JPH0465369A - Formed body for detective heat history - Google Patents

Formed body for detective heat history

Info

Publication number
JPH0465369A
JPH0465369A JP2174065A JP17406590A JPH0465369A JP H0465369 A JPH0465369 A JP H0465369A JP 2174065 A JP2174065 A JP 2174065A JP 17406590 A JP17406590 A JP 17406590A JP H0465369 A JPH0465369 A JP H0465369A
Authority
JP
Japan
Prior art keywords
formed body
sintered
firing
detecting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2174065A
Other languages
Japanese (ja)
Other versions
JPH0672061B2 (en
Inventor
Kenichi Shimizu
憲一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2174065A priority Critical patent/JPH0672061B2/en
Publication of JPH0465369A publication Critical patent/JPH0465369A/en
Publication of JPH0672061B2 publication Critical patent/JPH0672061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To improve the precision in detecting an indicated temp. by using the unsintered formed body of the ceramic Al2O3 having a specified content of SiO2 as the formed body by detecting the heat history in the sintering of ceramic, etc. CONSTITUTION:This formed body 10 for detecting a heat history contains >99.7 wt.% Al2O3 and < 0.2 wt.% SiO2 and is obtained by press forming, and the grain diameter of the raw powder, green density of the formed body, etc., are strictly controlled. The sintering temp, is changed under given conditions, the size of the sintered formed body 10 is measured, and the relation between the size and sintering temp. is prepared as a conversion table. When a formed body is sintered under different conditions, the formed body 10 is sintered along with a body to be sintered, the size of the sintered body is measured, and the indicated temp. is obtained from the table.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、セラミックスなどの焼成工程における熱履歴
を検知するためのものであり、特にアルミナ、ジルコニ
ア等の、酸化雰囲気での1400−1750°Cの温度
域の焼成における熱履歴検知用成形体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is for detecting the thermal history in the firing process of ceramics, etc., and in particular for detecting the thermal history of alumina, zirconia, etc. in an oxidizing atmosphere. The present invention relates to a molded body for detecting thermal history during firing in a temperature range of C.

[従来の技術] セラミックスの焼成工程において、温度プロファイル、
焼成炉の種類、炉内のセツティング等によって被焼成体
の受ける熱履歴は変化する。即ち、焼成温度か同じでも
他の条件が異なれば熱H歴は異なることとなり、この熱
履歴を正しく検知する必要かあった。
[Conventional technology] In the firing process of ceramics, the temperature profile,
The thermal history of the object to be fired varies depending on the type of firing furnace, the settings within the furnace, etc. That is, even if the firing temperature is the same, the thermal H history will be different if other conditions are different, and it is necessary to detect this thermal history correctly.

たとえば実開昭56−29441号公報などに示されて
いるゼーゲルコーンを用いて被焼成体の熱履歴を検知す
ることが行われていた。ゼーゲルコーンとは、溶倒温度
の異なる複数の三角錐状体を支持台上に備えたものであ
り、このゼーゲルコーンを被焼成体と共に焼成した後、
各三角錐状体の倒れ方によって、熱履歴を検知するよう
になっていた。
For example, a Seegel cone disclosed in Japanese Utility Model Application No. 56-29441 has been used to detect the thermal history of an object to be fired. A Zegel cone is equipped with a plurality of triangular pyramids having different melting temperatures on a support base, and after firing this Zegel cone together with the object to be fired,
Thermal history was detected by the way each triangular pyramid fell.

しかし、これでは正確な検知かできないことから、現在
ては使用されることか少なくなっている。
However, since this method cannot provide accurate detection, it is now rarely used.

そこで、例えば特開平1−184388号公報などに示
されているように、セラミックスの未焼成成形体を用い
て、この成形体を被焼成体と共に焼成した後、収縮によ
る寸法変化を測定することによって、熱履歴を検知する
ことか行なわれていた。
Therefore, as shown in, for example, Japanese Patent Application Laid-Open No. 1-184388, an unfired molded ceramic body is used, and after firing this molded body together with an object to be fired, the dimensional change due to shrinkage is measured. , detecting thermal history was also being done.

例えば、第2図に示すようなリング状の成形体20、あ
るいは第3図に示すようにシート状の成形体30か用い
られていた。
For example, a ring-shaped molded body 20 as shown in FIG. 2 or a sheet-shaped molded body 30 as shown in FIG. 3 have been used.

なお、このような焼成収縮による寸法変化を測定する場
合、寸法変化は便宜的に温度に変換されるが、この温度
は実温を測定したものではなく、熱履歴を表すものであ
って、本発明では指示温度と呼ぶこととする。
When measuring dimensional changes due to firing shrinkage, the dimensional changes are conveniently converted to temperature, but this temperature is not a measurement of the actual temperature, but represents the thermal history, and is not the actual temperature. In the invention, this will be referred to as the indicated temperature.

[従来技術の課題] ところか、上記の熱履歴検知用セラミックス成形体は、
A1□03またはSiO□を主成分とし、多量の不純物
を含む天然原料からなるものてあったため、焼成収縮率
にバラつきがあり、検知された指示温度の精度か悪かっ
た。
[Problems with conventional technology] However, the above-mentioned ceramic molded body for thermal history detection has
Since some were made of natural raw materials containing A1□03 or SiO□ as a main component and containing a large amount of impurities, the firing shrinkage rate varied and the accuracy of the detected indicated temperature was poor.

また、第2図に示すリング状のものでは、面積か大きい
ため、焼成炉内で広いスペースを必要とし、第3図に示
すシート状のものでは、ソリか発生して正しく寸法を測
定できないなとの問題点があった。
In addition, the ring-shaped one shown in Figure 2 has a large area and requires a large space in the firing furnace, and the sheet-shaped one shown in Figure 3 causes warping, making it impossible to measure dimensions correctly. There was a problem with that.

[課題を解決するための手段] そこで、本発明は、Al2O399,7重量%以上、S
iO20.2重量%以下のセラミックス未焼成成形体を
熱履歴検知用成形体としたものである。
[Means for Solving the Problems] Therefore, the present invention provides Al2O399.7% by weight or more, S
A ceramic green molded body containing 0.2% by weight or less of iO is used as a molded body for thermal history detection.

本発明において、AI、Os 99.7重量%以上とし
たのは、不純物量を少なくすることによって、焼成収縮
率のバラつきを小さくし、検知した指示温度の精度を±
2°Cとするためである。また、5in20.2重量%
以下としたのは、SiO2か0.2重量%より多いと、
1750°C以下の温度で完全に焼結して、緻密化して
しまい、熱履歴を検知できなくなるためである。
In the present invention, the reason why AI, Os is 99.7% by weight or more is to reduce the amount of impurities, reduce the variation in firing shrinkage rate, and improve the accuracy of the detected indicated temperature.
This is to set the temperature at 2°C. Also, 5in20.2% by weight
The following is the case when SiO2 is more than 0.2% by weight.
This is because the material is completely sintered and becomes dense at a temperature of 1750° C. or lower, making it impossible to detect thermal history.

[実施例] 以下、本発明の詳細な説明する。[Example] The present invention will be explained in detail below.

第1図(a) (b)に示すように、本発明の熱履歴検
知用成形体10は、円板体に平行な弧部12.12を形
成したものであり、残された円弧部は優れた真円度の測
定面11.11 としである。また、表裏を区別するた
めの凹部13か片面に形成され、上下面の角部には面取
り14か施されている。
As shown in FIGS. 1(a) and 1(b), the molded body 10 for detecting thermal history of the present invention has arcuate portions 12 and 12 parallel to the disk body, and the remaining arcuate portions are The measurement surface 11.11 has excellent roundness. Further, a recess 13 for distinguishing between the front and back is formed on one side, and chamfers 14 are provided at the corners of the upper and lower surfaces.

さらに、この成形体lOは、Al2O399,7重量9
6以上、SiO□0.2重量%以下の組成からなり、原
料粉末の粒径、成形体の生密度などを極めて厳密に管理
し、プレス成形してなる、未焼成成形体である。
Furthermore, this molded body 1O has a weight of 99.7 Al2O399.7
It is an unfired molded body having a composition of 6% or more and 0.2% by weight or less of SiO□, and is press-molded by extremely strictly controlling the particle size of the raw powder, the green density of the molded body, etc.

そして、後述するように、ある条件の下で焼成温度を変
化させて、この成形体IOを焼成後の寸法を測定し、寸
法と焼成温度の関係を換算表として用意しておく。その
後、異なる条件で焼成を行う際に、被焼成体と共にこの
成形体10を焼成し、焼成後の寸法を測定することによ
って、上記換算表より指示温度を求めることかできる。
Then, as will be described later, the dimensions of the molded body IO after firing are measured while changing the firing temperature under certain conditions, and a conversion table of the relationship between the dimensions and the firing temperature is prepared. Thereafter, when firing is performed under different conditions, the indicated temperature can be determined from the above conversion table by firing this molded body 10 together with the object to be fired and measuring the dimensions after firing.

なお、前記したように、この指示温度とは、実際の温度
ではなく、熱履歴を便宜的に表しだものである。即ち、
本発明の熱履歴検知用成形体を用いれば、焼成条件か異
なる場合でも、指示温度を求めることによって、熱履歴
自体を管理することか可能となる。
Note that, as described above, the indicated temperature is not an actual temperature, but a convenient representation of the thermal history. That is,
By using the molded article for detecting thermal history of the present invention, it becomes possible to manage the thermal history itself by determining the indicated temperature even if the firing conditions are different.

また、本発明の成形体10は、弧部12.1.2をもっ
ていることから、第2図に示した従来例に比べて面積が
小さく、焼成炉内で大きなスペースを必要としない。な
お、この弧部12.12は互いに平行でなくてもよく、
−ケ所のみに形成してもよい。さらに、本発明の成形体
10は、ある程度の肉厚をもったプレス成形品であるか
ら、ソリなどが生じることはなく、また寸法測定時には
、第1図(a)に示すように、円弧をした測定面11.
11間を低定圧マイクロメータで測定すればよく、測定
位置かずれても、同じ直径りを正確に測定できる。
Moreover, since the molded body 10 of the present invention has the arc portion 12.1.2, it has a smaller area than the conventional example shown in FIG. 2, and does not require a large space in the firing furnace. Note that the arc portions 12.12 do not have to be parallel to each other,
- It may be formed only in the following locations. Furthermore, since the molded product 10 of the present invention is a press-formed product with a certain degree of wall thickness, warpage does not occur, and when measuring dimensions, as shown in FIG. Measurement surface 11.
11 with a low constant pressure micrometer, the same diameter can be accurately measured even if the measurement position is shifted.

実施例1 精製した純度99.9%以上のアルミナ原料に焼結助剤
どしてSiO□を添加し、アルミナボールにより湿式粉
砕し、レーザー光散乱法による粒度分析を行って、平均
粒径4,0±0.1μmの範囲とする。
Example 1 SiO□ was added as a sintering aid to a purified alumina raw material with a purity of 99.9% or more, wet-pulverized with an alumina ball, and particle size analysis was performed using a laser light scattering method to obtain an average particle size of 4. , 0±0.1 μm.

この原料粉末に6重量%のワックス系バインダーを添加
、混合し、噴霧乾燥する二とによって、流動性の良い顆
粒を得る。この顆粒を、空調された成形室にて、第1図
(a) (b)に示す形状にプしス成形するか、このと
き、成形体の生密度を2.300±0、005g/cm
3の範囲内として、本発明の熱履歴検知用成形体を得た
Granules with good fluidity are obtained by adding 6% by weight of a wax binder to this raw material powder, mixing, and spray drying. The granules are press-molded in an air-conditioned molding room into the shapes shown in FIGS.
A molded article for thermal history detection of the present invention was obtained within the range of No. 3.

上記原料中の8102量を変化させて焼成したところ、
第1表に結果を示すように、SiO2か0.2重量%よ
り多いものは、1720°Cて緻密化してし7まい、こ
れ以上の温度では収縮しないことから、1720°C以
上ては使用てきなかった。通常のアルミナ焼成炉の場合
、1750°C程度まて測定の必要性かあるため、結局
5iO7量は0.2重量%以下でなければならなかった
When the amount of 8102 in the above raw materials was varied and fired,
As shown in Table 1, SiO2 with more than 0.2% by weight becomes densified at 1720°C and does not shrink at higher temperatures, so it cannot be used at temperatures above 1720°C. I couldn't come. In the case of a normal alumina firing furnace, it is necessary to measure the temperature at about 1750°C, so the amount of 5iO7 had to be 0.2% by weight or less.

第 表 実施例2 実施例1と全く同様にして、SiL量か0.10重量%
で、直径りか22.300mmの熱履歴検知用成形体1
0を用意した。この成形体IOを厳密に管理校正された
焼成炉を用いて、酸化雰囲気にて、昇温速度200’C
/時、最高焼成温度で2時間保持、降温速度300’C
/時として焼成し、350°Cて1時間脱脂した。焼成
後の成形体IOの寸法を、20°Cにて低定圧マイクロ
メータで測定した。
Table Example 2 Same as Example 1, SiL amount was 0.10% by weight.
A molded body 1 for thermal history detection with a diameter of 22.300 mm
I prepared 0. This compact IO was heated at a heating rate of 20'C in an oxidizing atmosphere using a strictly calibrated firing furnace.
/hour, held at maximum firing temperature for 2 hours, cooling rate 300'C
/Occasionally calcined and degreased at 350°C for 1 hour. The dimensions of the compact IO after firing were measured at 20°C using a low constant pressure micrometer.

焼成温度(指示温度)をさまざまに変化させて、それぞ
れ20個の成形体10の焼成を3回繰り返して行った。
Firing of 20 molded bodies 10 was repeated three times while varying the firing temperature (indicated temperature).

この結果は、第2表および第4図に示す通りである。The results are shown in Table 2 and FIG.

また、各温度における寸法のはらつき(3σ)と、その
温度でのI ”C当りの寸法変化量(接線の傾き)から
、 により、指示温度の検知精度(3σ)を算出した。
In addition, the detection accuracy (3σ) of the indicated temperature was calculated from the dimensional variation (3σ) at each temperature and the amount of dimensional change (slope of the tangent) per I''C at that temperature.

結果は、第2表に示す通り、1400〜l750°Cの
範囲内で、指示温度の検知精度を±2°C以内とするこ
とかてきた。
As shown in Table 2, the results showed that the accuracy of detecting the indicated temperature was within ±2°C within the range of 1400°C to 1750°C.

さらに、第2表では、指示温度50’Cごとの成形体の
寸法を示しているが、もっと細かな指示温度ごとの寸法
を測定しておくことによって、成形体の寸法と指示温度
の換算表とすることができる。
Furthermore, although Table 2 shows the dimensions of the molded object for each indicated temperature of 50'C, by measuring the dimensions for each indicated temperature in more detail, it is possible to convert the dimensions of the molded object and the indicated temperature. It can be done.

(以下余白) 第 表 また、上記実施例では、熱履歴検知用成形体JOを得る
ために、原料の粒径4.0±0.1μm、成形体の生密
度2.300±0.005 g/cm3としたが、いず
れもこの値に限定されるものではなく、さまざまに変化
させることかできる。その場合、粒径については通常±
0.2μmの範囲内となるように管理する。一方、生密
度の管理は重要であり、±o、oig/cm3の範囲内
にばらつきを押えれば、指示温度の検知精度を±2°C
とすることか可能であった。
(Margin below) Table In addition, in the above example, in order to obtain a molded body JO for thermal history detection, the particle size of the raw material was 4.0±0.1 μm, and the green density of the molded body was 2.300±0.005 g. /cm3, but the value is not limited to this value and can be changed in various ways. In that case, the particle size is usually ±
It is managed to be within the range of 0.2 μm. On the other hand, controlling the green density is important, and if the variation is suppressed within the range of ±o, oig/cm3, the detection accuracy of the indicated temperature can be increased by ±2°C.
It was possible to do so.

[発明の効果] 叙上のように本発明によれば、A1□0399.7重量
%以上、SiO20=2重量%以下のセラミックス未焼
成成形体を熱履歴検知用成形体としたことによって、指
示温度の検知精度を±2°Cと極めて高精度にてきるこ
とから、焼成条件が変わっても焼成工程を厳密に管理す
ることかでき、優れた焼結体を得ることか可能となる。
[Effects of the Invention] As described above, according to the present invention, by using a ceramic unfired molded body containing A1□0399.7% by weight or more and SiO20 = 2% by weight or less as a molded body for thermal history detection, it is possible to Since the temperature detection accuracy is extremely high at ±2°C, the firing process can be strictly controlled even if the firing conditions change, making it possible to obtain an excellent sintered body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明実施例に係る熱履歴検知用成形体
を示す平面図、第1図(b)は同図(a)中のX−X線
断面図である。 第2図、第3図はそれぞれ従来の熱履歴検知用成形体を
示す斜視図である。 第4図は本発明の熱履歴検知用成形体における、焼成収
縮率と指示温度の関係を示すグラフである。 1吐熱履歴検知用成形体 11:測定面     12・弧部 13、凹部      14:面取り
FIG. 1(a) is a plan view showing a molded body for detecting thermal history according to an embodiment of the present invention, and FIG. 1(b) is a sectional view taken along the line X--X in FIG. 1(a). FIGS. 2 and 3 are perspective views showing conventional molded bodies for detecting thermal history, respectively. FIG. 4 is a graph showing the relationship between the firing shrinkage rate and the indicated temperature in the molded article for thermal history detection of the present invention. 1 Molded body for detecting discharged heat history 11: Measurement surface 12, arc portion 13, recessed portion 14: Chamfer

Claims (1)

【特許請求の範囲】[Claims]  Al_2O_3 99.7重量%以上、SiO_2 
0.2重量%以下のセラミックス未焼成成形体からなる
ことを特徴とする熱履歴検知用成形体。
Al_2O_3 99.7% by weight or more, SiO_2
A molded body for detecting thermal history, characterized in that it is composed of an unfired ceramic molded body containing 0.2% by weight or less.
JP2174065A 1990-06-29 1990-06-29 Molded body for heat history detection Expired - Lifetime JPH0672061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174065A JPH0672061B2 (en) 1990-06-29 1990-06-29 Molded body for heat history detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174065A JPH0672061B2 (en) 1990-06-29 1990-06-29 Molded body for heat history detection

Publications (2)

Publication Number Publication Date
JPH0465369A true JPH0465369A (en) 1992-03-02
JPH0672061B2 JPH0672061B2 (en) 1994-09-14

Family

ID=15972014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174065A Expired - Lifetime JPH0672061B2 (en) 1990-06-29 1990-06-29 Molded body for heat history detection

Country Status (1)

Country Link
JP (1) JPH0672061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064627A (en) * 2006-09-07 2008-03-21 Kyocera Corp Thermal history sensor

Also Published As

Publication number Publication date
JPH0672061B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JPH11322446A (en) Control of calcining shrinkage of ceramic molding
JPH0465369A (en) Formed body for detective heat history
JP2892229B2 (en) Molded body for thermal history detection
JP2899920B2 (en) Molded body for thermal history detection
JP2948973B2 (en) Molded body for thermal history detection
JP2941495B2 (en) Molded body for thermal history detection
JP2958166B2 (en) Molded body for thermal history detection
AU596660B2 (en) Ceramics
JP3266352B2 (en) Molded body for thermal history detection
JP3170341B2 (en) Molded body for thermal history detection
JP3510978B2 (en) Temperature sensing element
JPS62283885A (en) Porous refractory formed body for burning functional parts
JP4573146B2 (en) Cordierite black-based dense sintered body and manufacturing method thereof
Hall Secondary Expansion of High‐Alumina Refractories
JP4568979B2 (en) Cordierite dense sintered body and manufacturing method thereof
WO2004057287A1 (en) A temperature-proofreading ring for monitoring and proofreading the burning process of the high-temperature furnace
JP4762092B2 (en) Thermal history sensor
JP4031578B2 (en) Manufacturing method of bottomed cylindrical ceramic sintered body
JP3274330B2 (en) Method for controlling firing shrinkage of ceramic molded body
JPH0377943B2 (en)
JPH0820909B2 (en) Temperature-time programming device for ceramics sintering
JPH0967169A (en) Firing jig and production of ceramic substrate formed by using the same
GB2191997A (en) Sintered materials
JPS6153501A (en) Measuring element
JPS633949A (en) Refractory member made of ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070914

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 16