JPH0464196B2 - - Google Patents
Info
- Publication number
- JPH0464196B2 JPH0464196B2 JP59135804A JP13580484A JPH0464196B2 JP H0464196 B2 JPH0464196 B2 JP H0464196B2 JP 59135804 A JP59135804 A JP 59135804A JP 13580484 A JP13580484 A JP 13580484A JP H0464196 B2 JPH0464196 B2 JP H0464196B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- discharge
- end surface
- discharge tube
- anode side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000010891 electric arc Methods 0.000 description 9
- 230000005684 electric field Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
- H01S3/038—Electrodes, e.g. special shape, configuration or composition
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、ガスレーザ発生器、特にグロー放
電をレーザ発振励起源とするガスレーザに関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a gas laser generator, and particularly to a gas laser that uses glow discharge as a laser oscillation excitation source.
従来例の構成とその問題点
ガス物質をレーザ媒質とするレーザ発生器にお
いて、媒質に負温度分布を発生するためにグロー
放電を励起源として利用することは一般に実施さ
れている。Configuration of Conventional Example and Problems Therewith In a laser generator using a gas substance as a laser medium, it is generally practiced to utilize glow discharge as an excitation source in order to generate a negative temperature distribution in the medium.
この場合、レーザ出力を増大するには、グロー
放電として注入される電気入力を増加することが
重要になる。 In this case, in order to increase the laser output, it is important to increase the electrical input injected as a glow discharge.
一方、グロー放電における電気入力増大に伴つ
て媒質温度が上昇し、負温度分布発生を妨げるこ
とになる。 On the other hand, as the electrical input increases during glow discharge, the medium temperature increases, which prevents the generation of negative temperature distribution.
しかし、レーザ出力の増大には媒質温度の上昇
を防ぎ、グロー放電入力を増大することが肝要で
ある。媒質の温度上昇を防止するために、グロー
放電領域(放電管内)に媒質ガスの流れをつく
り、媒質自身で強制的に冷却を行うことはよく知
られている。 However, in order to increase the laser output, it is important to prevent the medium temperature from rising and to increase the glow discharge input. In order to prevent the temperature of the medium from rising, it is well known to create a flow of medium gas in the glow discharge region (inside the discharge tube) and forcibly cool the medium itself.
ただし、媒質ガス流が小さい場合には、放電管
内にグロー放電をほぼ均一に満たすことができは
するが、流量が増大するに従つて、放電路が細く
なり、放電管内の一部分のみにしか放電が生じな
いようになつてしまう。その結果、放電管内にお
けるレーザ発振に寄与する有効放電体積が減少
し、レーザ出力の低下を招く。この傾向はグロー
放電電気入力を増すほど強くなりやすく、電気入
力増加が必ずしもレーザ出力を増大することには
ならないことになる。 However, if the medium gas flow is small, it is possible to fill the discharge tube with glow discharge almost uniformly, but as the flow rate increases, the discharge path becomes narrower and the discharge only occurs in a portion of the discharge tube. It becomes impossible for this to occur. As a result, the effective discharge volume that contributes to laser oscillation within the discharge tube decreases, leading to a decrease in laser output. This tendency tends to become stronger as the glow discharge electrical input increases, and an increase in the electrical input does not necessarily increase the laser output.
しかも、電気入力増大により、グロー放電の電
流密度の局部的な急増がみられ、この場合に放電
は不安定となり、最終的にはアーク放電へ移行し
てしまうことになり、レーザ発生が阻害される。 Moreover, as the electrical input increases, a local rapid increase in the current density of glow discharge is observed, and in this case, the discharge becomes unstable and eventually shifts to arc discharge, which inhibits laser generation. Ru.
以上の欠点を解消する目的で開発した従来の一
例を第1図に示す。第1図は、炭酸ガスレーザ発
生器の構成図である。 An example of a conventional device developed for the purpose of eliminating the above-mentioned drawbacks is shown in FIG. FIG. 1 is a configuration diagram of a carbon dioxide laser generator.
レーザ増幅を行うグロー放電を発生させるため
のガラスなど絶縁物で構成された放電管1は、こ
の図では2本示されている。陽極部2は両放電管
1,1に共通しており、陽極部2と対向して陰極
部3,3が配置されている。陰極部3,3にはガ
ス流入口4,4が連通接続されており、陽極部2
にガス排出口5が設けられている。 Two discharge tubes 1 made of an insulating material such as glass for generating a glow discharge for laser amplification are shown in this figure. An anode section 2 is common to both discharge tubes 1, 1, and cathode sections 3, 3 are arranged opposite to the anode section 2. Gas inlets 4, 4 are connected to the cathode parts 3, 3, and the anode part 2
A gas exhaust port 5 is provided at the.
放電管1,1をはさむように反射鏡6,7が配
置され、光学的共振器を構成している。レーザ出
力を取り出す反射鏡6は出力鏡と呼ばれ、他の反
射鏡7は一般的には凹面反射鏡である。 Reflecting mirrors 6 and 7 are arranged to sandwich the discharge tubes 1 and 1, forming an optical resonator. The reflecting mirror 6 that takes out the laser output is called an output mirror, and the other reflecting mirrors 7 are generally concave reflecting mirrors.
レーザ媒質ガスは、循環路8,8を通じてブロ
ワ9などで循環され、放電管1,1の中に流れを
形成する。直流電源10の正の出力端子は陽極部
3に、負の出力端子は安定化抵抗11,11など
を介して陰極部3,3に接続されている。安定化
抵抗11,11の代わりに、真空管などを用いて
放電電流が一定に保持されるよう定電流回路を構
成することは、グロー放電の安定性を向上するう
えで有効であることは言うまでもない。 The laser medium gas is circulated by a blower 9 or the like through the circulation paths 8, 8 to form a flow in the discharge tubes 1, 1. The positive output terminal of the DC power supply 10 is connected to the anode section 3, and the negative output terminal is connected to the cathode sections 3, 3 via stabilizing resistors 11, 11, etc. It goes without saying that configuring a constant current circuit using a vacuum tube or the like instead of the stabilizing resistors 11, 11 to maintain a constant discharge current is effective in improving the stability of glow discharge. .
以上の構成は、ガス流と放電方向と光共振器中
心軸が同一である三軸同軸型レーザ発生器であ
り、基本モードTEM00モードを得やすい特徴が
あることはよく知られている。 The above configuration is a triaxial coaxial laser generator in which the gas flow, discharge direction, and optical cavity center axis are the same, and it is well known that it has the characteristic that it is easy to obtain the fundamental mode TEM 00 mode.
しかしながら、上記の方法では、放電そのもの
を直接制御することはできず、得られる効果には
限界がある。 However, with the above method, it is not possible to directly control the discharge itself, and there are limits to the effects that can be obtained.
すなわち、従来方法は、グロー放電における陽
光柱をガス流により安定化させることを目的とし
ているが、グロー放電を主として支配するのは、
陰極における放電の形態であつてガス流ではな
い。 In other words, the conventional method aims to stabilize the positive column in glow discharge by gas flow, but what mainly controls glow discharge is
It is a form of discharge at the cathode and not a gas stream.
一般に、正常グロー放電においては電極材料と
ガスとに固有な電流密度があり、放電電流の増大
は陰極の放電発生表面積の増加によつて達成され
る。一方、ガス流の存在や、ガス圧が高くなる
と、実効的な放電発生表面積を必要なだけ増加さ
せられなくなり、レーザ出力を増大するには、電
流密度の増加すなわち放電の局部集中により電流
増大を図らざるを得ず、この場合に放電の不安定
化そしてアーク放電への移行となつてレーザ発生
に支障をきたすことになる。 Generally, in normal glow discharge, there is a current density specific to the electrode material and gas, and an increase in discharge current is achieved by increasing the surface area of the cathode where discharge occurs. On the other hand, if there is a gas flow or the gas pressure is high, it becomes impossible to increase the effective surface area where the discharge occurs as much as necessary.In order to increase the laser output, the current must be increased by increasing the current density, that is, by locally concentrating the discharge. In this case, the discharge becomes unstable and shifts to arc discharge, which impedes laser generation.
グロー放電を不安定とする一つの要因に陰極の
性状がある。従来のガスレーザ発生器にあつて
は、放電管内に同軸状に挿入した陰極が筒状で、
縦断面形状が矩形のものであつた。そして、この
ような陰極が放電管の内周面との間に隙間をもつ
て設けられていた。 One factor that makes glow discharge unstable is the nature of the cathode. In conventional gas laser generators, the cathode is coaxially inserted into the discharge tube and has a cylindrical shape.
The vertical cross-sectional shape was rectangular. Such a cathode was provided with a gap between it and the inner peripheral surface of the discharge tube.
この陰極は縦断面が矩形であるため軸方向両端
に90度の角部をもつているが、角部には電界が集
中しやすく、そのためアーク放電に移行しやすか
つたのである。また、軸方向の両端面、ことに陽
極側の端面がガス流に乱れを起こし、この端面か
らの放電が不安定となつてアーク放電に移行しや
すかつたのである。前記陰極と放電管との隙間で
もガス流に乱れを生じることがあり、ここに臨む
陰極外周面からの放電もアーク放電への移行の要
因となつていた。 This cathode has a rectangular longitudinal section, so it has 90-degree corners at both ends in the axial direction, but the electric field tends to concentrate at the corners, which makes it easy for arc discharge to occur. In addition, gas flow was disturbed at both end faces in the axial direction, especially at the end face on the anode side, and the discharge from these end faces became unstable and easily turned into arc discharge. Disturbances may also occur in the gas flow in the gap between the cathode and the discharge tube, and discharge from the outer circumferential surface of the cathode facing this gap has also been a cause of transition to arc discharge.
発明の目的
この発明の目的は、かかる従来問題を解消し、
安定したグロー放電を持続できるガスレーザ発生
器を提供することである。Purpose of the invention The purpose of the present invention is to solve the conventional problems,
An object of the present invention is to provide a gas laser generator capable of sustaining stable glow discharge.
発明の構成
この発明のガスレーザ発生器は、放電管と、こ
の放電管内にこの放電管と同軸状に挿入した筒状
の陰極と、前記陰極の陽極側端面と前記陰極の内
周面の前記陽極側端面に連なる一部領域とを連続
的に被覆した絶縁層とを備えたものである。Structure of the Invention The gas laser generator of the present invention includes a discharge tube, a cylindrical cathode inserted into the discharge tube coaxially with the discharge tube, and an anode side end surface of the cathode and an anode on an inner peripheral surface of the cathode. It is provided with an insulating layer that continuously covers a partial region continuous to the side end surface.
この構成の作用は以下のとおりである。すなわ
ち、陰極の陽極側端面と陰極の内周面の陽極側端
面に連なる一部領域とを絶縁層で連続的に被覆し
たので、電界集中が最も起こりやすい陰極の陽極
側角部ならびにガス流の乱れを最も起こしやすい
陰極の陽極側端面からの放電を阻止することがで
き、電界集中および乱流によるアーク放電移行を
確実に防止することができる。したがつて、陰極
の放電はアーク放電に移行することが抑制され、
グロー放電を安定性良く維持することとなる。こ
れによつて、レーザ出力も増大させることが可能
となる。 The effect of this configuration is as follows. In other words, since the anode side end face of the cathode and a part of the inner peripheral surface of the cathode connected to the anode side end face are continuously coated with an insulating layer, the anode side corner of the cathode where electric field concentration is most likely to occur and the gas flow are It is possible to prevent discharge from the anode side end face of the cathode, where disturbance is most likely to occur, and to reliably prevent arc discharge transfer due to electric field concentration and turbulence. Therefore, the transition of cathode discharge to arc discharge is suppressed,
Glow discharge is maintained with good stability. This also makes it possible to increase the laser output.
なお、陰極が放電管の内周面との間に隙間をも
つて設けられたものであるときは、陰極の上記の
部分だけでなく、陰極の外周面全面と、陰極の陽
極側端面と反対側の端面と、陰極の内周面の陽極
側端面と反対側の端面に連なる一部領域とを被覆
することにより、上記と同様の作用を発揮する。 In addition, when the cathode is installed with a gap between it and the inner peripheral surface of the discharge tube, not only the above-mentioned part of the cathode, but also the entire outer peripheral surface of the cathode and the end surface of the cathode opposite to the anode side. By covering the side end face and a partial region of the inner circumferential surface of the cathode that is continuous with the end face on the opposite side to the anode side end face, the same effect as described above is exerted.
もつとも、陰極が放電管(絶縁体)の内周面に
密着しているときは、陰極の外周面全面と、陰極
の陽極側端面と反対側の端面と、陰極の内周面の
陽極側端面と反対側の端面に連なる一部領域とに
ついては被覆しなくてもよい場合があり、特に外
周面についてはそうである。 However, when the cathode is in close contact with the inner peripheral surface of the discharge tube (insulator), the entire outer peripheral surface of the cathode, the end surface of the cathode opposite to the anode end surface, and the anode end surface of the inner peripheral surface of the cathode There are cases where it is not necessary to cover a part of the region continuous to the end surface on the opposite side, and this is especially true for the outer circumferential surface.
実施例の説明
この発明の一実施例を第2図および第3図に基
づいて説明する。第2図は、炭酸ガスレーザ発生
器における放電管近傍を示す。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 2 and 3. FIG. 2 shows the vicinity of the discharge tube in the carbon dioxide laser generator.
各放電管1の陰極部3側の端部において、円筒
状で縦断面が第3図のように矩形である陰極12
を、放電管1と同軸状に挿入してある。この陰極
12の軸方向の両端面a,aおよび両角部b,b
ならびに外周面cが絶縁層13により密着被覆さ
れている。したがつて、この陰極12の放電面は
その両角部b,bを除く内周面dのみである。 At the end of each discharge tube 1 on the cathode section 3 side, a cathode 12 having a cylindrical shape and a rectangular vertical cross section as shown in FIG.
is inserted coaxially with the discharge tube 1. Both end surfaces a, a and both corner portions b, b in the axial direction of this cathode 12
In addition, the outer peripheral surface c is tightly covered with an insulating layer 13. Therefore, the discharge surface of this cathode 12 is only the inner circumferential surface d excluding both corner portions b, b.
その他は従来例(第1図)と同様であるので、
同一部分に同一符号を付すにとどめ、説明を省略
する。 The rest is the same as the conventional example (Fig. 1), so
Identical parts are given the same reference numerals, and their explanations are omitted.
電界集中が起こりやすい角部b,bおよびガス
流に乱れを起こしやすい端面a,aおよび外周面
cを絶縁層13で被覆し、これらの部分からの放
電を阻止している。すなわち、放電面を、上記不
都合の起きにくい内周面dのみに限つてあるの
で、アーク放電に移行することが防止され、グロ
ー放電を良好に保つ。したがつて、レーザ出力の
増大も可能となる。 Corners b, b where electric field concentration tends to occur, end faces a, a, and outer circumferential surface c where gas flow is likely to be disturbed are covered with an insulating layer 13 to prevent discharge from these parts. That is, since the discharge surface is limited to only the inner circumferential surface d where the above-mentioned disadvantages are unlikely to occur, transition to arc discharge is prevented and glow discharge is maintained in good condition. Therefore, it is also possible to increase the laser output.
発明の効果
この発明のガスレーザ発生器によれば、陰極の
陽極側端面と陰極の内周面の陽極側端面に連なる
一部領域とを絶縁層で連続的に被覆したので、電
界集中の起こりやすい陰極の陽極側角部ならびに
ガス流に乱れを起こしやすい陰極の陽極側端面か
らの放電を阻止することができ、電界集中および
乱流によるアーク放電移行を確実に防止して、グ
ロー放電を大きな電気入力においても持続するこ
とが可能となり、レーザ出力増大を安定的に達成
することができる。また、レーザ出力増大を安定
的に達成するために、陰極の一部を単に絶縁層で
被覆するだけでよく、構成も簡単で安価である。Effects of the Invention According to the gas laser generator of the present invention, the anode-side end surface of the cathode and a partial region of the inner circumferential surface of the cathode connected to the anode-side end surface are continuously covered with an insulating layer, so that electric field concentration is likely to occur. It can prevent discharge from the corner of the anode side of the cathode and the end face of the anode side of the cathode that tends to cause turbulence in the gas flow, reliably prevent arc discharge transfer due to electric field concentration and turbulence, and transform glow discharge into a large electric current. It becomes possible to maintain the input power, and it is possible to stably increase the laser output. Further, in order to stably increase the laser output, it is sufficient to simply cover a part of the cathode with an insulating layer, and the structure is simple and inexpensive.
第1図は従来例の全体構成図、第2図はこの発
明の一実施例の放電管近傍部分の構成図、第3図
は陰極の断面図である。
1……放電管、12……陰極、13……絶縁
層、a……端面、b……角部、c……外周面。
FIG. 1 is an overall configuration diagram of a conventional example, FIG. 2 is a configuration diagram of a portion near a discharge tube according to an embodiment of the present invention, and FIG. 3 is a sectional view of a cathode. DESCRIPTION OF SYMBOLS 1... Discharge tube, 12... Cathode, 13... Insulating layer, a... End surface, b... Corner, c... Outer peripheral surface.
Claims (1)
状に挿入した筒状の陰極と、前記陰極の陽極側端
面と前記陰極の内周面の前記陽極側端面に連なる
一部領域とを連続的に被覆した絶縁層とを備えた
ガスレーザ発生器。 2 前記陰極が前記放電管の内周面との間に隙間
をもつて設けられ、前記絶縁層は、前記陰極の外
周面全面と、前記陰極の前記陽極側端面と反対側
の端面と、前記陰極の内周面の前記陽極側端面と
反対側の端面に連なる一部領域とを被覆した特許
請求の範囲第1項記載のガスレーザ発生器。[Scope of Claims] 1. A discharge tube, a cylindrical cathode inserted into the discharge tube coaxially with the discharge tube, and an anode side end surface of the cathode and an inner peripheral surface of the cathode connected to the anode side end surface. A gas laser generator comprising: a partial region; and an insulating layer continuously covering a partial region. 2. The cathode is provided with a gap between it and the inner peripheral surface of the discharge tube, and the insulating layer covers the entire outer peripheral surface of the cathode, the end surface of the cathode opposite to the anode side end surface, and the insulating layer. 2. The gas laser generator according to claim 1, wherein a partial region of the inner circumferential surface of the cathode that is continuous with the end surface on the anode side and the end surface on the opposite side is coated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13580484A JPS6114776A (en) | 1984-06-29 | 1984-06-29 | Gas laser generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13580484A JPS6114776A (en) | 1984-06-29 | 1984-06-29 | Gas laser generator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6114776A JPS6114776A (en) | 1986-01-22 |
JPH0464196B2 true JPH0464196B2 (en) | 1992-10-14 |
Family
ID=15160203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13580484A Granted JPS6114776A (en) | 1984-06-29 | 1984-06-29 | Gas laser generator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6114776A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49102292A (en) * | 1973-02-01 | 1974-09-27 | ||
JPS5530817A (en) * | 1978-08-25 | 1980-03-04 | Hitachi Ltd | Gas laser generating device |
JPS58212189A (en) * | 1982-06-02 | 1983-12-09 | Hitachi Ltd | Gas laser generator |
-
1984
- 1984-06-29 JP JP13580484A patent/JPS6114776A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49102292A (en) * | 1973-02-01 | 1974-09-27 | ||
JPS5530817A (en) * | 1978-08-25 | 1980-03-04 | Hitachi Ltd | Gas laser generating device |
JPS58212189A (en) * | 1982-06-02 | 1983-12-09 | Hitachi Ltd | Gas laser generator |
Also Published As
Publication number | Publication date |
---|---|
JPS6114776A (en) | 1986-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020097767A1 (en) | Supersonic and subsonic laser with radio frequency excitation | |
US4470144A (en) | Coaxial-type carbon dioxide gas laser oscillator | |
JPH0464196B2 (en) | ||
JPS6310597B2 (en) | ||
JPS6240876B2 (en) | ||
JPS6114780A (en) | Gas laser generator | |
JPS6114777A (en) | Gas laser generator | |
JPS60258981A (en) | Gas laser generator | |
JPS6114779A (en) | Gas laser generator | |
JPS6114782A (en) | Gas laser generator | |
GB1283601A (en) | Improvements in or relating to gas discharge lasers | |
JPS6195588A (en) | Gas laser oscillator | |
JPH05159851A (en) | High current density glow discharge switch | |
JP2001053359A (en) | Gas laser oscillator | |
JPS6114781A (en) | Gas laser generator | |
JPH0318749B2 (en) | ||
JP3131255B2 (en) | High frequency discharge pumped three-axis orthogonal gas laser oscillator | |
JPH0453010Y2 (en) | ||
JPH04286172A (en) | Gas laser oscillator | |
JPS6052070A (en) | Coaxial type laser oscillator | |
JPH05327087A (en) | Discharge stabilizing structure for laser | |
JPS6246992B2 (en) | ||
JPS61160984A (en) | Co2 laser oscillation device | |
JPH0425187A (en) | Laser oscillator | |
JPS5850788A (en) | Lateral mode excitation type gas laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |