the nonequilibrium phase disappears at the root of the ball, forced solid solution between elements is released, and lattice defects are released. Further, phenomena such as coarsening of crystal grains occur, which reduces the tensile strength of the base of the ball, making it more likely to yield or break. Therefore, by pulling the wire, the ball is cut from its root, and a bump electrode is formed by the ball cut from the wire on the upper surface of the semiconductor material or the upper surface of the wiring. (Example) Hereinafter, an example of the present invention will be described with reference to the drawings. [Example] As shown in FIG. 11, the semiconductor device A used in this example is of the so-called flip-chip bonding type, and the substrate 1 is made of an insulating resin such as alumina or glass epoxy resin. On the top
Cu or Cr・Cu or Pt or Pd or Ag or Pd・Ag
Alternatively, a wiring 2 made of a conductive material such as Au, Al, or Ni is wired, and a chip 3 made of a semiconductor material is mounted in the center of the substrate 1 to form a bump electrode 7.
It is electrically connected to the wiring 2 via a. Further, the semiconductor chip 3 and a part of the wiring 2 are sealed with a protective resin such as silicon. Further, FIGS. 1 to 5 are cross-sectional views showing a method of connecting semiconductor materials of the present invention in the semiconductor device A. FIG. 1 shows an alloy wire 5 as a connecting material inserted into a capillary 4 of a wire bonder, and a ball 7 is formed by heating the tip of this alloy wire with an electric torch 6. The alloy wire 5 is a solder material, that is, an alloy in which one of Pb, Sn, and In is the main element and additional elements are mixed therein, and is a thin wire produced by a rapid solidification method. In other words, as a rapid solidification method,
A wire may be formed directly by a conventionally known submerged spinning method, or an alloy material obtained by a single roll method may be cold pressed and then extruded to form a wire. and,
The obtained wire is drawn to a predetermined fine wire diameter to produce the alloy wire 5. The additive elements of the alloy wire 5 include Be, B,
C, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb,
Mo, Pd, Ag, Cd, Sb, Te, Ir, Pt, Au, Tl,
It is also possible to mix one or more of Bi, or to add main elements Pb, Sn, and In to main elements that do not contain them. The alloy wire 5 undergoes the rapid cooling treatment to
Many lattice defects are introduced, crystal grains become finer,
A non-equilibrium phase is formed and the elements are in a forced solid solution state, and by wire drawing,
Lattice defects are introduced due to work hardening, and the structure is solid solution hardened by the added elements. Next, as shown in FIGS. 2 and 3, the capillary 4 is lowered and the ball 7 formed at the tip of the alloy wire 5 is attached to the wiring 2, and then the capillary 4 is pulled up, and the base of the ball 7 is Ball 7 is cut from alloy wire 5 and placed on wiring 2.
is supplied to form bump electrodes 7a. Then, by such a method, bump electrodes 7a are continuously formed on all lines of wiring 2 on the upper surface of substrate 1. When the alloy wire 5 is cut, when the ball 7 is heated and formed, the non-equilibrium phase disappears at the root of the ball 7, forced solid solution between elements is released, lattice defects are released, and the crystal is crystallized. Since the grains are in a coarsened structure, the tensile strength of that part decreases, and this occurs because the ball 7 yields and breaks at its base when the alloy wire 5 is simply pulled up by the capillary 4. Next, as shown in FIG.
By adhering to the electrode 3a disposed on the surface, the wiring 2 and the electrode 3a are electrically connected and the semiconductor chip 3 is attached. Further, as shown in FIG. 5, in order to connect the wiring 2 and the bump electrode 7a or the bump electrode 7a and the electrode 3a on the surface of the semiconductor chip with low electrical resistance and strong mechanical bonding, it is necessary to Base metal layers 3b and 3c, which can easily form an alloy with the material, are formed by a vapor deposition method, a sputtering method, a plating method, or the like. For example, if the material of the electrode 3a of the semiconductor chip is Al, a single layer or a laminated interface using Cr, Ti, Cu, Ni, Pd, Ag, Pt, Au, etc. is formed in the base metal layer 3b. In addition, in the embodiment, the ball 7 is placed on the wiring 2 in order to form the bump electrode 7a on the wiring 2.
However, in order to form the bump electrode 7a on the electrode 3a of the semiconductor chip 3, the ball 7 can also be attached on the electrode 3a. [Example] The semiconductor device B used in this example is of the so-called tape carrier bonding type, as shown in FIG.
A bump electrode 7a is formed thereon, a film lead 10 is bonded to the bump electrode 7a, and the wiring 8 on the substrate 9 and the film lead 10 are bonded. Further, FIGS. 6 to 10 are cross-sectional views showing the method of connecting semiconductor materials of the present invention in the semiconductor device B. FIG. 6 shows an alloy wire 5 as a connecting material inserted into a capillary 4 of a wire bonder, and a ball 7 is formed by heating the tip of this alloy wire with an electric torch 6. The alloy wire 5 is a solder material, that is, an alloy in which one of Pb, Sn, and In is the main element and additional elements are mixed therein, and is a thin wire produced by a rapid solidification method. In other words, the rapid solidification method involves directly forming a wire using the conventionally known liquid spinning method, or cold pressing an alloy material obtained using a single roll method, and then extruding it to form a wire. According to the method. Then, the obtained wire is drawn to a predetermined fine wire diameter to produce the alloy wire 5. The additive elements of the alloy wire 5 include Be, B,
C, Mg, Al, Si, P, Ca, Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn, Ga, Ge, Se, Zr, Nb,
Mo, Pd, Ag, Cd, Sb, Te, Ir, Pt, Au, Tl,
It is also possible to mix one or more of Bi, or to add main elements Pb, Sn, and In to main elements that do not contain them. The alloy wire 5 undergoes the rapid cooling treatment to
Many lattice defects are introduced, crystal grains become finer,
The structure is such that a non-equilibrium phase is formed and forced solid solution occurs between elements, and furthermore, due to wire drawing,
Lattice defects are introduced due to work hardening, and the structure is solid solution hardened by the added elements. Next, as shown in FIGS. 7 and 8, the capillary 4 is lowered and the ball 7 formed at the tip of the alloy wire 5 is attached to the film lead 10, and then the capillary 4 is pulled up, and the base of the ball 7 is A ball 7 is cut from the alloy wire 5 at a portion and is supplied onto the film lead 10 to form a bump electrode 7a. Then, by this method, film lead 1
Bump electrodes 7a are continuously formed on the entire 0 line. When the alloy wire 5 is cut, when the ball 7 is heated and formed, the non-equilibrium phase disappears at the root of the ball 7, forced solid solution between elements is released, lattice defects are released, and the crystal is crystallized. Since the grains are in a coarsened structure, the tensile strength of that part decreases, and this occurs because the ball 7 yields and breaks at its base when the alloy wire 5 is simply pulled up by the capillary 4. Next, as shown in FIG. 9, the bump electrodes 7a supplied and attached to the upper surface of the film leads 10 are bonded to the electrodes 3a disposed on the surface of the semiconductor chip 3, so that the film leads 10 and the electrodes 3 are bonded to each other.
A is electrically connected to the semiconductor chip 3, and the semiconductor chip 3 is attached. Further, as shown in FIG. 10, in order to bond the film lead 10 and the bump electrode 7a or the bump electrode 7a and the electrode 3a on the surface of the semiconductor chip with low electrical resistance and strong mechanically, Base metal layers 3b and 3c, which can easily form an alloy with the material, are formed by a vapor deposition method, a sputtering method, a plating method, or the like. For example, the electrode 3a of a semiconductor chip
If the material of the base metal layer 3b is Al, the base metal layer 3b is Cr or Ti.
Alternatively, a single layer or laminated interface using Cu, Ni, Pd, Ag, Pt, Au, etc. is formed. Further, in the embodiment, the balls 7 are attached to the film leads 10 in order to form the bump electrodes 7a on the film leads 10, but on the other hand, the balls 7 are attached to the film leads 10 in order to form the bump electrodes 7a on the electrodes 3a of the semiconductor chip 3. The electrode 3
It is also possible to attach it on a. Below, the type, workability, ball forming ability, tensile strength, elongation, ball hardness, and whether or not it is possible to cut the ball root part of the alloy wire 5 of the present invention are as follows.
This figure is also shown together with a comparative product manufactured using the conventional casting method. The cooling rate during rapid solidification of the alloy wire of the present invention was 10 3 to 10 5 °C/sec, and the wires of the present invention and comparative wires were both made to have a wire diameter of 60 μm as samples. Among the characteristics of the above-mentioned sample, workability is an evaluation of whether or not it is possible to wire draw up to 60 um without heat treatment in the following two stages. That is, evaluations marked with ○ indicate that processing is possible, and evaluations marked with × indicate problems in processability, such as frequent disconnections. Ball-forming ability is defined as the ability to form a ball by passing each sample through a ceramic capillary, under a gas jet of 5 vol% hydrogen gas added to argon gas, and by arc discharge between the sample and an electrode placed near the tip of the sample. A ball was formed and the state of the ball formation was evaluated in the following two stages. That is, the evaluation mark ○ means that a ball with good sphericity and smooth surface shape can be formed, and the evaluation mark X means that the sphericity is poor, the variation is large, and the surface shape is not excellent.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明によれば、ワイヤーボンダを用いて合金
ワイヤーからボールを供給し、バンプ電極を形成
することができるので、電気トーチなどを用いた
ワイヤーとボールとの切断工程を不要にして作業
工程を簡素化するとともにボールの切断位置が一
定しているため供給量がバラつかず、またワイヤ
ーボンダによるる供給のためバンプ供給位置精度
を高めることができ、しかも合金ワイヤーがPb,
Sn,Inを主要元素する半田材料からなるので、
他に接続材料を用いる必要がなく、作業性及びコ
ストを安価ならしめる。
[Table] (Effects of the Invention) According to the present invention, a bump electrode can be formed by supplying balls from an alloy wire using a wire bonder, so the process of cutting the wire and balls using an electric torch etc. This simplifies the work process by eliminating the need for bumps, and since the cutting position of the balls is constant, there is no variation in the supply amount, and since the bumps are supplied using a wire bonder, the accuracy of the bump supply position can be increased. Pb,
Since it is made of solder material whose main elements are Sn and In,
There is no need to use any other connecting material, making workability and cost low.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図〜第5図
はフリツプチツプボンテイング法(実施例)に
よる半導体材料の接続方法及びそれに用いる接続
材料を示す断面図、第6図〜第10図はテープキ
ヤリアボンデイング法(実施例)による半導体
材料の接続方法及びそれに用いる接続材料を示す
断面図、第11図は実施例の半導体装置の断面
図、第12図は実施例の半導体装置の断面図で
ある。 尚図中、3……半導体チツプ、5……合金ワイ
ヤー、7……ボール、7a……バンプ電極。
The drawings show embodiments of the present invention, and FIGS. 1 to 5 are cross-sectional views showing a method for connecting semiconductor materials by the flip-chip bonding method (embodiment) and connection materials used therein, and FIGS. 6 to 10 The figure is a sectional view showing a method of connecting semiconductor materials by tape carrier bonding method (example) and the connection material used therein, FIG. 11 is a sectional view of a semiconductor device of an example, and FIG. 12 is a sectional view of a semiconductor device of an example. It is a diagram. In the figure, 3... semiconductor chip, 5... alloy wire, 7... ball, 7a... bump electrode.

Claims (1)

【特許請求の範囲】 1 Pb,Sn,Inの何れか1つを主要元素として、
かつ急冷凝固法により作製された細い合金ワイヤ
ーの先端を加熱してボールを形成し該ボールを配
線上面又は半導体材料上面に接着させた状態で合
金ワイヤーを引張ることにより、ボールがその根
本部から切断されて配線上面又は半導体材料上面
にバンプ電極を形成せしめ、そのバンプ電極を介
して半導体材料を接続する半導体材料の接続方
法。 2 Pb,Sn,Inの何れか1つを主要元素とし、
それに添加元素を配合した合金を急冷凝固法によ
り細いワイヤー状に作製してなる半導体材料の接
続材料。 3 上記添加元素がBe,B,C,Mg,Al,Si,
P,Ca,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,
Zn,Ga,Ge,Se,Zr,Nb,Mo,Pd,Ag,
Cd,In,Sn,Pb,Sb,Te,Ir,Pt,Au,Tl,
Bi中の1種又は2種以上である特許請求の範囲
第2項記載の半導体材料の接続材料。
[Claims] 1. Any one of Pb, Sn, In as a main element,
Then, the tip of a thin alloy wire made by the rapid solidification method is heated to form a ball, and the ball is cut from its base by pulling the alloy wire with the ball adhered to the upper surface of the wiring or the upper surface of the semiconductor material. A method for connecting a semiconductor material, in which a bump electrode is formed on the upper surface of a wiring or a semiconductor material, and the semiconductor material is connected via the bump electrode. 2 One of Pb, Sn, and In is the main element,
A connecting material for semiconductor materials that is made from an alloy containing additives and made into a thin wire shape using the rapid solidification method. 3 The above additive elements are Be, B, C, Mg, Al, Si,
P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Zn, Ga, Ge, Se, Zr, Nb, Mo, Pd, Ag,
Cd, In, Sn, Pb, Sb, Te, Ir, Pt, Au, Tl,
The connecting material for a semiconductor material according to claim 2, which is one or more kinds of Bi.
JP62130595A 1987-01-30 1987-05-27 Method for bonding semiconductor material and bonding material used therefor Granted JPS63301535A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62130595A JPS63301535A (en) 1987-01-30 1987-05-27 Method for bonding semiconductor material and bonding material used therefor
GB8800518A GB2201545B (en) 1987-01-30 1988-01-11 Method for connecting semiconductor material
US07/970,232 US5384090A (en) 1987-01-30 1992-10-30 Fine wire for forming bump electrodes using a wire bonder
US08/315,577 US5514912A (en) 1987-01-30 1994-09-30 Method for connecting semiconductor material and semiconductor device used in connecting method
US08/315,575 US5514334A (en) 1987-01-30 1994-09-30 Fine lead alloy wire for forming bump electrodes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-21202 1987-01-30
JP2120287 1987-01-30
JP62130595A JPS63301535A (en) 1987-01-30 1987-05-27 Method for bonding semiconductor material and bonding material used therefor

Publications (2)

Publication Number Publication Date
JPS63301535A JPS63301535A (en) 1988-12-08
JPH0465534B2 true JPH0465534B2 (en) 1992-10-20

Family

ID=26358236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62130595A Granted JPS63301535A (en) 1987-01-30 1987-05-27 Method for bonding semiconductor material and bonding material used therefor

Country Status (1)

Country Link
JP (1) JPS63301535A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2891432B2 (en) * 1989-12-27 1999-05-17 田中電子工業株式会社 Connection method of semiconductor material, connection material used therefor, and semiconductor device
JPH04299544A (en) * 1991-03-28 1992-10-22 Nec Corp Manufacture of film carrier semiconductor device

Also Published As

Publication number Publication date
JPS63301535A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
US5514334A (en) Fine lead alloy wire for forming bump electrodes
EP0435009B1 (en) Semiconductor package connecting method and semiconductor package connecting wires
JP5165810B1 (en) Silver gold palladium alloy bump wire
US5153704A (en) Semiconductor device using annealed bonding wire
JP2737953B2 (en) Gold alloy wire for gold bump
JPH0465534B2 (en)
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP2773202B2 (en) Au alloy extra fine wire for semiconductor element bonding
JPH0464121B2 (en)
JPH061779B2 (en) Method for manufacturing semiconductor device
JP2621288B2 (en) Au alloy extra fine wire for semiconductor element bonding
JP3635185B2 (en) Gold alloy balls for bumps
JPH0455531B2 (en)
JP3689234B2 (en) Micro gold ball for bump and semiconductor device
JPH0565051B2 (en)
JP3091076B2 (en) Small gold balls for bumps
JPH07122564A (en) Formation of bump
JP3086126B2 (en) Small gold balls for bumps
JPH07201867A (en) Pd alloy wire for bump formation, formation of bump and semiconductor device using the pd alloy wire
JPH0565052B2 (en)
JPH07122562A (en) Formation and structure of bump, and method and structure of wire bonding
JPH02251155A (en) Gold alloy thin wire for semiconductor elements and bonding method thereof
JP2911005B2 (en) Processing method of bump electrode
JPH06310557A (en) Wire for wiring semiconductor element
JPH0656860B2 (en) Superconducting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071020

Year of fee payment: 15