JPH0464856B2 - - Google Patents

Info

Publication number
JPH0464856B2
JPH0464856B2 JP60032317A JP3231785A JPH0464856B2 JP H0464856 B2 JPH0464856 B2 JP H0464856B2 JP 60032317 A JP60032317 A JP 60032317A JP 3231785 A JP3231785 A JP 3231785A JP H0464856 B2 JPH0464856 B2 JP H0464856B2
Authority
JP
Japan
Prior art keywords
materials
adhesive
phenol foam
foam
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032317A
Other languages
Japanese (ja)
Other versions
JPS61192549A (en
Inventor
Osamu Tarue
Chiaki Tsukamoto
Takashi Ooga
Takeshi Yasui
Satoru Kodera
Takahiro Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP3231785A priority Critical patent/JPS61192549A/en
Publication of JPS61192549A publication Critical patent/JPS61192549A/en
Publication of JPH0464856B2 publication Critical patent/JPH0464856B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Building Environments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、構造物用の断熱材として使用され
る高度の難燃性を有する面材付きのフエノールフ
オーム積層体に関する。 (従来技術) 従来から各種構造物用断熱材としてウレタンフ
オーム、イソシアヌレートフオーム、フエノール
フオーム等の合成樹脂発泡体に種々の面材、例え
ば鉄やアルミニウム等の金属製の面材や、石膏ボ
ードやロツクウール硬質板等の無機材料からなる
面材、或はベニア板、合板等の木質材料からなる
面材のようなハード面材の他に、合成樹脂シート
やガラス繊維布、アスベスト或はクラフト紙のよ
うなソフト面材等が積層されて使用されている。 これらの面材付き合成樹脂発泡体は、従来主と
して船舶や鶏舎或はサイロのような一般産業用断
熱材に多用されてきたが、汎用の建築材料にその
優れた断熱性と軽量性を活かすためには、建設省
告示第1372号に定められた燃焼テストにおいて、
少くとも準不燃材料に設定され得る高度の難燃性
を賦与することが要求される。一般に合成樹脂発
泡体としてフエノールフオームを用いた場合、他
の合成樹脂発泡体に比し、耐熱性に優れ発煙量が
少ないという利点があるので最近注目されるよう
になつてきた。従つて面材として不燃性の無機材
料や金属材料を用いた場合には、かなり耐燃性の
面で有利に働き、この様な構造の場合には準不燃
材料として要求される耐燃性に合格するものもあ
るが、高度な装飾性や施工性面から市場ニーズの
大きいソフト面材付きでは到底準不燃材料レベル
の耐燃性を賦与することはできず、その耐燃性向
上が望まれている。 高分子材料又はその発泡体に水酸化アルミニウ
ムのような結合水をもつた無機質充填剤を配合す
ることにより、難燃性を向上させる技術について
はプラスチツクス誌第22巻、8月号、128〜133頁
(1971年)等にて公知であり、実際に多くの分野
で実用に供せられてきている。本願発明者等もフ
エノールフオームに結合水を有する無機充填剤を
配合したものについて燃焼試験を行つてみたが、
無機充填剤配合量を増やすとフオーム化が困難と
なるため、到底準不燃材料に相当するレベルの難
燃性を賦与することはできなかつた。 (発明が解決しようとする問題) この発明は、不燃性面材との積層は勿論、耐燃
性の面では不利なソフト面材との積層において
も、準不燃材料に要求される耐燃性を示すフエノ
ールフオーム積層体を得ることを目的に、鋭意研
究を進めた結果完成するに至つたものである。 (発明の構成) 本願で使用されるフエノールフオーム自体には
制限はなく、公知のレゾール型、ノボラツク型、
ベンジリツクエーテル型或はポリイソシアネート
等により変性された変性フエノール型等はすべて
使用可能である。 使用する面材は、不燃性又は難燃処理されたも
のであれば、材質自体には制約はなく、前記した
ようなハード面材は勿論、アスベスト紙や塩ビの
ような合成樹脂シートであつてもよい。 本願で重要なのは、上記フエノールフオームと
面材とを積層接着させるのに使用する接着剤であ
る。即ち、本願発明の接着剤は50〜500℃の温度
領域で脱水反応を起こす無機化合物群からなり、
その内水ガラス(Na2O、xSiO2・nH2O)を不
可欠成分とし、これに更に50℃以上500℃未満の
温度領域で脱水反応を起こす無機化合物(但し、
金属水酸化物を除く)の内少なくとも1種の化合
物を併用、液状ないしはペースト状として使用す
ることにある。併用することができる上記無機化
合物としては、水和石膏(CaSO4・2H2O、
td128℃)硼酸亜鉛(td330℃)、硼砂(Na2O・
2B2O3・10H2O、td62℃)等が挙げられる。tdは
不明であるが硼酸バリウム(BaO・B2O3・H2
O)も同等の効果が認められるので多分tdは50〜
500℃の範囲と推定される。しかしながらクレー
や明ばんは、前者が500℃から後者は650℃から脱
水反応を開始するので、不適当である。又50℃未
満で脱水反応が起こる化合物の場合は脱水に伴う
燃焼熱量の低下効果に乏しい。本願は、水ガラス
とこれらの50℃以上500℃未満で脱水反応を起こ
す無機化合物との併用系の接着剤を必須成分とす
るものであるが、これらの系に含燐化合物や、含
ハロゲン化合物或は三酸化アンチモンのような酸
化物等公知の難燃剤を更に配合使用することを妨
げるものではなく、着火時に空気を遮断したり燃
焼熱量を低下させる作用を有するこられの化合物
類の併用は、発煙量を増加させることがあるが好
ましい難燃効果を発揮することが認められるので
適量併用することができる。本願で使用する水ガ
ラスと他の含水無機化合物との混合比は、重量比
で水ガラス1に対し50℃以上500℃未満で脱水反
応を起こす無機化合物が0.02〜2、更に好ましく
は0.1〜1の割合で併用する。 水ガラスと上記含水無機化合物とを混合した液
状ないしはペースト状の接着剤はフエノールフオ
ーム側又は面材剤のどちらに塗布してもよく、場
合によつては両面にそれぞれ塗布してフエノール
フオームと面材とを積層接着させるが、その際接
着剤層の塗布厚みは50〜2000μ好ましくは100〜
1000μの厚みに塗布する。50μ未満では難燃性向
上効果が期待できないし、2000μ以上の厚みにす
ると難燃効果には優れるが積層体としての接着耐
久性を低下させるので好ましくない。 面材とフエノールフオームの接着方法として
は、フエノールフオームを長尺状に発泡成形させ
た直後に接着剤を塗布しながら連続的に面材と貼
り合わせる、いわゆるラミネート方式によつても
よく、又所望寸法に型造時に予め面材側に接着剤
を塗布しておいて一体発泡接着してもよく、或は
又型造された所定寸法のフエノールフオームボー
ドに接着剤を塗布して、面材を積層接着させる方
式を採つてもよい。 又面材はフエノールフオームの片面のみに設け
てもよく、両面に積層したサンドイツチ構造とし
てもよい。サンドイツチ構造の場合には、それぞ
れの面に接着積層する面材は同一であつても、又
異質の面材を用いてもよい。サンドイツチ構造を
とる場合、本願が対象とする接着剤を両面共に使
用して積層体としてもよいが、建物の内装材のよ
うに防火性能を必要とする面がどちらか一方に限
定されるような場合には、その要求される面側に
のみ本願が対象とする接着剤を用い、他面側が通
常の接着剤を用いるか、或はフエノールフオーム
発泡時にフエノールフオームの接着力を利用して
一体積層接着させるようにすることもできる。 (実施例) フオーム密度が58Kg/m3、厚さ10mm、幅900mm
のボード状ベンジリツクエーテル型フエノールフ
オームに重量比で水ガラス1に対し、硼砂(B)及び
カオリン(D)の粉末を1の割合で混合した液状接着
剤を第1表にそれぞれ記載した厚みで塗布し、ア
スベスト紙面材を片面に貼合せて積層体を得た。
これらの積層体は24時間自然乾燥した後建設省告
示第1372号に記載の方法に基づき燃焼テストを行
つた。その結果は第1表に併記した通りであつ
た。
(Industrial Field of Application) The present invention relates to a phenolic foam laminate with a facing material having a high degree of flame retardancy and used as a heat insulating material for structures. (Prior Art) Conventionally, synthetic resin foams such as urethane foam, isocyanurate foam, and phenol foam have been used as insulation materials for various structures, as well as various surface materials such as metal surface materials such as iron and aluminum, gypsum boards, etc. In addition to hard facing materials such as inorganic materials such as rock wool hard boards, or wooden materials such as plywood and plywood, synthetic resin sheets, glass fiber cloth, asbestos, or kraft paper are also available. Soft surface materials such as these are used in a laminated manner. These synthetic resin foams with facing materials have traditionally been used mainly as insulation materials for general industries such as ships, poultry houses, and silos, but in order to take advantage of their excellent insulation properties and light weight for general-purpose building materials, In the combustion test stipulated in Ministry of Construction Notification No. 1372,
It is required to impart a high degree of flame retardancy that can be set to at least semi-non-combustible materials. In general, when phenol foam is used as a synthetic resin foam, it has recently attracted attention because it has the advantage of being superior in heat resistance and producing less smoke than other synthetic resin foams. Therefore, when noncombustible inorganic or metallic materials are used as face materials, they have a considerable advantage in terms of flame resistance, and in the case of such a structure, they pass the flame resistance required as quasi-noncombustible materials. However, it is impossible to provide flame resistance equivalent to that of quasi-noncombustible materials with soft facing materials, which are in great demand in the market due to their high degree of decoration and workability, and there is a desire to improve their flame resistance. Technology to improve flame retardancy by incorporating inorganic fillers with bound water, such as aluminum hydroxide, into polymeric materials or their foams, Plastics Magazine Vol. 22, August issue, 128- 133 (1971), etc., and has actually been put to practical use in many fields. The inventors of the present application also conducted a combustion test on a mixture of phenol foam and an inorganic filler containing bound water.
If the amount of inorganic filler added makes it difficult to form a foam, it has never been possible to impart flame retardance to a level equivalent to that of a quasi-noncombustible material. (Problem to be solved by the invention) This invention exhibits the flame resistance required for quasi-noncombustible materials, not only when laminated with noncombustible facing materials, but also when laminated with soft facing materials, which are disadvantageous in terms of flame resistance. This was completed as a result of intensive research aimed at obtaining a phenol foam laminate. (Structure of the Invention) The phenol foam itself used in the present application is not limited, and may be any of the known resol type, novolak type,
Any benzylic ether type or modified phenol type modified with polyisocyanate or the like can be used. There are no restrictions on the material itself as long as the surface material used is non-flammable or flame-retardant, including hard surface materials such as those mentioned above, as well as synthetic resin sheets such as asbestos paper and PVC. Good too. What is important in this application is the adhesive used for laminating and adhering the phenol foam and the face material. That is, the adhesive of the present invention is composed of an inorganic compound group that causes a dehydration reaction in a temperature range of 50 to 500°C,
Among them, water glass (Na 2 O, xSiO 2・nH 2 O) is an essential component, and in addition to this, inorganic compounds that undergo a dehydration reaction in the temperature range of 50°C or more and less than 500°C (however,
(excluding metal hydroxides) in combination, or in the form of a liquid or paste. Examples of the above inorganic compounds that can be used in combination include hydrated gypsum (CaSO 4 2H 2 O,
td128℃) Zinc borate (td330℃), borax (Na 2 O・
2B 2 O 3 10H 2 O, td62°C). TD is unknown, but barium borate (BaO・B 2 O 3・H 2
O) is also found to have the same effect, so td is probably 50~
Estimated to be in the range of 500℃. However, clay and alum are unsuitable because the dehydration reaction starts at 500°C for the former and 650°C for the latter. In addition, in the case of a compound that undergoes a dehydration reaction at a temperature below 50°C, the effect of reducing the combustion heat due to dehydration is poor. The present application uses an adhesive that is a combination of water glass and an inorganic compound that causes a dehydration reaction at temperatures above 50°C and below 500°C as an essential component, but these systems do not contain phosphorus-containing compounds or halogen-containing compounds. Alternatively, this does not preclude the further use of known flame retardants such as oxides such as antimony trioxide, but the combined use of these compounds that have the effect of blocking air or reducing the amount of heat of combustion during ignition is not prohibited. Although it may increase the amount of smoke produced, it is recognized that it exhibits a favorable flame retardant effect, so it can be used in combination in an appropriate amount. The mixing ratio of water glass and other water-containing inorganic compounds used in this application is 0.02 to 2, more preferably 0.1 to 1, of the inorganic compound that undergoes a dehydration reaction at temperatures above 50°C and below 500°C to 1 part of water glass. Use in combination at a ratio of A liquid or paste adhesive made by mixing water glass and the above water-containing inorganic compound may be applied to either the phenol foam side or the facing material. In this case, the thickness of the adhesive layer is 50 to 2000 μm, preferably 100 to 2000 μm.
Apply to a thickness of 1000μ. If the thickness is less than 50 μm, no improvement in flame retardancy can be expected, and if the thickness is 2000 μm or more, the flame retardant effect is excellent, but the adhesive durability of the laminate is reduced, which is not preferable. The method of adhering the face material and the phenol foam may be the so-called lamination method, in which the phenol foam is foam-molded into a long shape and then continuously bonded to the face material while applying an adhesive, or as desired. It is also possible to apply an adhesive to the facing material side in advance during molding and then bond the foam together, or alternatively, apply adhesive to a molded phenol foam board of a predetermined size and attach the facing material to the dimensions. A method of laminating and adhering may be adopted. Further, the facing material may be provided only on one side of the phenol foam, or may be laminated on both sides to form a sandwich structure. In the case of a sandwich structure, the facing materials adhesively laminated on each surface may be the same or different facing materials may be used. In the case of a sandwich structure, the adhesive covered by this application may be used on both sides to form a laminate, but in cases where the fire-retardant performance is limited to only one side, such as interior materials of a building. In this case, use the adhesive covered by this application only on the required side and use a normal adhesive on the other side, or use the adhesive force of the phenol foam to form a single layer when foaming the phenol foam. It is also possible to make it adhere. (Example) Foam density is 58Kg/m 3 , thickness 10mm, width 900mm
A liquid adhesive prepared by mixing powders of borax (B) and kaolin (D) in a weight ratio of 1 part of water glass to 1 part of borax (B) and kaolin (D) was applied to the board-like benzyl ether type phenol foam at the thickness shown in Table 1. A laminate was obtained by applying an asbestos paper face material to one side.
These laminates were air-dried for 24 hours and then subjected to a combustion test based on the method described in Ministry of Construction Notification No. 1372. The results were as shown in Table 1.

【表】 (発明の効果) 一般にフエノールフオーム自体の難燃性の強化
によつて建設省告示の準不燃材料に合格する難燃
性のものを得ることが困難な場合、特殊な変性手
段が必要であるのに対し、本願の方法によれば、
汎用のフエノールフオームと不燃性面材との組合
せは勿論、難燃処理された合成樹脂フイルムとの
組合せからなる積層体の場合においても規格に適
合し得る高度な難燃性を賦与することができると
いう予期した以上の効果を得ることができた。 即ち、実施例の燃焼試験結果から明らかなよう
に、建設省告示の準不燃材料としては燃焼時の合
計発熱量QTは50×103KJ(キロジユール)以下
で、且つ燃焼後の試片の外観状態が脱落がなくク
ラツク発生の少ないものであることが要求される
が、実施例7のように脱水開始温度が500℃のカ
オリンを水ガラスと併用した場合にはQTが57.1
×103KJとなつて合格しなくなる。これは、第1
表に併記したように、試験体としてのフエノール
フオームの燃焼時の内部最高温度が410〜630℃の
温度に達するが燃焼時のQTを下げるためには、
500℃以下望ましくは400℃以下で脱水分解が開始
される含水無機化合物を用いることにより、QT
の低減効果に大きく寄与するためと考えられる。 又、本願で使用する接着剤の内、水ガラスを不
可欠成分としているのは、水ガラス自体の優れた
接着機能を利用するもので、且つ水ガラス自体も
100℃で脱水開始を行う無機化合物であるためで
ある。
[Table] (Effects of the invention) In general, when it is difficult to obtain a flame retardant material that passes the semi-noncombustible material notification of the Ministry of Construction by strengthening the flame retardance of phenol foam itself, special modification means are required. However, according to the method of the present application,
Not only the combination of general-purpose phenol foam and noncombustible surface materials, but also the combination of flame-retardant synthetic resin films can be given a high degree of flame retardancy that meets standards. I was able to get more results than I expected. That is, as is clear from the combustion test results of the examples, the total calorific value QT during combustion is 50 × 10 3 KJ (kilojoule) or less as a quasi-noncombustible material as notified by the Ministry of Construction, and the appearance of the specimen after combustion is It is required that the condition be such that there is no shedding and little cracking, but when kaolin with a dehydration start temperature of 500°C is used in combination with water glass as in Example 7, the QT is 57.1.
×10 3 It will become KJ and you will not pass the exam. This is the first
As shown in the table, the maximum internal temperature during combustion of phenol foam as a test specimen reaches a temperature of 410 to 630℃, but in order to lower the QT during combustion,
By using a hydrous inorganic compound that starts dehydration and decomposition at temperatures below 500°C, preferably below 400°C, QT
This is thought to be because it greatly contributes to the reduction effect of Furthermore, among the adhesives used in this application, water glass is an essential component because it utilizes the excellent adhesive function of water glass itself, and water glass itself also
This is because it is an inorganic compound that starts dehydrating at 100°C.

Claims (1)

【特許請求の範囲】[Claims] 1 面材とフエノールフオームとを接着した積層
体において、接着剤として水ガラスと脱水分解温
度が50〜500℃の範囲の含水無機化合物(金属水
酸化物を除く)からなる液状ないしはペース状の
混合物を用いたことを特徴とするフエノールフオ
ーム積層体。
1. In a laminate in which a face material and phenol foam are bonded, a liquid or paste mixture consisting of water glass and a hydrous inorganic compound (excluding metal hydroxide) with a dehydration decomposition temperature in the range of 50 to 500°C is used as an adhesive. A phenol foam laminate characterized by using.
JP3231785A 1985-02-20 1985-02-20 Laminate of phenol form Granted JPS61192549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3231785A JPS61192549A (en) 1985-02-20 1985-02-20 Laminate of phenol form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3231785A JPS61192549A (en) 1985-02-20 1985-02-20 Laminate of phenol form

Publications (2)

Publication Number Publication Date
JPS61192549A JPS61192549A (en) 1986-08-27
JPH0464856B2 true JPH0464856B2 (en) 1992-10-16

Family

ID=12355555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3231785A Granted JPS61192549A (en) 1985-02-20 1985-02-20 Laminate of phenol form

Country Status (1)

Country Link
JP (1) JPS61192549A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9407314D0 (en) * 1994-04-13 1994-06-08 Crompton Geoffrey Lightweight insulating panels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502031A (en) * 1973-05-08 1975-01-10
JPS5134929A (en) * 1974-09-20 1976-03-25 Asahi Glass Co Ltd SETSUCHAKUSEISOSEIBUTSU
JPS51145586A (en) * 1974-10-19 1976-12-14 Ig Tech Res Inc Fire-resisting panels
JPS5721653A (en) * 1980-07-16 1982-02-04 Mitsui Petrochemical Ind Ceiling material
JPS58204257A (en) * 1982-05-24 1983-11-28 三井化学株式会社 Ceiling material
JPS60236740A (en) * 1984-05-11 1985-11-25 日本ゼオン株式会社 Flame-retardant heat-insulating material
JPS60236741A (en) * 1984-05-11 1985-11-25 日本ゼオン株式会社 Flame-retardant heat-insulating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502031A (en) * 1973-05-08 1975-01-10
JPS5134929A (en) * 1974-09-20 1976-03-25 Asahi Glass Co Ltd SETSUCHAKUSEISOSEIBUTSU
JPS51145586A (en) * 1974-10-19 1976-12-14 Ig Tech Res Inc Fire-resisting panels
JPS5721653A (en) * 1980-07-16 1982-02-04 Mitsui Petrochemical Ind Ceiling material
JPS58204257A (en) * 1982-05-24 1983-11-28 三井化学株式会社 Ceiling material
JPS60236740A (en) * 1984-05-11 1985-11-25 日本ゼオン株式会社 Flame-retardant heat-insulating material
JPS60236741A (en) * 1984-05-11 1985-11-25 日本ゼオン株式会社 Flame-retardant heat-insulating material

Also Published As

Publication number Publication date
JPS61192549A (en) 1986-08-27

Similar Documents

Publication Publication Date Title
JP4051459B2 (en) Incombustible thermal insulation panel
CN1406745A (en) Cyanuramide foam composite plates and manufacture thereof
KR20110041664A (en) Sandwich panel filled with glass fiber needle felt
JP2007008002A (en) Flame-retardant lightweight board
JPH0464856B2 (en)
JP7425435B2 (en) laminate
CN110614818A (en) Fireproof foam composite board and manufacturing method thereof
KR100377631B1 (en) Noncombustible Composite Structure Panel and The Manufacturing Method using Glass Fiber Tissue Reinforcement and Phenolic Matrix Resin
JPH10231568A (en) Fireproof composite panel
CN215406675U (en) Fire protection system board
JP3306439B2 (en) Fireproof panel
JP7439233B1 (en) Laminate and covering structure
JPH10159196A (en) Panel for building
JPH09228507A (en) Composite heat insulative panel
CN214111790U (en) Building heat preservation decorative board that flame retardant efficiency is good
CN211641235U (en) Polyvinyl chloride foaming board convenient to concatenation
JPS63896Y2 (en)
JP2022126907A (en) Coating structure and forming method thereof
JP2022137842A (en) Laminate and coating structure
JPS6316730Y2 (en)
KR20160069962A (en) Door having flame retardancy
JPS6316729Y2 (en)
JPH0345804Y2 (en)
JPH0230282Y2 (en)
JPS607164Y2 (en) architectural board