JP3131255B2 - High frequency discharge pumped three-axis orthogonal gas laser oscillator - Google Patents

High frequency discharge pumped three-axis orthogonal gas laser oscillator

Info

Publication number
JP3131255B2
JP3131255B2 JP26583491A JP26583491A JP3131255B2 JP 3131255 B2 JP3131255 B2 JP 3131255B2 JP 26583491 A JP26583491 A JP 26583491A JP 26583491 A JP26583491 A JP 26583491A JP 3131255 B2 JP3131255 B2 JP 3131255B2
Authority
JP
Japan
Prior art keywords
discharge
laser
laser gas
discharge electrodes
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26583491A
Other languages
Japanese (ja)
Other versions
JPH05110165A (en
Inventor
直樹 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amada Co Ltd
Original Assignee
Amada Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amada Co Ltd filed Critical Amada Co Ltd
Priority to JP26583491A priority Critical patent/JP3131255B2/en
Publication of JPH05110165A publication Critical patent/JPH05110165A/en
Application granted granted Critical
Publication of JP3131255B2 publication Critical patent/JP3131255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、3軸直交型気体レーザ
発振器の電極構造に係り、特に高周波放電励起式の3軸
直交型気体レーザ発振器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure of a three-axis orthogonal gas laser oscillator, and more particularly to a high-frequency discharge excitation type three-axis orthogonal gas laser oscillator.

【0002】[0002]

【従来の技術】放電励起式気体レーザ発振器、特に高周
波放電励起式の気体レーザ発振器として、ガラス管等の
誘電体により被覆された放電電極が用いられ、この放電
電極がレーザガスの流れ方向に対し直交する方向に対向
配置された3軸直交型の気体レーザ発振器が知られてい
る。
2. Description of the Related Art A discharge electrode covered with a dielectric material such as a glass tube is used as a discharge-excited gas laser oscillator, particularly a high-frequency discharge-excited gas laser oscillator. The discharge electrode is orthogonal to the flow direction of the laser gas. There are known three-axis orthogonal type gas laser oscillators that are arranged facing each other.

【0003】[0003]

【発明が解決しようとする課題】上述の如き3軸直交型
気体レーザ発振器に於ける放電電極はガラス管内にてレ
ーザガス通路を挟んで互いに対向する領域にのみガラス
管の周方向の一部にのみ設けられており、かつレーザガ
ス流の上流端部分と下流端部分の電極間隔は等間隔であ
るので、放電電極間の放電は放電電極の下流端部まで広
がり、その電極端部に於てはエッジ効果により電界の集
中が生じる。
The discharge electrodes in the above-described three-axis orthogonal type gas laser oscillator are disposed only in regions facing each other across the laser gas passage in the glass tube and only in a part of the circumferential direction of the glass tube. The discharge between the discharge electrodes spreads to the downstream end of the discharge electrode because the electrode interval between the upstream end portion and the downstream end portion of the laser gas flow is equal. The effect causes a concentration of the electric field.

【0004】この電界の集中はレーザガスの流れ方向で
見て下流側の電極端部にて上流側に比して温度上昇した
レーザガスの影響と相まって放電の局部的集中を生じ
る。このため従来の3軸直交型気体レーザ発振器に於い
ては、効率のよい放電励起が行われないと云う問題があ
る。
[0004] This concentration of the electric field causes local concentration of discharge in combination with the effect of the laser gas whose temperature has increased at the downstream electrode end compared to the upstream side when viewed in the flow direction of the laser gas. For this reason, in the conventional three-axis orthogonal gas laser oscillator, there is a problem that efficient discharge excitation is not performed.

【0005】このことに鑑みて、放電電極をガラス管内
にこれの全周に亘って連続して設けて全周電極とするな
どして、放電電極をレーザガスの流れ方向に対し無限、
換言すれば無端とし、エッジ効果による電極端部にての
電界集中を回避することが考えられる。しかし、この場
合は、放電電極間の放電がレーザガスの励起に関して不
必要に広がり、このために効率のよい放電励起が行われ
ず、放電のために注入した電力に対してレーザの発生効
率が悪くなり、実用的でない。
In view of this, the discharge electrode is provided in the glass tube continuously over the entire circumference to form a full-circle electrode.
In other words, it is conceivable to make the electrode endless and avoid the electric field concentration at the electrode end due to the edge effect. However, in this case, the discharge between the discharge electrodes spreads unnecessarily with respect to the excitation of the laser gas, and therefore, efficient discharge excitation is not performed, and the laser generation efficiency is reduced with respect to the power injected for the discharge. , Not practical.

【0006】また放電電極をガラス管の全周に亘って設
けるまでには至らずに、これのレーザガスの流れ方向の
幅を拡大して電極端部がレーザガス通路を挟んで互いに
対向しない位置に位置させることが考えられる。この場
合は、全周電極に比しては放電のレーザガスの励起に関
して不必要な広がりは少なくなるが、しかしこの場合
は、光共振空間より上流側に存在する放電励気空間が大
きくなり、パルス発振に於いてレーザのパルス波形の立
ち下がりにだれが生じ、パルス波形がテールを持つよう
になる不具合が生じる。このパルス波形のテールはパル
スのデューティ比に限界を与え、パルスレーザ出力に制
限を与えることになる。
Further, without providing the discharge electrode over the entire circumference of the glass tube, the width of the discharge electrode in the flow direction of the laser gas is enlarged so that the electrode ends are located at positions not opposed to each other across the laser gas passage. It is possible to make it. In this case, unnecessary spread of the excitation of the discharge laser gas is reduced as compared with the entire circumference electrode, but in this case, the discharge excitation space existing upstream of the optical resonance space is increased, and the pulse is increased. In the oscillation, the falling edge of the pulse waveform of the laser is distorted, causing a problem that the pulse waveform has a tail. The tail of the pulse waveform limits the duty ratio of the pulse and limits the pulse laser output.

【0007】本発明は、従来の3軸直交型気体レーザ発
振器に於ける上述の如き問題点に着目してなされたもの
であり、電極端部にての電界集中に起因する放電の局部
的集中を生じることなく効率のよい放電励起を行い、放
電のために注入した電力に対して高いレーザ発生効率が
得られ、しかもパルス発振に於いてはレーザのパルス波
形の立ち下がりにだれを生じせしめることがなく、パル
ス応答のよいレーザ出力が得られるよう、改良された3
軸直交型気体レーザ発振器を提供することを目的として
いる。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the conventional three-axis orthogonal gas laser oscillator. To perform efficient discharge excitation without causing pulsation, to obtain high laser generation efficiency with respect to the power injected for discharge, and to cause a drop in the pulse waveform of the laser in pulse oscillation. To improve the laser output with good pulse response
It is an object of the present invention to provide an axis orthogonal gas laser oscillator.

【0008】[0008]

【課題を解決するための手段】前述のごとき従来の問題
に鑑みて、本発明は、レーザガス通路の両側に、レーザ
ガス流方向に対して直交する方向に長い中空状の誘電体
を対向配置して設け、上記各誘電体内に配置した各放電
電極の放電方向及びレーザガス流方向に対して直交する
方向に光共振空間を画定する折り返しミラー及び出力ミ
ラーを設けてなる高周波放電励起式の3軸直交型気体レ
ーザ発振器において、前記各誘電体は同径の円筒であ
り、前記各放電電極は上記各誘電体の軸心を通る対向軸
線の位置から下流側に対称的に配置して設けると共に各
放電電極を各誘電体の内周面に密着して設けた構成であ
る。
DISCLOSURE OF THE INVENTION In view of the above-mentioned conventional problems, the present invention has a structure in which a hollow dielectric body long in a direction perpendicular to the laser gas flow direction is disposed on both sides of a laser gas passage. A high-frequency discharge-excited three-axis orthogonal type comprising a folding mirror and an output mirror for defining an optical resonance space in a direction orthogonal to the discharge direction of each discharge electrode and the laser gas flow direction arranged in each of the dielectrics. In the gas laser oscillator, each of the dielectrics is a cylinder having the same diameter, and each of the discharge electrodes is symmetrically disposed downstream from a position of an opposing axis passing through the axis of each of the dielectrics. Is provided in close contact with the inner peripheral surface of each dielectric.

【0009】[0009]

【実施例】以下、本発明の実施例を、図面を用いて詳細
に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図2は本発明による電極構造が適用される
高周波放電励起式の3軸直交型気体レーザ発振器の一実
施例を示していている。
FIG. 2 shows an embodiment of a high-frequency discharge excitation type three-axis orthogonal gas laser oscillator to which the electrode structure according to the present invention is applied.

【0011】高周波放電励起式の3軸直交型気体レーザ
発振器は、真空容器1内に整流板3による図にて左右方
向に略水平に延在するレーザガス通路5を構成してお
り、このレーザガス通路5には送風機7により炭酸ガス
の如きレーザガスが矢方向に循環供給されるようになっ
ている。このレーザガスの循環路にはレーザガス冷却用
の熱交換器9が設けられている。
The high-frequency discharge excitation type three-axis orthogonal gas laser oscillator has a laser gas passage 5 extending substantially horizontally in the left-right direction as viewed from the rectifying plate 3 in the vacuum vessel 1. A laser gas 5 such as carbon dioxide gas is circulated and supplied in the direction 5 by a blower 7. A heat exchanger 9 for cooling the laser gas is provided in the laser gas circulation path.

【0012】レーザガス通路5の上下には、レーザガス
流に対して直交する方向に長い中空状の誘電体として同
径の円筒形状のガラス管11,13が対向して固定配置
されている。ガラス管11,13は大気圧封入の密閉構
造になっており、各内部には放電電極15,17がレー
ザガス通路5を上下に挟んで互いに対向配置されてい
る。
Above and below the laser gas passage 5, cylindrical glass tubes 11 and 13 of the same diameter as hollow dielectrics which are long in a direction perpendicular to the laser gas flow are opposed and fixedly arranged. The glass tubes 11 and 13 have a hermetically sealed structure in which atmospheric pressure is sealed. Discharge electrodes 15 and 17 are disposed inside each of the glass tubes 11 and 13 so as to oppose each other with the laser gas passage 5 vertically interposed therebetween.

【0013】放電電極15,17は、図1に示すごと
く、レーザガス通路5を挟んで互いに対向する領域に於
いてのみガラス管11,13の周方向の一部にのみ設け
られ、これら放電面15a,17aは各々ガラス管1
1,13の内周面に密着し、レーザガス通路5に於ける
レーザガスの左右方向の流れに対し上下に直交する方向
に放電を行うようになっている。
As shown in FIG. 1, the discharge electrodes 15 and 17 are provided only in a part of the circumferential direction of the glass tubes 11 and 13 only in regions facing each other with the laser gas passage 5 interposed therebetween. , 17a are glass tubes 1 respectively.
The laser gas is in close contact with the inner peripheral surfaces of the laser gas channels 1 and 13 and discharges the laser gas in the laser gas passage 5 in a direction perpendicular to the left and right flow of the laser gas in the horizontal direction.

【0014】図1に示されている如く、放電電極15,
17は各々円筒形状のガラス管11,13の軸心を通る
対向軸線Aの位置からレーザガス通路5に於けるレーザ
ガス流の下流側、即ち図にて右側に対称的に傾斜した軸
線Bに沿って互いに対称的に傾斜配置されており、放電
電極15,17の電極間距離(放電面15a,17aの
間隔)はレーザガス通路5に於けるレーザガス流の下流
側にて上流側より大きくなっている。この場合の放電領
域は図にて符号Cにより示されている。
As shown in FIG. 1, the discharge electrodes 15,
Reference numeral 17 denotes the downstream side of the laser gas flow in the laser gas passage 5 from the position of the opposing axis A passing through the axis of the cylindrical glass tubes 11 and 13, that is, along the axis B symmetrically inclined to the right in the figure. The discharge electrodes 15 and 17 are arranged symmetrically and inclined with respect to each other, and the distance between the discharge electrodes 15 and 17 (the distance between the discharge surfaces 15a and 17a) is larger on the downstream side of the laser gas flow in the laser gas passage 5 than on the upstream side. The discharge area in this case is indicated by reference numeral C in the figure.

【0015】また真空容器1内にはレーザガス通路5に
於けるレーザガスの流れ方向と放電電極15,17の放
電方向の何れにも直交する方向に、即ち紙面を貫通する
方向に延在する光共振空間を画定する折り返しミラー1
9、出力ミラー21とが設けられている。折り返しミラ
ー19、出力ミラー21による光共振空間には、レーザ
ガス流方向上流側にて放電領域Cとの間に大きい間隙を
生じないよう、放電領域Cに対する配置位置が定められ
ている。
In the vacuum vessel 1, an optical resonance extending in a direction perpendicular to both the flow direction of the laser gas in the laser gas passage 5 and the discharge direction of the discharge electrodes 15, 17 ie, a direction penetrating the paper surface. Folding mirror 1 that defines space
9, an output mirror 21 is provided. In the optical resonance space defined by the folding mirror 19 and the output mirror 21, an arrangement position with respect to the discharge region C is determined so that a large gap is not formed between the return mirror 19 and the discharge region C on the upstream side in the laser gas flow direction.

【0016】上述の如き構成によれば、放電電極15,
17の電極間距離が放電励起空間であるレーザガス通路
5に於けるレーザガス流の下流側にて上流側より大きい
ことにより、この放電電極15,17間の放電電圧がレ
ーザガス流の下流側にて上流側より高くなる。このこと
によりレーザガス流の下流側にて上流側より電極間放電
が生じ難くなり、これに応じてレーザガス通路5に於け
るレーザガスの流れ方向で見て放電電極15,17の下
流側の電極端部にてのエッジ効果による電界の集中が低
減する。このことによりレーザガスの流れ方向で見て放
電電極15,17の下流側に、これの上流側に比して温
度上昇したレーザガスが流れても放電の局部的集中が生
じる度合が低減する。
According to the above configuration, the discharge electrodes 15,
Since the distance between the electrodes 17 is larger on the downstream side of the laser gas flow in the laser gas passage 5 which is the discharge excitation space, the discharge voltage between the discharge electrodes 15 and 17 is higher on the downstream side of the laser gas flow. Higher than the side. As a result, inter-electrode discharge is less likely to occur on the downstream side of the laser gas flow than on the upstream side, and accordingly, the electrode ends on the downstream side of the discharge electrodes 15 and 17 as viewed in the flow direction of the laser gas in the laser gas passage 5. The concentration of the electric field due to the edge effect is reduced. As a result, the degree of local concentration of discharge is reduced even when the laser gas whose temperature is increased flows downstream of the discharge electrodes 15 and 17 as viewed in the flow direction of the laser gas as compared with the upstream side thereof.

【0017】これに対し、放電電極15,17の電極間
距離がレーザガス通路5に於けるレーザガス流の上流側
にて下流側より小さいことにより、レーザガス流の上流
側にては下流側より電極間放電が生じ易くなり、これに
応じてレーザガス通路5に於けるレーザガスの流れ方向
で見て放電電極15,17の上流側の電極端部にてはエ
ッジ効果による電界の集中が増加する傾向にあるが、し
かしこの部分に於けるレーザガスは低温であり、かつ対
向した円筒形状のガラス管11,13の外周面によって
レーザガス流が絞られて流速が大きくなるので、放電の
局部的集中が生じる度合が増加することはない。
On the other hand, since the distance between the discharge electrodes 15 and 17 is smaller on the upstream side of the laser gas flow in the laser gas passage 5 than on the downstream side, the distance between the electrodes on the upstream side of the laser gas flow is smaller than that on the downstream side. Discharge is likely to occur, and accordingly, the concentration of the electric field due to the edge effect tends to increase at the electrode ends upstream of the discharge electrodes 15 and 17 as viewed in the flow direction of the laser gas in the laser gas passage 5. However, the temperature of the laser gas in this portion is low, and the laser gas flow is restricted by the outer peripheral surfaces of the opposed cylindrical glass tubes 11 and 13 to increase the flow velocity. It does not increase.

【0018】これらのことによりレーザガス通路5に於
ける放電電極15,17によるレーザガスの励起に関し
て有効な放電が局部的集中を生じることなく行われるよ
うになる。
As a result, effective discharge can be performed without causing local concentration in the laser gas excitation by the discharge electrodes 15 and 17 in the laser gas passage 5.

【0019】[0019]

【発明の効果】以上のごとき実施例の説明より理解され
るように、本発明においては、各誘電体11,13は同
径の円筒であり、上記各誘電体11,13内に配置した
各放電電極15,17は、上記各誘電体11,13の軸
心を通る対向軸線Aの位置からレーザガス流の下流側に
対称的に配置してあり、かつ各誘電体11,13の内周
面に密着してある。
As will be understood from the above description of the embodiment, in the present invention, each of the dielectrics 11, 13 is a cylinder having the same diameter, and each of the dielectrics 11, 13 disposed in the dielectrics 11, 13 is provided. The discharge electrodes 15 and 17 are symmetrically arranged on the downstream side of the laser gas flow from the position of the opposing axis A passing through the axis of each of the dielectrics 11 and 13, and the inner peripheral surface of each of the dielectrics 11 and 13. It is closely attached to.

【0020】すなわち、各誘電体11,13が円筒形状
であることにより、各放電電極15,17は前記対向軸
線Aの位置付近で最も近接し、レーザガス流の下流側で
は各誘電体11,13の内周面の円弧に従って互に次第
に離反するものである。したがって、放電電極15,1
7の下流側は上流側より放電を生じ難いものであり、放
電電極15,17のガス流方向の幅は制限されて比較的
狭いものとなる。
That is, since the dielectrics 11 and 13 have a cylindrical shape, the discharge electrodes 15 and 17 are closest to each other near the position of the opposed axis A, and the dielectrics 11 and 13 are located downstream of the laser gas flow. Are gradually separated from each other in accordance with the arc of the inner peripheral surface. Therefore, the discharge electrodes 15, 1
On the downstream side of 7, the discharge is less likely to occur than on the upstream side, and the width of the discharge electrodes 15, 17 in the gas flow direction is restricted and relatively narrow.

【0021】上述のごとく、各放電電極15,17は前
記対向軸線Aの位置において最も近接しているから、こ
の上流端部分に放電が部分的に集中する傾向にあるが、
前記対向軸線Aの位置は各誘電体11,13が最も接近
してレーザガスが最も絞られる位置であり、かつレーザ
ガス流が最も速い位置であるから、各放電電極15,1
7の上流端部分の冷却が効果的に行われると共に放電に
よって励起されたレーザガスの流速が大きく、放電が部
分的に集中するようなことがないものである。
As described above, since the discharge electrodes 15 and 17 are closest to each other at the position of the opposed axis A, the discharge tends to be partially concentrated at the upstream end portion.
The position of the opposing axis A is the position where the dielectrics 11 and 13 are closest and the laser gas is most narrowed, and the position where the laser gas flow is the fastest.
7 is effectively cooled, and the flow rate of the laser gas excited by the discharge is large, so that the discharge is not partially concentrated.

【0022】そして、励起されたレーザガスは各誘電体
11,13の外周面に沿って対称的に広がるので、各放
電電極15,17の間隔寸法が上流端部分よりも大きく
上流端部分よりも放電を生じ難い下流端部分においても
放電の集中を生じることなく、効果的に放電が行われる
ものであり、各放電電極15,17のガス流方向の全幅
において効果的に放電が行われるものである。
Since the excited laser gas spreads symmetrically along the outer peripheral surface of each of the dielectrics 11 and 13, the distance between the discharge electrodes 15 and 17 is larger than the upstream end portion and the discharge distance is larger than the upstream end portion. The discharge is effectively performed without causing the concentration of the discharge even at the downstream end portion where the discharge is unlikely to occur, and the discharge is effectively performed over the entire width of each of the discharge electrodes 15 and 17 in the gas flow direction. .

【0023】すなわち、円筒形状の各誘電体内に放電電
極を対向軸線から下流側に配置することにより、各放電
電極15,17のガス流方向の幅を制限して放電が必要
以上に広がることを防止し、かつ放電の局部的集中を防
止できるので、放電により励起されたレーザガス流内に
光軸を効果的に配置できることとなり、放電電力に対す
るレーザー光の変換効率の向上を図ることができると共
に、レーザー光のパルス応答を向上することができるも
のである。
In other words, by disposing the discharge electrodes in each of the cylindrical dielectric bodies on the downstream side from the opposing axis, the width of each of the discharge electrodes 15 and 17 in the gas flow direction is restricted, so that the discharge spreads more than necessary. Since it is possible to prevent and prevent the local concentration of the discharge, the optical axis can be effectively arranged in the laser gas flow excited by the discharge, and the conversion efficiency of the laser light to the discharge power can be improved, The pulse response of the laser beam can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による3軸直交型気体レーザ発振器の一
実施例を示す側面図である。
FIG. 1 is a side view showing an embodiment of a three-axis orthogonal gas laser oscillator according to the present invention.

【図2】本発明による高周波放電励起式の3軸直交型気
体レーザ発振器の一実施例を示す概略側面図である。
FIG. 2 is a schematic side view showing an embodiment of a high-frequency discharge excitation type three-axis orthogonal gas laser oscillator according to the present invention.

【符号の説明】[Explanation of symbols]

1 真空容器 5 レーザガス通路 7 送風機 11,13 ガラス管 15,17 放電電極 19 折り返しミラー 21 出力ミラー C 放電領域 DESCRIPTION OF SYMBOLS 1 Vacuum container 5 Laser gas passage 7 Blower 11, 13 Glass tube 15, 17 Discharge electrode 19 Folding mirror 21 Output mirror C Discharge area

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 レーザガス通路(5)の両側に、レーザ
ガス流方向に対して直交する方向に長い中空状の誘電体
(11,13)を対向配置して設け、上記各誘電体内に
配置した各放電電極(15,17)の放電方向及びレー
ザガス流方向に対して直交する方向に光共振空間を画定
する折り返しミラー(19)及び出力ミラー(21)を
設けてなる高周波放電励起式の3軸直交型気体レーザ発
振器において、前記各誘電体(11,13)は同径の円
筒であり、前記各放電電極(15,17)は上記各誘電
体(11,13)の軸心を通る対向軸線(A)の位置か
ら下流側に対称的に配置して設けると共に各放電電極
(15,17)を各誘電体(11,13)の内周面に密
着して設けたことを特徴とする高周波放電励起式の3軸
直交型気体レーザ発振器。
1. On both sides of a laser gas passage (5), hollow dielectric bodies (11, 13) which are long in a direction orthogonal to a laser gas flow direction are provided to face each other, and each of the dielectric bodies (11, 13) arranged in each of the dielectric bodies is provided. A high-frequency discharge-excited three-axis orthogonal structure including a folding mirror (19) and an output mirror (21) for defining an optical resonance space in a direction orthogonal to the discharge direction of the discharge electrodes (15, 17) and the laser gas flow direction. In the type gas laser oscillator, each of the dielectrics (11, 13) is a cylinder having the same diameter, and each of the discharge electrodes (15, 17) has an opposing axis passing through the axis of each of the dielectrics (11, 13). A high frequency discharge characterized in that the discharge electrodes (15, 17) are provided symmetrically on the downstream side from the position (A) and the discharge electrodes (15, 17) are provided in close contact with the inner peripheral surfaces of the dielectrics (11, 13). Pumped 3-axis orthogonal gas laser oscillation vessel.
JP26583491A 1991-10-15 1991-10-15 High frequency discharge pumped three-axis orthogonal gas laser oscillator Expired - Fee Related JP3131255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26583491A JP3131255B2 (en) 1991-10-15 1991-10-15 High frequency discharge pumped three-axis orthogonal gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26583491A JP3131255B2 (en) 1991-10-15 1991-10-15 High frequency discharge pumped three-axis orthogonal gas laser oscillator

Publications (2)

Publication Number Publication Date
JPH05110165A JPH05110165A (en) 1993-04-30
JP3131255B2 true JP3131255B2 (en) 2001-01-31

Family

ID=17422709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26583491A Expired - Fee Related JP3131255B2 (en) 1991-10-15 1991-10-15 High frequency discharge pumped three-axis orthogonal gas laser oscillator

Country Status (1)

Country Link
JP (1) JP3131255B2 (en)

Also Published As

Publication number Publication date
JPH05110165A (en) 1993-04-30

Similar Documents

Publication Publication Date Title
US4470144A (en) Coaxial-type carbon dioxide gas laser oscillator
JPH06164042A (en) Gas-laser oscillation apparatus
JP3131255B2 (en) High frequency discharge pumped three-axis orthogonal gas laser oscillator
CA2062265C (en) Gas laser oscillating device
JPS603170A (en) Silent discharge type gas laser device
JP4899026B2 (en) Laser equipment
US4058778A (en) High power gas transport laser
JPH0593064U (en) Laser device dielectric plate
JPS63228686A (en) Gas laser oscillation device
JPH0870150A (en) Sold laser oscillator
JPH05327087A (en) Discharge stabilizing structure for laser
JPH05327071A (en) Cooler of laser device
JPH0716040B2 (en) Gas laser oscillator
JPH04286172A (en) Gas laser oscillator
JPH03123089A (en) Gas laser oscillator
JPH01283980A (en) Laser oscillator
KR890003151B1 (en) Radiational system of laser generator
JPH0240978A (en) Gas laser oscillator
JPH0318749B2 (en)
JP2001111141A (en) Laser oscillation apparatus
JPS63181387A (en) Pulse gas laser
JP2001267663A (en) Discharge excitation gas laser device
JPH02281671A (en) Gas laser oscillation device
JP2003101105A (en) Gas laser oscillator
JPH02103972A (en) Pulsed-laser oscillating apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees