JPH0465338B2 - - Google Patents

Info

Publication number
JPH0465338B2
JPH0465338B2 JP58147966A JP14796683A JPH0465338B2 JP H0465338 B2 JPH0465338 B2 JP H0465338B2 JP 58147966 A JP58147966 A JP 58147966A JP 14796683 A JP14796683 A JP 14796683A JP H0465338 B2 JPH0465338 B2 JP H0465338B2
Authority
JP
Japan
Prior art keywords
sample
light
measurement
displacement
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58147966A
Other languages
Japanese (ja)
Other versions
JPS6039540A (en
Inventor
Teiichi Fujiwara
Toshisada Mimura
Kihachiro Nishikawa
Shoichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Shiro Renga KK
Panasonic Holdings Corp
Original Assignee
Shinagawa Shiro Renga KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Shiro Renga KK, Matsushita Electric Industrial Co Ltd filed Critical Shinagawa Shiro Renga KK
Priority to JP14796683A priority Critical patent/JPS6039540A/en
Priority to KR8404936A priority patent/KR910004158B1/en
Priority to AT84305300T priority patent/ATE42402T1/en
Priority to EP84305300A priority patent/EP0145115B1/en
Priority to DE8484305300T priority patent/DE3477836D1/en
Publication of JPS6039540A publication Critical patent/JPS6039540A/en
Priority to US06/776,920 priority patent/US4636969A/en
Publication of JPH0465338B2 publication Critical patent/JPH0465338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明は主にセラミツクの高温下での熱間線膨
張率(以下熱膨張率という)を非接触で精度良く
自動測定する熱膨張率測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a thermal expansion coefficient measuring device for automatically measuring the hot linear expansion coefficient (hereinafter referred to as the thermal expansion coefficient) of ceramics at high temperatures in a non-contact manner and with high accuracy.

セラミツク、特に耐火物の熱膨張率は熱間で使
用される窯炉の内張りの耐火物の膨張代の大きさ
決定等の指針となる極めて重要な特性である。
The coefficient of thermal expansion of ceramics, especially refractories, is an extremely important characteristic that serves as a guideline for determining the expansion allowance of refractories lining furnaces used in hot conditions.

従来、熱膨張測定はJIS R2617及び2207で規定
されている如く接触式(第1図)又は非接触の方
法(第2図)で測定されており、接触式は第1図
に示す如く、加熱炉1内に設置した試料受台4に
載せた試料2に変位検出棒3を接触させ、これに
より試料の膨張収縮を検知し、この変位をダイヤ
ルゲージにより読み取るか、差動変圧器変位測定
器6等により読み取るか、又は記録計7に記録
し、測定後曲線より変位を読み取り膨張率を計算
するのが一般的であつた。尚、第1図において、
5は差動変圧器、11は発熱体、12は熱電対で
ある。
Conventionally, thermal expansion measurement has been carried out using a contact method (Fig. 1) or a non-contact method (Fig. 2) as specified in JIS R2617 and 2207. The displacement detection rod 3 is brought into contact with the sample 2 placed on the sample holder 4 installed in the furnace 1, and the expansion and contraction of the sample is thereby detected, and this displacement is read by a dial gauge or by a differential transformer displacement measuring device. 6 or the like, or recorded on a recorder 7, and after the measurement, the displacement was read from the curve and the expansion coefficient was calculated. In addition, in Figure 1,
5 is a differential transformer, 11 is a heating element, and 12 is a thermocouple.

しかし、この方法は、試料に検出棒を接触させ
て測定圧を加えるため、高温で軟化状態を示す試
料の場合測定圧による圧縮力により、試料自体が
変形し、真の膨張率を測定することが困難であ
る。また、この場合、試料受台と変位検出棒の膨
張量の相違による補正を要する場合が多く、これ
が誤差の原因になつていた。
However, in this method, a detection rod is brought into contact with the sample and measurement pressure is applied, so if the sample shows a softened state at high temperatures, the sample itself will deform due to the compressive force caused by the measurement pressure, making it difficult to measure the true expansion coefficient. is difficult. In addition, in this case, it is often necessary to correct the difference in the amount of expansion between the sample holder and the displacement detection rod, which causes errors.

従つて測定試料に非接触で測定する方法が採用
されているのが現状である。非接触で測定する方
法としては、第2図のように加熱炉1中に設置し
た試料2の両端の変位を目盛付望遠鏡10によ
り、人為的に読み取るものがある。この方法は、
炉内が高温の時には試料と雰囲気との明暗差がつ
きにくいため、読み取りが困難で経験に頼る部分
が多く、測定誤差の原因になつている。また得ら
れたデーターは試料の元の長さに対する変化率を
計算し、温度と膨張率の関係を図に書く必要があ
つた。尚、第2図において、8は温度計、9は照
明装置、11は発熱体、12は熱電対である。
Therefore, at present, a method of measuring without contacting the sample to be measured is adopted. As a non-contact measurement method, as shown in FIG. 2, there is a method in which the displacement of both ends of a sample 2 placed in a heating furnace 1 is artificially read using a telescope 10 with a scale. This method is
When the temperature inside the furnace is high, it is difficult to see the difference in brightness between the sample and the atmosphere, making it difficult to read and relying heavily on experience, which causes measurement errors. In addition, it was necessary to calculate the rate of change of the obtained data relative to the original length of the sample, and to plot the relationship between temperature and expansion rate. In FIG. 2, 8 is a thermometer, 9 is a lighting device, 11 is a heating element, and 12 is a thermocouple.

さらに別の方法としては、目盛入り望遠レンズ
付カメラで各温度での試料の変位を写真撮影し、
写真より試料の変位を読み取る方法があるが、デ
ーター処理に時間を要し能率の点で問題がある。
Another method is to photograph the displacement of the sample at each temperature with a camera equipped with a scaled telephoto lens.
There is a method of reading the displacement of a sample from a photograph, but it requires time to process the data and is problematic in terms of efficiency.

本発明は上記の欠点を改善するため高精度でか
つ自動測定を可能にしたものである。
The present invention enables highly accurate and automatic measurement in order to improve the above-mentioned drawbacks.

すなわち、本発明の熱膨張率測定装置は固体走
査受光素子を内蔵しレンズ系と組合せたカメラと
カメラコントロール部よりなる変位測定装置と照
明装置を各々2組組合せて試料の変位を自動的に
測定するものである。
That is, the thermal expansion coefficient measuring device of the present invention automatically measures the displacement of a sample by combining two sets each of a displacement measuring device and an illumination device each consisting of a camera with a built-in solid-state scanning light-receiving element and combined with a lens system and a camera control unit. It is something to do.

即ち、本発明装置は: Γ測定試料に非接触で測定する非接触式である。 That is, the device of the present invention: It is a non-contact type that measures without contacting the Γ measurement sample.

Γ望遠レンズと赤外線除去用フイルターを具備す
る固体走査受光素子カメラにより、測定試料の
変位を電気信号に変換する構成である。
It is configured to convert the displacement of the measurement sample into an electrical signal using a solid-state scanning photodetector camera equipped with a Γ telephoto lens and an infrared filter.

Γ試料が高温になると、該試料自体から赤外線を
放出するが赤外線除去フイルターを用い、固体
走査受光素子カメラの試料変位感度の低下をカ
バーしている。
When the Γ sample reaches a high temperature, the sample itself emits infrared rays, but an infrared ray removal filter is used to compensate for the decrease in sample displacement sensitivity of the solid-state scanning photodetector camera.

なお、本発明において「固体走査受光素子」と
はCharge Coupled Device(CCD)であり、本発
明はCCD自己走査型一次元フオト・ダイオード
をレンズの結像面に配置したライセンサカメラを
用い、結像された被検体の像の明暗を電気信号に
変換し、出力電圧測定用パルス信号として取り出
す装置である。
In the present invention, the "solid-state scanning light-receiving element" is a Charge Coupled Device (CCD), and the present invention uses a licensor camera in which a CCD self-scanning one-dimensional photo diode is arranged on the imaging plane of a lens, and This device converts the brightness of the image of the subject into an electrical signal and extracts it as a pulse signal for output voltage measurement.

また、前記赤外線除去用フイルターとは、可視
光領域の波長を透過するフイルターで、例えば
SCHOTT社製の350nm〜800nmの範囲の波長の
光を透過するフイルターであり、本発明装置では
高温時に炉内に発生する赤外光を除去することに
よつて常温〜高温(1600℃)まで連続的に膨張率
測定を可能とするものである。
Further, the infrared ray removal filter is a filter that transmits wavelengths in the visible light region, for example.
This is a filter made by SCHOTT that transmits light with a wavelength in the range of 350nm to 800nm.In the device of the present invention, it is continuous from room temperature to high temperature (1600℃) by removing infrared light generated in the furnace at high temperatures. This makes it possible to measure the expansion coefficient.

試料2の変位は第5図に示すように試料2の両
端を試料2の軸に対して直角方向より照明装置9
で照明し、試料2により光がさえぎられた暗部と
光が直接届く明部を固体走査受光素子面にレンズ
により拡大投影し、明部Lと暗部Dの比率より変
位を計測するものである。
As shown in FIG.
The dark area where the light is blocked by the sample 2 and the bright area where the light directly reaches are enlarged and projected onto the surface of the solid-state scanning light-receiving element using a lens, and the displacement is measured from the ratio of the bright area L to the dark area D.

この場合、各々の固体走査受光素子カメラ15
に電流を供給すると共に、試料2の結像に応じた
寸法及び明暗に応じたパターンを表示すると共に
計測値の平均化等を行う。コントロールユニツト
16の出力を加算して変位に応じたデイジタル出
力信号で出力する。この出力とデイジタル温度計
19のデイジタル信号出力を一般的手法により作
成したプログラムにより、コントロールユニツト
16、デイジタル温度計19のBCD(Binary
coded decimal)出力信号をコンピユーターの入
力信号に合わせるマイクロコンピユーターインタ
ーフエース17を介してデータ取り込み、演算、
記憶、出力を行うマイクロコンピユーター18に
入力し、記憶演算を行なわせデイジタルプロツタ
ー20により温度と熱膨張率の関係を曲線に書か
せるものである。
In this case, each solid-state scanning photodetector camera 15
At the same time, a pattern corresponding to the size and brightness of the image of the sample 2 is displayed, and measurement values are averaged. The outputs of the control unit 16 are added together and output as a digital output signal corresponding to the displacement. By using a program created using this output and the digital signal output of the digital thermometer 19 using a general method, the control unit 16 and the BCD (Binary
data acquisition, calculation,
The data is inputted to a microcomputer 18 that performs storage and output, and the data is stored and calculated, and a digital plotter 20 is used to plot the relationship between temperature and coefficient of thermal expansion as a curve.

本発明装置では、試料2の微小変位を読み取る
望遠レンズ14は熱の影響を防ぐため加熱炉から
離して設置する必要があり、そのため作動距離
(レンズ先端から被測定物までの距離)300〜500
mm、F番号5〜8のものが良い。作動距離がこれ
より短いと高温の加熱炉1に望遠レンズ14を接
近して測定することになり、温度の影響による測
定誤差が生じる。また、F番号がこれより大きい
と測定に必要な光量が得られにくく、反対に小さ
いとレンズ径が大きくならい、望遠レンズ14を
2個並べた場合、中心間距離が大きく試料2の長
さの長いものでなければ測定できない。
In the device of the present invention, the telephoto lens 14 that reads minute displacements of the sample 2 needs to be installed away from the heating furnace to prevent the influence of heat.
mm, F number 5-8 is good. If the working distance is shorter than this, the telephoto lens 14 will be placed close to the high-temperature heating furnace 1 for measurement, resulting in measurement errors due to the influence of temperature. Also, if the F number is larger than this, it will be difficult to obtain the amount of light necessary for measurement, and if the F number is smaller, the lens diameter will become larger. It cannot be measured unless it is long.

この目的に使用する望遠レンズ14としては、
作動距離、明るさのほかに測定分解能1μmを満
たすためにレンズ倍率を×10倍程度にする必要が
ある。
The telephoto lens 14 used for this purpose is
In addition to working distance and brightness, it is necessary to increase the lens magnification to approximately 10x in order to satisfy the measurement resolution of 1 μm.

本発明装置では、これに対する対策として複合
レンズ系により、レンズ倍率×10倍、作動距離
300〜500mmの望遠レンズ14を製作し、この問題
を解決した。
As a countermeasure against this, the device of the present invention uses a compound lens system to increase the lens magnification x 10 times and the working distance.
We solved this problem by producing a 300-500mm telephoto lens 14.

一方、加熱炉1内の試料2は、1000℃以上の温
度になると試料2自体から赤外線を放出する、す
なわち、変位測定用に使用する固体走査受光素子
は照明装置9からの光及び試料2より放出される
赤外線にも感度を示す。また試料2より放出され
る赤外線は温度の4乗に比例して高温になるほど
赤外線の量が増加する。
On the other hand, the sample 2 in the heating furnace 1 emits infrared rays from itself when the temperature reaches 1000°C or higher. It is also sensitive to emitted infrared rays. Further, the amount of infrared rays emitted from the sample 2 increases in proportion to the fourth power of the temperature, as the temperature increases.

第3図に示すオシロスコープの波形の如く照明
装置9から光により固体走査受光素子の感度を示
した明部Lと、照明装置9からの光は試料2によ
り遮断されるが試料2より放出される赤外線によ
り固体走査受光素子の感度を示した暗部Dとの差
がつきにくく、高温時の変位測定が困難である。
As shown in the waveform of the oscilloscope shown in Figure 3, there is a bright area L that shows the sensitivity of the solid-state scanning photodetector due to the light from the illumination device 9, and the light from the illumination device 9 is blocked by the sample 2, but is emitted from the sample 2. It is difficult to distinguish between the dark area D, which shows the sensitivity of the solid-state scanning photodetector using infrared rays, and it is difficult to measure displacement at high temperatures.

この問題を解決するため赤外域の光を除去する
フイルターを種々検討し、照明の光量を減少させ
ないで試料2より出る赤外線を完全に除去するフ
イルターを用いた。
To solve this problem, we investigated various filters that remove infrared light, and used a filter that completely removes infrared light emitted from sample 2 without reducing the amount of illumination.

本発明によれば第4図に示すオシロスコープの
波形の如く照明装置9からの光により固体走査受
光素子の感度を示した明部Lと照明装置9からの
光が試料により遮断され、さらに試料2より放出
される赤外線をフイルター13で除去されるので
固体走査受光素子は感度を示さない暗部Dと明部
Lとの差が明確になつたオシロスコープの波形が
得られる。
According to the present invention, as shown in the waveform of the oscilloscope shown in FIG. 4, the light from the illumination device 9 indicates the sensitivity of the solid-state scanning photodetector, and the light from the illumination device 9 is blocked by the sample. Since the infrared rays emitted from the oscilloscope are removed by the filter 13, an oscilloscope waveform with a clear difference between the dark area D and the bright area L, in which the solid-state scanning light-receiving element exhibits no sensitivity, is obtained.

フイルター13は赤外域の0.8μ〜1mmの波長の
光を除去するもので、計測に十分なコントラスト
と光量を得るため、光透過率が高いものが好まし
い。この場合、1枚のフイルターで0.8μ〜1mmの
全域の波長を除去するものでなくてもよく、2枚
又は2枚以上のフイルターの組合せでもよい。
The filter 13 removes light with a wavelength of 0.8 μm to 1 mm in the infrared region, and preferably has a high light transmittance in order to obtain sufficient contrast and light intensity for measurement. In this case, one filter does not need to remove wavelengths in the entire range of 0.8 μm to 1 mm, and two or a combination of two or more filters may be used.

照明装置9は受光素子面に低温から高温まで充
分なコントラストをつけるための光量が必要であ
る。光源としては、白熱電球、キセノンランプ、
ハロゲンランプ、レーザー光線などが用いられる
が、設備が簡単でかつ取扱いが容易という点で白
熱電球を電圧調整器と組合せて使用するのがよ
い。いずれの場合も、光は、集光レンズを使つて
集光し、直進性を持たせた平行光が良く、光束の
径は試料面で10mmφ以上で輝度は10万nt以上がよ
い。
The illumination device 9 needs a sufficient amount of light to provide sufficient contrast from low to high temperatures on the light receiving element surface. Light sources include incandescent bulbs, xenon lamps,
Halogen lamps, laser beams, etc. can be used, but it is better to use an incandescent light bulb in combination with a voltage regulator because the equipment is simple and easy to handle. In either case, the light should preferably be collimated using a condensing lens and should have straight propagation, and the diameter of the beam should preferably be 10 mmφ or more at the sample surface and the brightness should be 100,000 nt or more.

本発明装置による測定例を以下に説明する。 An example of measurement using the apparatus of the present invention will be explained below.

実施例 ケイ石れんが試料で幅20mm×高さ15mm×長さ85
mmのものを第5図に示す本発明装置の加熱炉1内
にセツトし、作動距離480mm、F番号8の望遠レ
ンズ14と赤外域の0.8μ〜1000μの波長の光を除
去するガラスフイルター13を使い昇温速度を毎
分4℃として、常温から1500℃までの間を5℃毎
にデーターを取り込み、温度と熱膨張率の関係を
書かせた結果を第6図に示す。
Example: Silica brick sample, width 20 mm x height 15 mm x length 85
A telephoto lens 14 with a working distance of 480 mm and an F number of 8 and a glass filter 13 that removes light with a wavelength of 0.8 μ to 1000 μ in the infrared region are set in the heating furnace 1 of the apparatus of the present invention shown in FIG. Figure 6 shows the relationship between temperature and coefficient of thermal expansion by capturing data every 5 degrees Celsius from room temperature to 1500 degrees Celsius using a heating rate of 4 degrees Celsius per minute.

以上のように、固体走査受光素子を使用したカ
メラと望遠レンズ、赤外線除去フイルターと公知
のコンピユーターを組合せて、最小読み取り精度
1μmで低温から高温まで高精度に測定できる熱
膨張率測定装置の開発に成功したものであつて工
業的効果は顕著なものである。
As described above, the minimum reading accuracy is achieved by combining a camera using a solid-state scanning photodetector, a telephoto lens, an infrared ray removal filter, and a known computer.
We have succeeded in developing a thermal expansion measuring device that can measure the thermal expansion coefficient with high accuracy from low to high temperatures at 1 μm, and the industrial effect is remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の熱膨張率測定方式を
略図的に示し、第3図は従来方式によるオシロス
コープ波形の一例を示し、第4図は本発明装置に
よるオシロスコープ波形の一例を示す。第5図は
本発明装置の一例の配置関係を示す略図、第6図
は本発明装置によつて得られた温度と熱膨張率と
の関係の一例を示すグラフである。 図中、1:加熱炉、2:試料、3:変位検出
棒、4:試料受台、5:作動変圧器、6:変位測
定器、7:記録計、8:温度計、9:照明装置、
10:目盛付望遠鏡、11:発熱体、12:熱電
対、13:フイルター、14:望遠レンズ、1
5:固体走査受光素子カメラ、16:コントロー
ルユニツト、17:マイクロコンピユーターイン
ターフエース、18:マイクロコンピユーター、
19:デイジタル温度計、20:デイジタルプロ
ツター、21:オシロスコープ。
1 and 2 schematically show a conventional thermal expansion coefficient measurement method, FIG. 3 shows an example of an oscilloscope waveform using the conventional method, and FIG. 4 shows an example of an oscilloscope waveform using the apparatus of the present invention. FIG. 5 is a schematic diagram showing the arrangement of an example of the device of the present invention, and FIG. 6 is a graph showing an example of the relationship between temperature and coefficient of thermal expansion obtained by the device of the present invention. In the figure, 1: heating furnace, 2: sample, 3: displacement detection rod, 4: sample holder, 5: operating transformer, 6: displacement measuring device, 7: recorder, 8: thermometer, 9: lighting device ,
10: Telescope with scale, 11: Heating element, 12: Thermocouple, 13: Filter, 14: Telephoto lens, 1
5: solid-state scanning photodetector camera, 16: control unit, 17: microcomputer interface, 18: microcomputer,
19: Digital thermometer, 20: Digital plotter, 21: Oscilloscope.

Claims (1)

【特許請求の範囲】[Claims] 1 試料加熱炉の一側に2組の照明装置を配設
し、その対向側にレンズのF番号が5〜8で作動
距離が300〜500mmの2組の望遠レンズと0.8μm〜
1mm波長の赤外線除去用フイルターを具備する固
体走査受光素子カメラ及びオシロスコープに接続
されたカメラコントロールユニツトをコンピユー
ター及びデジタルプロツターに接続、配設したこ
とを特徴とする熱膨張率測定装置。
1. Two sets of illumination devices are installed on one side of the sample heating furnace, and on the opposite side, two sets of telephoto lenses with an F number of 5 to 8 and a working distance of 300 to 500 mm and a 0.8 μm to
A thermal expansion coefficient measuring device characterized in that a camera control unit connected to a solid-state scanning photodetector camera and an oscilloscope equipped with a filter for removing infrared rays of 1 mm wavelength is connected to a computer and a digital plotter.
JP14796683A 1983-08-15 1983-08-15 Measuring device of coefficient of thermal expansion Granted JPS6039540A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14796683A JPS6039540A (en) 1983-08-15 1983-08-15 Measuring device of coefficient of thermal expansion
KR8404936A KR910004158B1 (en) 1983-08-15 1984-04-14 Thermal deformation measuring system of ceranics and the like
AT84305300T ATE42402T1 (en) 1983-08-15 1984-08-03 SYSTEM FOR MEASURING THERMAL DEFORMATION OF CERAMIC AND SIMILAR.
EP84305300A EP0145115B1 (en) 1983-08-15 1984-08-03 Thermal deformation measuring system of ceramics and the like
DE8484305300T DE3477836D1 (en) 1983-08-15 1984-08-03 Thermal deformation measuring system of ceramics and the like
US06/776,920 US4636969A (en) 1983-08-15 1985-09-17 Apparatus for automatic measuring thermal dimensional change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14796683A JPS6039540A (en) 1983-08-15 1983-08-15 Measuring device of coefficient of thermal expansion

Publications (2)

Publication Number Publication Date
JPS6039540A JPS6039540A (en) 1985-03-01
JPH0465338B2 true JPH0465338B2 (en) 1992-10-19

Family

ID=15442116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14796683A Granted JPS6039540A (en) 1983-08-15 1983-08-15 Measuring device of coefficient of thermal expansion

Country Status (1)

Country Link
JP (1) JPS6039540A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721472B2 (en) * 1986-12-11 1995-03-08 品川白煉瓦株式会社 Displacement measuring device for hot ceramics
DE10136513B4 (en) * 2001-07-26 2007-02-01 Siemens Ag Method and device for measuring temperature-induced changes in length of a piezoelectric actuator
JP5683187B2 (en) * 2010-09-22 2015-03-11 東洋炭素株式会社 Hot displacement measuring device and hot displacement measuring method
WO2012039198A1 (en) * 2010-09-22 2012-03-29 東洋炭素株式会社 Hot displacement measuring device, hot displacement measuring method, and electric resistance measuring device
CN108534997B (en) * 2018-03-02 2020-08-28 蒙城县立至信安全技术咨询服务有限公司 Detection equipment for manufacturing automobile shading sun-proof cover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336262A (en) * 1976-09-16 1978-04-04 Gakei Denki Seisakusho Method of and apparatus for measuring thermal expansion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336262A (en) * 1976-09-16 1978-04-04 Gakei Denki Seisakusho Method of and apparatus for measuring thermal expansion

Also Published As

Publication number Publication date
JPS6039540A (en) 1985-03-01

Similar Documents

Publication Publication Date Title
EP0145115B1 (en) Thermal deformation measuring system of ceramics and the like
CA1158887A (en) Surface temperature measuring apparatus for object within furnace
US4576486A (en) Optical fiber thermometer
US20030123518A1 (en) Dual wavelength thermal imaging system for surface temperature monitoring and process control
JPH0465338B2 (en)
US5209569A (en) Apparatus for measuring thermal dimensional change of ceramics or the like
JPS617452A (en) Apparatus for measurement of displacement of ceramic in hot processing
US20030033110A1 (en) Wafer temperature measurement method for plasma environments
JPS61172041A (en) Apparatus for measuring hot displacement of ceramic
US6232583B1 (en) Infrared high temperature measurement of optical fiber during draw
JPH056360U (en) Displacement measurement device for hot ceramics, etc.
JPH0637320Y2 (en) Displacement measuring device for hot ceramics
JPS63175756A (en) Noncontact type full-automatic measuring instrument for expansion coefficient of hot wire
SE451409B (en) DEVICE FOR DETERMINING THE TEMPERATURE OF A METOBJECT BY DETECTING THE ELECTROMAGNETIC RADIATION EMITTED BY THE METOBJECT
EP0229653B1 (en) Method of measuring furnace temperature in hot isostatic pressing unit and device for measuring same
JPH04132944A (en) Device for measuring thermal coefficient of expansion
JPH0663988B2 (en) Displacement measuring device for hot ceramics
CN85103687A (en) The measuring system for thermal deformation of pottery ex hoc genus anne material
CN102288304B (en) White-light interference sapphire high-temperature sensor
JPS63148154A (en) Hot displacement measuring instrument for ceramics or the like
Tong et al. Performance improvement of radiation-based high-temperature fiber-optic sensor by means of curved sapphire fiber
JPS6115390Y2 (en)
Ruffino et al. New opto-electronic dilatometer
Roy Review of Infra-red Thermometry for the Glass Industry
WO2016081841A1 (en) Optical measurement system for steam cracking furnace coil outlet temperature