JPH0464229A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0464229A
JPH0464229A JP17706990A JP17706990A JPH0464229A JP H0464229 A JPH0464229 A JP H0464229A JP 17706990 A JP17706990 A JP 17706990A JP 17706990 A JP17706990 A JP 17706990A JP H0464229 A JPH0464229 A JP H0464229A
Authority
JP
Japan
Prior art keywords
film
tft
semiconductor device
intermediate film
sigma0
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17706990A
Other languages
Japanese (ja)
Inventor
Hiroyuki Okamoto
弘之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17706990A priority Critical patent/JPH0464229A/en
Publication of JPH0464229A publication Critical patent/JPH0464229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent the variation of TFT characteristics by forming an intermediate film having film thickness of 50-100Angstrom and satisfying the conditions of specific formula between a protective film and both a TFT and an electrode wiring. CONSTITUTION:sigma is increased with the elevation of a temperature T in the relationship of sigma0 and 1/T in formula (II), and sigma is sigma0 when 1/T=0 holes. Consequently, sigma0 represents electric conductivity at the time of 1/T=0. sigma can be controlled as the result according to any determination of the constant sigma0 and Ea. Accordingly, an intermediate film having theta0 and Ea satisfying the relationship of formula (I) is selected. The intermediate film is formed of an amorphous material mainly comprising Si, to which a dopant selected from a group consisting of small qualitities of B, C and N is doped, and 0. The intermediate film is formed, thus preventing the variation of a threshold.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、改良された構造をもつ半導体装置に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a semiconductor device with an improved structure.

〔従来技術〕[Prior art]

絶縁性基板上に作成されたTFTはSiウェハ中に作成
されたMO8型トランジスタ等の素子に比へて静電耐量
が小さいことが知られている。このために、絶縁性基板
上にTFTを作る工程では、静電対策、電荷のチャージ
アップ防止を施すことが重要である。TFTおよびTF
Tを接続する電極配線を形成後、一般にプラズマCVD
法によって全面にSiN、5iON等の絶縁性保護膜が
形成される。
It is known that a TFT fabricated on an insulating substrate has a lower electrostatic capacity than an element such as an MO8 type transistor fabricated in a Si wafer. For this reason, in the process of manufacturing TFTs on insulating substrates, it is important to take measures against static electricity and prevent charge build-up. TFT and TF
After forming the electrode wiring that connects the T, generally plasma CVD
An insulating protective film of SiN, 5iON, etc. is formed on the entire surface by a method.

このとき、プラズマCVD中のチャージアップにより、
TFTのしきい値電圧の変動などを生じる結果となる。
At this time, due to charge-up during plasma CVD,
This results in variations in the threshold voltage of the TFT.

これらの対策として、TFTの各電極間を配線パターン
上で短絡しておき、保護膜を形成後。
As a countermeasure to these problems, each electrode of the TFT was short-circuited on the wiring pattern, and a protective film was formed.

短絡部上の保護膜を除去し、さらに短絡部を開放するこ
とにより、チャージアップによるダメージを軽減する方
法がある(特開平2−18524号)。
There is a method of reducing damage caused by charge-up by removing the protective film on the short-circuited portion and further opening the short-circuited portion (Japanese Unexamined Patent Publication No. 2-18524).

しかし、この対策は保護膜の一部を除去するため、フォ
トリソ工程が複雑になるだけでなく、TFT基板の耐候
性、信頼性にも悪影響を与える。またマトリックス配線
のような配線パターンでは短絡のための配線はその個所
の配線がすくない場合には容易に行なえるが、ソース、
ドレイン、ゲートが複雑に配置されたパターンでは実施
することは現実的に不可能であった。
However, this measure not only complicates the photolithography process but also adversely affects the weather resistance and reliability of the TFT substrate since a portion of the protective film is removed. In addition, in wiring patterns such as matrix wiring, wiring for short circuits can be easily done if there are few wirings in that area, but
It was practically impossible to implement this method with a pattern in which drains and gates were arranged in a complicated manner.

また、別の対策として、プラズマCVD中に基板上のイ
オンを電子の供給手段を設けることによって中性化する
方法が提案されている(特開平1−270320号)。
Furthermore, as another countermeasure, a method has been proposed in which ions on a substrate are neutralized by providing means for supplying electrons during plasma CVD (Japanese Unexamined Patent Publication No. 1-270320).

しかし、この方法は成膜装置内での効果の再現性及び大
面積基板への適用性が低いと考えられる。
However, this method is considered to have low reproducibility of effects within a film forming apparatus and low applicability to large-area substrates.

〔目  的〕〔the purpose〕

本発明は活性型の電気伝導を有した半絶縁性の薄膜を改
め設けておくことにより、絶縁性保護膜をプラズマCV
Dで形成してもTFT基板にダメージを与えない半導体
装置を提供することを目的とする。
In the present invention, by adding a semi-insulating thin film with active electrical conductivity, the insulating protective film can be converted into a plasma CVD film.
An object of the present invention is to provide a semiconductor device that does not cause damage to a TFT substrate even when formed using D.

〔構  成〕〔composition〕

本発明は、絶縁基板、その上に設けられた簿膜トランジ
スタ(以下、TFTと称する)、該TFTと接続する電
極配線、および該TFTと該電極配線を覆う保護膜より
なる半導体装置において、該保護膜と、TFTおよび電
極配線との間に、膜厚50〜100人であって下記式の
条件を満足する中間膜を設けたことを特徴とする半導体
装置に関する。
The present invention relates to a semiconductor device comprising an insulating substrate, a film transistor (hereinafter referred to as TFT) provided on the insulating substrate, an electrode wiring connected to the TFT, and a protective film covering the TFT and the electrode wiring. The present invention relates to a semiconductor device characterized in that an intermediate film having a thickness of 50 to 100 mm and satisfying the conditions of the following formula is provided between a protective film, a TFT, and an electrode wiring.

22.2×Ea−18,4〈Qn σ。<37.0×E
a−27,6−(I )〔なお、σ0、Eaは公知の式 中のそれに相当し、 σは中間膜の電気伝導度 σ。は定数 にはボルツマン定数 Tは絶対温度、 Eaは活性化エネルギー(eV) である。〕 なお、前記公知の式(U)中におけるσ。と1/Tの関
係は第5図のとおりである。温度Tが大きくなるにつれ
てσは大きくなり、1/T二〇のときのσをσ。とじて
いる。したがってσ。
22.2×Ea−18,4〈Qnσ. <37.0×E
a-27,6-(I) [In addition, σ0 and Ea correspond to those in the known formula, σ is the electrical conductivity σ of the intermediate film. is the Boltzmann constant, T is the absolute temperature, and Ea is the activation energy (eV). ] In addition, σ in the above-mentioned known formula (U). The relationship between and 1/T is shown in FIG. As temperature T increases, σ increases, and σ at 1/T20 is σ. It is closed. Therefore σ.

は1/T=Oのときの電気伝導度である。σは。is the electrical conductivity when 1/T=O. σ is.

定数σ。とEaをどのように決めるかによって結果的に
制御できる。そこで、本発明では式(1)の関係を満足
するσ。とEaをもつ中間膜を選択することが重要とな
る。
constant σ. The result can be controlled by how and Ea are determined. Therefore, in the present invention, σ satisfies the relationship of equation (1). It is important to select an interlayer film having Ea and Ea.

前記中間膜は、少量のB、C,Nよりなる群から選らば
れたドーパントがドープされたSiと○を主成分とする
非晶質材料で形成される。
The intermediate film is formed of an amorphous material mainly composed of Si and O doped with a small amount of a dopant selected from the group consisting of B, C, and N.

とくに、Bをドープしたa−5iO:Hが好ましい。Particularly preferred is a-5iO:H doped with B.

第3図は、本発明の式を満足する範囲を斜線部で示した
ものである。
In FIG. 3, the range that satisfies the formula of the present invention is shown with diagonal lines.

横軸は活性化エネルギーEa、縦軸は公知の活性型の伝
導式と呼ばれている式で表わされる電気伝導度σ。であ
る。第4図は本発明によるTFT特性への効果を示す図
で、点線は本発明を施さない場合(中間膜7が無く)、
保護膜8を形成した後のl1Va特性であり、しきい値
電圧の変動が見られる。それに比較して、中間膜7を設
けた場合には実線で示したようにしきい値の変動は見ら
れなかった。
The horizontal axis is the activation energy Ea, and the vertical axis is the electrical conductivity σ expressed by a known equation called the active type conduction equation. It is. FIG. 4 is a diagram showing the effect of the present invention on TFT characteristics, and the dotted line indicates the case where the present invention is not applied (no interlayer film 7).
This is the l1Va characteristic after forming the protective film 8, and a fluctuation in the threshold voltage can be seen. In comparison, when the interlayer film 7 was provided, no fluctuation in the threshold value was observed as shown by the solid line.

〔実施例〕〔Example〕

第1図は5本発明半導体装置の具体例を示す断面図であ
る。
FIG. 1 is a sectional view showing a specific example of the semiconductor device of the present invention.

この半導体装置は、石英ガラス板1上に順次、活性層2
、ゲート絶縁膜3、ゲート電極4、層間絶縁層5、電極
配線6、前記中間膜7および保護膜8よりなる積層体で
ある。
This semiconductor device consists of an active layer 2 formed on a quartz glass plate 1.
, a gate insulating film 3, a gate electrode 4, an interlayer insulating layer 5, an electrode wiring 6, the intermediate film 7, and a protective film 8.

活性層2は多結晶シリコンからなり膜厚は約300人、
ゲート絶縁層3は多結晶シリコンの熱酸化により作成す
る。熱酸化温度は1070℃、雰囲気は02 / HC
Q混合、膜厚は約900人である。
The active layer 2 is made of polycrystalline silicon and has a thickness of approximately 300 nm.
Gate insulating layer 3 is created by thermal oxidation of polycrystalline silicon. Thermal oxidation temperature is 1070℃, atmosphere is 02/HC
Q mixture, film thickness is approximately 900.

ゲート電極4は、多結晶シリコンからなり、膜厚は約3
000人である。
The gate electrode 4 is made of polycrystalline silicon and has a film thickness of about 3
000 people.

活性層の両端部はイオン注入法により低抵抗化される。The resistance of both ends of the active layer is reduced by ion implantation.

層間絶縁N5はSin、膜であり、膜厚は約3000人
である。眉間絶縁層5にコンタクトホールを形成後、電
極配線用として、AQを真空蒸着法により約1μmを堆
積する。配線パターン形成後、本発明による中間膜7を
約100人形成する。作成法は平行平板方式のプラズマ
CVD法である。
The interlayer insulation N5 is a Sin film, and the film thickness is about 3000. After forming contact holes in the glabellar insulating layer 5, AQ is deposited to a thickness of about 1 μm by vacuum evaporation for electrode wiring. After forming the wiring pattern, about 100 people formed the intermediate film 7 according to the present invention. The production method is a parallel plate plasma CVD method.

このプラズマCVD法は、アースされた基板電極側にサ
ンプルをセットし、下記の条件で実施した。
This plasma CVD method was carried out under the following conditions with a sample set on the grounded substrate electrode side.

■S i H,ガス流量    135CCM■H2ガ
ス流量    505CCM ■C○2 ガス流量    605CCM■B z H
s / H,(2000PPO1)ガス流量  0.3
 SCCM■圧力         0,8 Torr
■RFパワー       30 W ■電極間距離       25■ この後、ただちに保護膜として5iON膜あるいはSi
N膜をプラズマCVD法により、膜厚約1μmを形成し
た。
■S i H, gas flow rate 135CCM ■H2 gas flow rate 505CCM ■C○2 gas flow rate 605CCM ■B z H
s/H, (2000PPO1) Gas flow rate 0.3
SCCM■Pressure 0.8 Torr
■RF power 30 W ■Interelectrode distance 25■ After this, immediately apply a 5iON film or Si as a protective film.
A N film with a thickness of about 1 μm was formed by plasma CVD.

第2図は、第1図の半導体装置の平面図であり、基板1
、活性層2、ゲート絶縁層3、ゲート電極4等は見るこ
とができない。ただし、中間膜7は斜線によりその存在
を示した。保護膜8は全面を覆っている。
FIG. 2 is a plan view of the semiconductor device of FIG.
, the active layer 2, the gate insulating layer 3, the gate electrode 4, etc. cannot be seen. However, the presence of the interlayer film 7 is indicated by diagonal lines. The protective film 8 covers the entire surface.

前記条件で作成した半導体装置中の中間膜7は、 σ。=  1900  (Ω−7”) Ea=  0.92  (ev) であるから、 20℃の電気伝導度はa =2.9X10−” (Ω−
”Cat−”)250℃の電気伝導度はσ=2.6X1
0−’  (Ω−”m−1)である。20℃はTFTの
使用温度の標準であり、250℃は中間膜、保護膜等の
作成時の典型的温度である。
The intermediate film 7 in the semiconductor device produced under the above conditions has the following characteristics: σ. = 1900 (Ω-7”) Ea = 0.92 (ev), so the electrical conductivity at 20°C is a = 2.9X10-” (Ω-
"Cat-") The electrical conductivity at 250℃ is σ=2.6X1
0-'(Ω-"m-1). 20°C is the standard operating temperature for TFTs, and 250°C is a typical temperature for producing intermediate films, protective films, etc.

例えば、Afl配線と前記中間膜との間の抵抗値を求め
ると。
For example, if the resistance value between the Afl wiring and the intermediate film is determined.

巾(W)=3mm、長さ(L)=10μmとすると、そ
の抵抗Rは L R= σ    WXd で求めることができるから、 であることがわかる。
Assuming that the width (W) is 3 mm and the length (L) is 10 μm, the resistance R can be found as L R = σ WXd.

この値は、室温では充分な抵抗値であり、成膜時にも帯
電防止に有効な値である。
This value is a sufficient resistance value at room temperature and is an effective value for preventing static electricity during film formation.

〔効  果〕 本発明は、中間膜の存在により、 ■S i N、 S i ONなどの保護膜の形成時は
基板温度が250〜350℃の温度になり、半絶縁性の
薄膜は10m” (Ω−1cm−”)以上の電気伝導度
を有し、プラズマCVD中の基板の帯電を防止する効果
が生じ、その結果、TFT特性の変動を防ぐことができ
た。
[Effects] Due to the presence of the intermediate film, the present invention allows the substrate temperature to reach a temperature of 250 to 350° C. when forming a protective film such as SiN or SiON, and a semi-insulating thin film has a thickness of 10 m”. It has an electrical conductivity of (Ω-1 cm-”) or higher, and has the effect of preventing the substrate from being charged during plasma CVD, and as a result, it was possible to prevent variations in TFT characteristics.

■作製されたTFT基板の通常の動作環境はおおよそ1
0〜40℃と考えられ、この温度では半絶縁性の薄膜は
10−” (Ω−7”)以下の電気伝導度を有し、かつ
その薄膜が100Å以下とうすいため、電極配線間の保
護膜の抵抗は1015Ω程度に設定できた。
■The normal operating environment of the fabricated TFT substrate is approximately 1
At this temperature, a semi-insulating thin film has an electrical conductivity of less than 10-"(Ω-7") and is thin, less than 100 Å, so it is difficult to protect between electrode wiring. The resistance of the membrane could be set to about 1015Ω.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明半導体装置の具体例を示す断面図、第
2図はその平面図、第3図は本発明の中間膜における活
性化エネルギーEaと電気伝導度σ。どの関係を示すグ
ラフであり、第4図は、本発明半導体装置のTFT特性
を示すグラフであり、第5図は式(II)におけるσと
17Tの関係を示すグラフである。 1・・・石英基板     2・・・活性層3・・・ゲ
ート絶縁層   4・・・ゲート電極5・・・層間絶縁
層    6・・・電極配線7・・・中間膜 8・・・保護膜 特 許 呂 願 人 株式会社リコー
FIG. 1 is a cross-sectional view showing a specific example of the semiconductor device of the present invention, FIG. 2 is a plan view thereof, and FIG. 3 is the activation energy Ea and electric conductivity σ of the intermediate film of the present invention. FIG. 4 is a graph showing the TFT characteristics of the semiconductor device of the present invention, and FIG. 5 is a graph showing the relationship between σ and 17T in formula (II). 1... Quartz substrate 2... Active layer 3... Gate insulating layer 4... Gate electrode 5... Interlayer insulating layer 6... Electrode wiring 7... Intermediate film 8... Protective film Patent Roganjin Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】 1、絶縁基板、その上に設けられた薄膜トランジスタ(
以下、TFTと称する)、該TFTと接続する電極配線
、および該TFTと該電極配線を覆う保護膜よりなる半
導体装置において、該保護膜と、TFTおよび電極配線
との間に、膜厚50〜100Åであって下記式の条件を
満足する中間膜を設けたことを特徴とする半導体装置。 22.2×Ea−18.4<lnσ_0<37.0×E
a−27.6〔なお、σ_0、Eaは公知の式 σ=σ_0exp(−〔Ea/kT〕) 中のそれに相当し、 σは中間膜の電気伝導度 σ_0は定数 kはボルツマン定数 Tは絶対温度、 Eaは活性化エネルギー(ev) である。〕
[Claims] 1. An insulating substrate, a thin film transistor provided thereon (
In a semiconductor device comprising a TFT (hereinafter referred to as a TFT), an electrode wiring connected to the TFT, and a protective film covering the TFT and the electrode wiring, a film thickness of 50 to A semiconductor device characterized by providing an intermediate film having a thickness of 100 Å and satisfying the conditions of the following formula. 22.2×Ea-18.4<lnσ_0<37.0×E
a-27.6 [In addition, σ_0 and Ea correspond to those in the known formula σ=σ_0exp(-[Ea/kT]), σ is the electrical conductivity of the interlayer film σ_0 is the constant k is the Boltzmann constant T is the absolute temperature, Ea is activation energy (ev). ]
JP17706990A 1990-07-04 1990-07-04 Semiconductor device Pending JPH0464229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17706990A JPH0464229A (en) 1990-07-04 1990-07-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17706990A JPH0464229A (en) 1990-07-04 1990-07-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0464229A true JPH0464229A (en) 1992-02-28

Family

ID=16024580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17706990A Pending JPH0464229A (en) 1990-07-04 1990-07-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0464229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167371A (en) * 2005-12-22 2007-07-05 Okamura Corp Support for elevating/lowering table

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007167371A (en) * 2005-12-22 2007-07-05 Okamura Corp Support for elevating/lowering table

Similar Documents

Publication Publication Date Title
US5504019A (en) Method for fabricating a thin film semiconductor
US6586797B2 (en) Graded composition gate insulators to reduce tunneling barriers in flash memory devices
US4479831A (en) Method of making low resistance polysilicon gate transistors and low resistance interconnections therefor via gas deposited in-situ doped amorphous layer and heat-treatment
KR20050054788A (en) Fabrication method of poly-crystalline si thin film and transistor thereby
JPH08264863A (en) Field effect transistor with thin film n-channel including fluorine
JPH0637317A (en) Thin-film transistor and its manufacture
US3550256A (en) Control of surface inversion of p- and n-type silicon using dense dielectrics
JP3415496B2 (en) Semiconductor device and manufacturing method thereof
JPH08241997A (en) Thin film transistor
JPH0828502B2 (en) Bidirectional power vertical MOS device and method of manufacturing the same
JPH0464229A (en) Semiconductor device
JP3889816B2 (en) Thin film transistor and manufacturing method thereof
JP2833389B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0412629B2 (en)
JPS60110164A (en) Thin film field effect transistor and manufacture thereof
JP2716036B2 (en) Method for manufacturing thin film semiconductor device
JPH04122073A (en) Semiconductor device
JP3278237B2 (en) Method for manufacturing thin film transistor
Jelenkovic et al. Effect of deposition conditions on stability of sputtered oxide in MOS structures
JPH0367350B2 (en)
JP2773937B2 (en) Method for manufacturing semiconductor device
JP3075799B2 (en) Method for manufacturing semiconductor device
JP2536423B2 (en) Method for manufacturing semiconductor device
JPH07321237A (en) Manufacture of semiconductor device
JPH05291294A (en) Manufacture of thin film transistor