JPH046367A - Air-conditioner - Google Patents

Air-conditioner

Info

Publication number
JPH046367A
JPH046367A JP2107910A JP10791090A JPH046367A JP H046367 A JPH046367 A JP H046367A JP 2107910 A JP2107910 A JP 2107910A JP 10791090 A JP10791090 A JP 10791090A JP H046367 A JPH046367 A JP H046367A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
control device
rate control
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107910A
Other languages
Japanese (ja)
Other versions
JP2525927B2 (en
Inventor
Shuichi Tani
秀一 谷
Setsu Nakamura
中村 節
Tomohiko Kasai
智彦 河西
Shigeo Takada
茂生 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107910A priority Critical patent/JP2525927B2/en
Priority to AU74381/91A priority patent/AU636215B2/en
Priority to EP91303443A priority patent/EP0453271B1/en
Priority to ES199191303443T priority patent/ES2046853T3/en
Priority to DE91303443T priority patent/DE69100424T2/en
Priority to US07/687,434 priority patent/US5156014A/en
Publication of JPH046367A publication Critical patent/JPH046367A/en
Application granted granted Critical
Publication of JP2525927B2 publication Critical patent/JP2525927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To allow indoor units to individually, selectively perform either cooling or heating operation at the same time by a method wherein control is carried out so that the interface between gas refrigerant and liquid refrigerant is kept lower than the preset position and the refrigerant at the outlet of a first heat exchanger is maintained at a set supercooling degree. CONSTITUTION:The valve lift of a third flow control valve 15 is increased so that the interface between the gas refrigerant and the liquid refrigerant in a gas-liquid separator 12 is maintained below the position of a liquid drain pipe 41. Thereby, lack of the heating capacity, which results from a shortage of the gas refrigerant with a decrease in the dryness of the refrigerant flowing into an relay apparatus E, is avoided. In addition, the valve lift of the third flow control valve 15 is decreased so that the refrigerant of the inlet side of a second flow control valve 13 is kept at the set suppercooling degree. As a result, the dryness of the refrigerant flowing into the relay apparatus increases, so that the flow rate of the gas refrigerant is prevented from becoming too high, and the uniform distribution of the refrigerant, which flows from the second manifold 11 into indoor units B, C and D to be brought in cooling operation, is prevented from being disturbed by lack of the supercooling of the refrigerant.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱源機1台に対して複数台の室内機を接続
する多室型ヒートポンプ空気調和装置に関するものて、
特に各室内機毎に冷暖房を選択的に、かつ一方の室内機
ては冷房、他方の室内機ては暖房か同時に行うことかで
きる空気調和装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source device.
In particular, the present invention relates to an air conditioner that can selectively perform heating and cooling for each indoor unit, and can simultaneously perform cooling with one indoor unit and heating with the other indoor unit.

〔従来の坂術〕[Traditional slope technique]

従来、熱源機1台に対して複数台の室内機をガス管と液
管の2本の配管で接続し、冷暖房運転をするヒートポン
プ式空気調和装置は一般的であり各室内機はすべて暖房
、またはすべて冷房を行うように形成されている。
Conventionally, heat pump air conditioners have been common in which multiple indoor units are connected to one heat source unit using two pipes, a gas pipe and a liquid pipe, and each indoor unit performs heating and cooling operations. or all configured to provide cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室型ヒートポンプ式空気調和装置は以上のよう
に構成されているので、すへての室内機か冷房または暖
房にしか運転しないため、冷房か必要な場所で暖房行わ
れたり、逆に暖房か必要な場所で冷房が行われるような
問題かあった。
Conventional multi-room heat pump air conditioners are configured as described above, so they only operate the indoor units for cooling or heating, so they can be used for cooling or heating where it is needed, or vice versa. There was a problem with heating or cooling in places where it was needed.

特に、大規模なビルに据え付けた場合、インチリア部と
ベリメータ一部、または一般事務室と、コンピューター
ルーム等のOA化された部屋では空調の負荷か著しく異
なるため、特に問題となっている。
Particularly when installed in a large building, this poses a particular problem because the air conditioning load differs markedly between the inch rear section and the verimeter section, or between the general office and a computer room or other OA room.

この発明は、上記のような問題点を解消するためになさ
れたもので、熱源機1台に対して複数台の室内機を接続
し、各室内機毎に冷暖房を選択的に、かつ一方の室内機
ては冷房、他方の室内機では暖房か同時に行うことかて
きるようにして、大規模なヒルに据え付けた場合、イン
テリア部とベリメータ一部、または一般事務室と、コン
ピュータールーム等のOA化された部屋で空調の負荷か
著しく異なっても、それぞれに対応できる多室型ヒート
ポンプ式空気調和装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems. Multiple indoor units are connected to one heat source unit, and each indoor unit can selectively perform air conditioning and heating. If the indoor unit can be used for cooling and the other indoor unit for heating at the same time, and installed on a large hill, it can be used as an OA for the interior section and part of the verimeter, or for general offices, computer rooms, etc. To provide a multi-room heat pump type air conditioner that can handle each room even if the air conditioning loads differ significantly in each room.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は、圧縮機、四方切換弁、熱源機側熱交換器、
アキュムレータ等、よりなる1台の熱源機と、室内側熱
交換器、第1の流量制御装置等からなる複数台の室内機
とを、第1、第2の接続配管を介して接続したものにお
いて、上記複数台の室内機の上記室内側熱交換器の一方
を上記第1の接続配管または、気液分離装置を介して第
2の接続配管に切り換え可能に接続する第1の分岐部と
、上記複数台の室内機の上記室内側熱交換器の他方を、
上記第1の流量制御装置を介して上記第2の接続配管に
接続してなる第2の分岐部とを上記気液分離装置及び第
2の流量制御装置を介して接続すると共に、上記第2の
分岐部と第1の接続配管を第4の流量制御装置を介して
接続し、更に一端か上記第2の分岐部に接続され、他端
か第3の流量制御装置を介して上記第1の接続配管へ接
続されたバイパス配管を備え、上記第3の流量制御装置
と上記第1の接続配管との間のバイパス配管と、上記第
2の接続配管と上記第2の流量制御装置を接続する配管
との間て熱交換を行う第1の熱交換部を備え、上記気液
分離装置内のガス状冷媒と液状冷媒の境界面を検知する
境界面検知手段を備え、上記第1の分岐部、第2の分岐
部、第2の流量制御装置、第3の流量制御装置、第4の
流量制御装置、第5の流量制御装置、第1の熱交換部、
境界面検知手段及びバイパス配管を内蔵させた中継機を
、上記熱源機と上記複数台の室内機との間に介在させる
と共に、上記第1の接続配管は上記第2の接続配管より
大径に構成し、上記第1の接続配管を低圧に、上記第2
の接続配管を高圧に切換え可能とする切換弁を上記熱源
機の上記第1の及び第2の接続配管間に備え、上記気液
分離装置内のガス状冷媒と液状冷媒の境界面をあらかじ
め設定した位置より低く、かつ第1の熱交換部出口の冷
媒状態を設定した過冷却度になるように制御することを
特徴とするものである。
This invention includes a compressor, a four-way switching valve, a heat exchanger on the heat source side,
In a system in which one heat source device, such as an accumulator, and multiple indoor units, each consisting of an indoor heat exchanger, a first flow rate control device, etc., are connected via first and second connection pipes. , a first branch part that connects one of the indoor heat exchangers of the plurality of indoor units to the first connection pipe or the second connection pipe via the gas-liquid separation device; The other of the indoor heat exchangers of the plurality of indoor units,
A second branch section connected to the second connection pipe via the first flow rate control device is connected via the gas-liquid separation device and the second flow rate control device, and the second The branch part and the first connecting pipe are connected via a fourth flow rate control device, and one end is connected to the second branch part, and the other end is connected to the first connection pipe via a third flow rate control device. a bypass pipe connected to a connecting pipe, the bypass pipe connecting the third flow control device and the first connecting pipe, and the second connecting pipe connecting the second flow control device. a first heat exchange section that performs heat exchange with the piping that is connected to the gas-liquid separator; section, second branch section, second flow rate control device, third flow rate control device, fourth flow rate control device, fifth flow rate control device, first heat exchange section,
A repeater having a built-in boundary surface detection means and bypass piping is interposed between the heat source device and the plurality of indoor units, and the first connecting piping has a larger diameter than the second connecting piping. the first connection pipe to a low pressure, and the second connection pipe to a low pressure.
A switching valve is provided between the first and second connecting pipes of the heat source device, and the interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separation device is set in advance. This is characterized by controlling the refrigerant state at the outlet of the first heat exchanger to a preset degree of supercooling, which is lower than the predetermined position.

〔作 用〕[For production]

この発明においては、冷暖房同時運転における暖房主体
の場合は高圧ガス冷媒を熱源機側切換弁、第2の接続配
管、第1の分岐部から暖房しようとしている各室内機に
導入して暖房を行い、その後冷媒は第2の分岐部から一
部は冷房しようとしている室内機に流入して冷房を行い
第1の分岐部から第1の接続配管に流入する。一方残り
の冷媒は第4の流量制御装置を通って、冷房しようとし
ている室内機を通った冷媒と合流して第1の接続配管に
流入し、熱源機に戻る。
In this invention, in the case of heating mainly in simultaneous cooling and heating operation, high-pressure gas refrigerant is introduced into each indoor unit to be heated from the heat source equipment side switching valve, the second connection pipe, and the first branch part. Thereafter, a portion of the refrigerant flows from the second branch into the indoor unit to be cooled, and then flows from the first branch into the first connection pipe. On the other hand, the remaining refrigerant passes through the fourth flow rate control device, joins with the refrigerant that has passed through the indoor unit to be cooled, flows into the first connection pipe, and returns to the heat source unit.

また冷房主体の場合は、高圧ガスを熱源機の熱源機側熱
交換器で任意量熱交換し二相状態として熱源機側切換弁
、第2の接続配管から中継機に流入する。ここで、ガ気
液分離装置にてガス状冷媒と液状冷媒に分離し、分離し
たガス状冷媒を第1の分岐部を介して暖房しようとする
室内機に導入して暖房を行い第2の分岐部に流入する。
In the case of cooling mainly, the high-pressure gas is exchanged with an arbitrary amount of heat in the heat exchanger on the heat source side of the heat source device, and then flows into the repeater through the heat source side switching valve and the second connection pipe to form a two-phase state. Here, the gas-liquid separator separates the gaseous refrigerant and the liquid refrigerant, and the separated gaseous refrigerant is introduced into the indoor unit to be heated via the first branch part to perform heating. Flows into the branch.

一方、分離された残りの液状冷媒は第2の流量調整装置
を通って第2の分岐部で暖房しようとする室内機を通っ
た冷媒と合流して冷房しようとする各室内機に流入して
冷房を行い、その後に第1の分岐部から第1の接続配管
を通って熱源機に導かれ圧縮機に戻る。更に、冷媒の一
部を第2の分岐部から、バイパス配管を介して第1の接
続配管へ流入させる過程で、第1の熱交換部で上記第2
の分岐部に流入する冷媒を冷却し過冷却度を十分につけ
て冷房しようとしている室内機へ流入させる。この際、
気液分離装置内のガス状冷媒と液状冷媒の境界面をあら
かしめ設定した位置より低く、かつ第1の熱交換部出口
の冷媒状態を設定した過冷却度になるように制御する。
On the other hand, the remaining separated liquid refrigerant passes through the second flow rate adjustment device, joins with the refrigerant that has passed through the indoor unit to be heated at the second branch, and flows into each indoor unit to be cooled. After cooling, the air is guided from the first branch through the first connection pipe to the heat source machine and returned to the compressor. Further, in the process of causing a part of the refrigerant to flow from the second branch section to the first connection pipe via the bypass pipe, the second heat exchanger is
The refrigerant flowing into the branch is cooled down to a sufficient degree of supercooling, and then flows into the indoor unit that is being cooled. On this occasion,
The interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separator is controlled to be lower than a predetermined position, and the refrigerant state at the outlet of the first heat exchanger is controlled to a predetermined degree of supercooling.

更に、暖房運転のみの場合、冷媒は熱源機側切換弁より
第2の接続配管、第1の分岐部を通って各室内機に導入
され、暖房を行い第2の分岐部から第1の接続配管を通
り熱源機側切換弁を介して熱源機に戻る。
Furthermore, in the case of only heating operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection pipe and the first branch, performs heating, and is transferred from the second branch to the first connection. It passes through the piping and returns to the heat source machine via the heat source machine side switching valve.

そして、冷房運転のみの場合、冷媒は熱源機側切換弁よ
り第2の接続配管、第2の分岐部を通って各室内機に導
入され、冷房を行い第1の分岐部から第1の接続配管を
通って熱源機に戻る。更に、冷媒の一部を第2の分岐部
から、バイパス配管を介して上記第1の接続配管へ流入
させる過程で、第1の熱交換部で上記第2の分岐部に流
入する冷媒を冷却し過冷却度を十分につけ冷房しようと
している室内機へ流入させる。
In the case of only cooling operation, the refrigerant is introduced into each indoor unit from the heat source equipment side switching valve through the second connection piping and the second branch, performs cooling, and passes from the first branch to the first connection. It returns to the heat source equipment through the piping. Furthermore, in the process of causing a portion of the refrigerant to flow from the second branch section to the first connection pipe via the bypass pipe, the refrigerant flowing into the second branch section is cooled in the first heat exchange section. Then, it reaches a sufficient degree of supercooling and flows into the indoor unit that is being cooled.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

第1図はこの発明の第一実施例の空気調和装置の冷媒系
を中心とする全体構成図である。また、第2図、第3図
、第4図は第1図の一実施例における冷暖房運転時の動
作状態を示したもので、第2図は冷房又は暖房のみの運
転動作状態図、第3図及び第4図は冷暖房同時運転の動
作を示すもので、第3図は暖房主体(暖房運転しようと
している室内機の合計容量か冷房運転しようとしている
室内機の合計容量より大きい場合)を、第4図は冷房主
体(冷房運転しようとしている室内機の合計容量か暖房
運転しようとしている室内機の合計容量より大きい場合
)を示す運転動作状態図である。そして、第5図はこの
発明の他の実施例の空気調和装置の冷媒系を中心とする
全体構成図である。
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention. In addition, Figures 2, 3, and 4 show the operating state during cooling/heating operation in the embodiment shown in Figure 1. Figures 4 and 4 show the operation of simultaneous heating and cooling operation, and Figure 3 shows the operation of simultaneous heating and cooling operations. FIG. 4 is an operational state diagram showing the main cooling operation (when the total capacity of the indoor units attempting to perform cooling operation is greater than the total capacity of the indoor units attempting to perform heating operation). FIG. 5 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to another embodiment of the present invention.

なお、この実施例では熱源機1台に室内機3台を接続し
た場合について説明するか、2台以上の室内機を接続し
た場合ても同様である。
In this embodiment, a case will be described in which three indoor units are connected to one heat source device, or the same applies to a case in which two or more indoor units are connected.

第1図において、(A)は熱源機、(B)、(C)、(
D)は後述するように互いに並列接続された室内機てそ
れぞれ同し構成となっている。(E)は後述するように
、第1の分岐部、第2の流ijk調整装置、第2の分岐
部、気液分離装置、第1及び第2の熱交換部を内蔵した
中継機である。(1)は圧縮機、(2)は熱源機の冷媒
流通方向を切り換える四方切換弁、(3)は熱源機側熱
交換器、(4)はアキュムレータて、上記機器(1)〜
(3)と接続され熱源機(A)を構成する。
In Figure 1, (A) is a heat source device, (B), (C), (
In D), the indoor units are connected in parallel and have the same configuration, as will be described later. As will be described later, (E) is a repeater that incorporates a first branch part, a second flow ijk adjustment device, a second branch part, a gas-liquid separation device, and first and second heat exchange parts. . (1) is a compressor, (2) is a four-way switching valve that switches the refrigerant flow direction of the heat source machine, (3) is a heat exchanger on the heat source machine side, (4) is an accumulator, and the above equipment (1) to
(3) to constitute a heat source device (A).

(5)はそれぞれ室内機(B) 、(C)、(D)の室
内側熱交換器、(6)は四方切換弁(2)と中継機(E
)を接続する太い第1の接続配管、(6b)、(6c)
、(6d)はそれぞれ室内機(B) 、(C)、(D)
の室内側熱交換器(5)と中継機(E)を接続し、第1
の接続配管(6)に対応する室内機側の第1の接続配管
、(7)は熱源機側熱交換器(3)と中継機(E)を接
続する上記第1の接続配管(6)より細い第2の接続配
管(7b)、(7c)、(7d)はそれぞれ室内機(B
) 、(C)、(D)の室内側熱交換器(5)と中継機
(E)を接続し、第2の接続配管(7)に対応する室内
機側の第2の接続配管、(8)は室内機側の第1(7)
接続配管(6b)、(6c)、(6d)と、第1の接続
配管(6)または、第2の接続配管(7)側に切り換え
可能に接続する三方切換弁、(9)は室内側熱交換器(
5)に近接して接続され室内側熱交換器(5)の出口側
の冷房時は過熱度、暖房時は過冷却度により制御される
第1の流量調整装置で、室内機側の第2の接続配管(7
b)、(7c)、(7d)に接続される。α0)は室内
機側の第1の接続配管(6b)、(6c)、(6d)と
、第1の接続配管(6)または、第2の接続配管(7)
に切り換え可能に接続する三方切換弁(8)よりなる第
1の分岐部、01)は室内機側の第2の接続配管(7b
)、(7c)、(7d)と、その合流部よりなる第2の
分岐部、O2は第2の接続配管(ア)の途中に設けられ
た気液分離装置で、その気相部は、三方切換弁(8)の
それぞれの第10(8a)に接続され、その液相部は第
2の分岐部(+1)に接続されている。a3は気液分離
装置azと第2の分岐部0υとの間に接続する開閉自在
な第2の流量調整装置、(141は第2の分岐部0υと
上記第1の接続配管(6)とを結ぶバイパス配管、α9
はバイパス配管α滲の途中に設けられた第3の流量調整
装置、(16b)、(16c)、 (16d)はバイパ
ス配管o4の第3の流量調整装置α9の下流に設けられ
、第2の分岐部αυにおける各室内機側の第2の接続配
管(7b)、(7c)、(7d)との間でそれぞれ熱交
換を行う第3の熱交換部、(16a)はバイパス配管0
4の第3の流量調整装置O5ノ下流及び第3の熱交換部
(16b) 、(16c)、(+6d)の下流に設けら
れ、第2の分岐部0Dにおける各室内機側の第2の接続
配管(7b)、(7C)、(7d)の合流部との間て熱
交換を行う第2の熱交換部、09)はバイパス配管04
)の第3の流量調整装置09の下流及び第2の熱交換部
(16a)の下流に設けられた気液分離装置O2と第2
の流量制御装置03とを接続する配管との間て熱交換を
行う第1の熱交換部、07)は第2の分岐部Oυと第1
の接続配管(6)との間に接続する開閉自在な第4の流
量制御装置、(32)は熱源側熱交換器(3)と第2の
接続配管(7)との間に設すられた第3の逆止弁てあり
、熱源側熱交換器(3)から第2の接続配管(7)への
み冷媒流通を許容する。
(5) are the indoor heat exchangers of the indoor units (B), (C), and (D), respectively, and (6) are the four-way switching valve (2) and the repeater (E).
), (6b), (6c)
, (6d) are indoor units (B), (C), and (D), respectively.
Connect the indoor heat exchanger (5) and the repeater (E), and
(7) is the first connection pipe on the indoor unit side corresponding to the connection pipe (6), and (7) is the first connection pipe (6) connecting the heat source machine side heat exchanger (3) and the repeater (E). The thinner second connection pipes (7b), (7c), and (7d) are connected to the indoor unit (B), respectively.
), (C), (D), a second connection pipe on the indoor unit side that connects the indoor heat exchanger (5) and the repeater (E) and corresponds to the second connection pipe (7), ( 8) is the first (7) on the indoor unit side.
Connection pipes (6b), (6c), (6d) and a three-way switching valve that is switchably connected to the first connection pipe (6) or second connection pipe (7) side, (9) is on the indoor side Heat exchanger(
5) and is controlled by the degree of superheating during cooling on the outlet side of the indoor heat exchanger (5) and the degree of subcooling during heating; Connection piping (7
b), (7c), and (7d). α0) is the first connecting pipe (6b), (6c), (6d) on the indoor unit side and the first connecting pipe (6) or the second connecting pipe (7)
The first branch part, 01) consisting of a three-way switching valve (8) that is switchably connected to the second connection pipe (7b) on the indoor unit side
), (7c), and (7d), and the second branch part consisting of their confluence, O2 is a gas-liquid separator installed in the middle of the second connection pipe (A), and its gas phase part is It is connected to each tenth (8a) of the three-way switching valve (8), and its liquid phase part is connected to the second branch part (+1). a3 is a second flow rate adjustment device that can be opened and closed, and is connected between the gas-liquid separator az and the second branch 0υ; (141 is the connection between the second branch 0υ and the first connecting pipe (6)); Bypass piping connecting α9
(16b), (16c), and (16d) are provided downstream of the third flow rate regulator α9 of the bypass pipe o4, and the second The third heat exchange part (16a) is a bypass pipe 0 that exchanges heat with the second connection pipes (7b), (7c), and (7d) on each indoor unit side at the branch part αυ.
4, and downstream of the third heat exchanger (16b), (16c), (+6d), and the second The second heat exchange part 09) that exchanges heat with the confluence part of the connecting pipes (7b), (7C), and (7d) is the bypass pipe 04
) and a gas-liquid separation device O2 provided downstream of the third flow rate adjustment device 09 and downstream of the second heat exchange section (16a).
The first heat exchange section 07) which performs heat exchange with the piping connecting the flow rate control device 03 is connected to the second branch Oυ and the first heat exchange section 07).
A fourth flow rate control device (32), which can be opened and closed, is connected between the heat source side heat exchanger (3) and the second connection pipe (7). A third check valve is provided, which allows refrigerant to flow only from the heat source side heat exchanger (3) to the second connection pipe (7).

(33)は熱源機(A)の四方切換弁(2)と第1の接
続配管(6)との間に設けられた第4の逆止弁であり、
第1の接続配管(6)から四方切換弁(2)へのみ冷媒
流通を許容する。(34)は熱源機(A)の四方切換弁
(2)と第2の接続配管(7)との間に設けられた第5
の逆止弁であり、四方切換弁(2)から第2の接続配管
(7)へのみ冷媒流通を許容する。(35)は熱源側熱
交換器(3)と第1の接続配管(6)との間に設けられ
た第6の逆止弁であり、第1の接続配管(6)から熱源
側熱交換器(3)へのみ冷媒流通を許容する。上記第3
の逆止弁(32)から第6の逆止弁(35)で切換弁(
40)を構成する。
(33) is a fourth check valve provided between the four-way switching valve (2) of the heat source device (A) and the first connection pipe (6),
Refrigerant flow is allowed only from the first connection pipe (6) to the four-way switching valve (2). (34) is the fifth valve installed between the four-way switching valve (2) of the heat source device (A) and the second connection pipe (7).
This check valve allows refrigerant to flow only from the four-way switching valve (2) to the second connection pipe (7). (35) is a sixth check valve provided between the heat source side heat exchanger (3) and the first connection pipe (6), and is a sixth check valve provided between the heat source side heat exchanger (3) and the first connection pipe (6). Refrigerant flow is allowed only to the container (3). 3rd above
from the check valve (32) to the sixth check valve (35)
40).

(41)は一端を気液分離装置0のに他端を第1の接続
配管(6)に接続した液抜き配管、(42)は液抜き配
管(41)の気液分離装置azと第1の接続配管(6)
との間に設けた第5の流量制御装置・、(43)は液抜
き配管(41)の第5の流量制御装置(42)の下流に
設けられ、気液分離装置O2と第1の分岐部α0)を接
続する配管との間て熱交換を行う第4の熱交換部である
(41) is a liquid draining pipe whose one end is connected to the gas-liquid separator 0 and the other end is connected to the first connecting pipe (6), and (42) is the liquid draining pipe (41) connected to the gas-liquid separator az and the first connecting pipe. Connection piping (6)
A fifth flow rate control device (43) provided between the gas-liquid separation device O2 and the first branch is provided downstream of the fifth flow rate control device (42) in the liquid draining pipe (41). This is a fourth heat exchange section that performs heat exchange with the piping connecting the section α0).

(23)は第2の流量制御装置03と第1の熱交換部0
9を接続する配管に取り付けた第1の温度検出器、(2
5)は上記第1の温度検出器(23)と同じ配管に取り
付けた第1の圧力検出器、(26)は第2の分岐部0υ
に取り付けた第2の圧力検出器、(52)は第1の接続
配管(6)と第1I7!分岐部0υを接続する配管に取
り付けた第3の圧力検出器、(51)は液抜き配管(4
1)側の第4の熱交換部(43)の出口側に取り付けた
第2の温度検出器、(53)はバイパス配管(+4+側
の第1の熱交換部aωの出口側に取り付けた第3の温度
検出器である。
(23) is the second flow rate control device 03 and the first heat exchange section 0
The first temperature sensor attached to the pipe connecting 9, (2
5) is the first pressure sensor attached to the same pipe as the first temperature sensor (23), and (26) is the second branch 0υ
The second pressure sensor (52) attached to the first connecting pipe (6) and the first I7! The third pressure detector (51) is attached to the pipe connecting the branch 0υ, and the liquid drain pipe (4
The second temperature detector (53) is attached to the outlet side of the fourth heat exchange section (43) on the side 1), and the second temperature sensor (53) is attached to the outlet side of the first heat exchange section aω on the +4+ side. 3 temperature detector.

このように構成されたこの発明の実施例について説明す
る。
An embodiment of the invention configured in this manner will be described.

まず、第2図を用いて冷房運転のみの場合について説明
する。
First, the case of only cooling operation will be explained using FIG.

すなわち、第2図に実線矢印で示すように圧縮器(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
を通り、熱源機側熱交換器(3)て熱交換して凝縮され
た後、第3の逆止弁(32)、第2の接続配管(7)、
気液分離装#0の、第2の流量調整装置o3の順に通り
、更に第2の分岐部0υ、室内機側の第2の接続配管(
7b)、(7c)、(7d)を通り、各室内機(B) 
、(C)、(D)に流入した冷媒は、各室内側熱交換器
(5)の出口の過熱度により制御される第1の流量調整
装置(9)により低圧まで減圧されて室内側熱交換器(
5)で室内空気と熱交換して蒸発しガス化され室内を冷
房する。そして、このガス状態となった冷媒は、室内機
側の第1の接続配管(6b)、(6C)、(6d)の三
方切換弁(8)、第1の分岐部aωを通り、第1の接続
配管(6)、第4の逆止弁(33)、四方切換弁(2)
、アキュムレータ(4)を経て、圧縮機(1)に吸入さ
れる循環サイクルを構成し、冷房運転を行う。このとき
、三方切換弁(8)はそれぞれの第10(8a)は閉路
、第10(8b)及び第30(8C)は開路されている
That is, as shown by the solid line arrow in Fig. 2, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2)
After passing through the heat source equipment side heat exchanger (3) for heat exchange and condensation, the third check valve (32), the second connection pipe (7),
It passes through the second flow rate adjustment device o3 of the gas-liquid separator #0, and then the second branch 0υ and the second connection pipe on the indoor unit side (
7b), (7c), and (7d), each indoor unit (B)
, (C), and (D) is reduced to a low pressure by the first flow rate regulator (9), which is controlled by the degree of superheating at the outlet of each indoor heat exchanger (5), and the indoor heat is released. Exchanger (
In step 5), it exchanges heat with the indoor air and evaporates into gas, cooling the room. Then, the refrigerant in the gas state passes through the three-way switching valve (8) of the first connection pipes (6b), (6C), and (6d) on the indoor unit side, and the first branch part aω. connection pipe (6), fourth check valve (33), four-way switching valve (2)
, an accumulator (4), and a circulation cycle in which the air is sucked into the compressor (1) to perform cooling operation. At this time, the 10th (8a) of the three-way switching valve (8) is closed, and the 10th (8b) and 30th (8C) are opened.

この時、第1の接続配管(6)か低圧、第2の接続配管
(7)か高圧のため必然的に第3の逆止弁(32)、第
4の逆止弁(33)へ冷媒は流通する。
At this time, since the first connection pipe (6) has low pressure and the second connection pipe (7) has high pressure, the refrigerant inevitably flows to the third check valve (32) and the fourth check valve (33). is distributed.

また、このサイクルの時、第2の流量調整装置α3を通
過した冷媒の一部かバイパス配管α4へ入り、第3の流
量調整装置Oeて低圧まで減圧されて、第3の熱交換部
(16b) 、(16c)、(+6d)で各室内機側の
第2の接続配管(7b)、(7c)、(7d)との間で
、第2の熱交換部(16a)で第2の分岐部aυの各室
内機側の第2の接続配管(7b)、(7C)、(7d)
の合流部との間て、更に第1の熱交換部09で第2の流
量制御装置03に流入する冷媒との間て熱交換を行い蒸
発した冷媒は、第1の接続配管(6)へ入り、第4の逆
止弁(33)、四方切換弁(2)、アキュムレータ(4
)を経て圧縮機(1)に吸入される。一方、第1及び第
2及び第3の熱交換部(191、(16a) 、 (1
6b) 、(16c)、(16d)て熱交換し、冷却さ
れ過冷却度を十分につけられた上記第2の分岐部at+
の冷媒は冷房しようとしている室内機(B)、(C)、
(D)へ流入する。
Also, during this cycle, a part of the refrigerant that has passed through the second flow rate regulator α3 enters the bypass pipe α4, is reduced to a low pressure by the third flow rate regulator Oe, and is transferred to the third heat exchange section (16b ), (16c), (+6d) and the second connection pipes (7b), (7c), (7d) on each indoor unit side, and the second branch at the second heat exchange part (16a). Second connection pipes (7b), (7C), (7d) on each indoor unit side of section aυ
The evaporated refrigerant undergoes heat exchange with the refrigerant flowing into the second flow rate control device 03 in the first heat exchange section 09, and then flows into the first connection pipe (6). entry, fourth check valve (33), four-way switching valve (2), accumulator (4
) and is sucked into the compressor (1). On the other hand, the first, second and third heat exchange parts (191, (16a), (1
6b), (16c), and (16d) to exchange heat and cool the second branch part at+ to a sufficient degree of supercooling.
The refrigerant is used in the indoor units (B), (C), and
(D).

また、冷房運転において空気調和装置に封入されている
冷媒か、第2の接続配管を高圧液冷媒で満たすほど封入
されていない場合、熱源側熱交換器(3)にて凝縮され
た高圧2相冷媒は、第2の接続配管(ア)、気液分離袋
#azを経た後に、第1及び第2及び第3の熱交換部(
19+、(16a)、(16b)、(16c)、(+6
d)にて、第3の流量制御装置09にて低圧まで減圧さ
れたバイパス側を流れる冷媒と熱交換することにより、
液化してさらに冷却され過冷却度を十分につけられて冷
房しようとしている室内機(B)、(C)、(D)へ流
入する。
In addition, during cooling operation, if the refrigerant sealed in the air conditioner is not sealed enough to fill the second connection pipe with high-pressure liquid refrigerant, the high-pressure two-phase condensed in the heat source side heat exchanger (3) After passing through the second connection pipe (A) and the gas-liquid separation bag #az, the refrigerant passes through the first, second, and third heat exchange parts (
19+, (16a), (16b), (16c), (+6
In step d), by exchanging heat with the refrigerant flowing through the bypass side, which has been reduced to a low pressure by the third flow rate control device 09,
It is liquefied, further cooled, sufficiently supercooled, and flows into the indoor units (B), (C), and (D) that are attempting to cool the air.

次に、第2図を用いて暖房運転のみの場合について説明
する。すなわち、第2図に破線矢印で示すように圧縮機
(1)より吐出された高温高圧の冷媒ガスは四方切換弁
(2)を通り、第5の逆止弁(34)、第2の接続配管
(7)、気液分離装置0zを通り、第1の分岐部00)
、三方切換弁(8)、室内機側の第1の接続配管(6b
)、(6c)、(6d)を通り、各室内機(B)、(C
)、(D)に流入した冷媒は、室内空気と熱交換して凝
縮液化し、室内を暖房する。そして、この液状態となっ
た冷媒は、各室内側熱交換器(5)の出口の過冷却度に
より制御される第1の流量調整装置(9)を通り、室内
機側の第2の接続配管(7b)、(7c)、(7d)か
ら第2の分岐部01)に流入して合流し、更に第4の流
量調整装置α力を通り、ここで第1の流量調整装置(9
)又は第4の流量調整装置G力のとちらか一方て低圧の
二相状態まて減圧される。そして、低圧まで減圧された
冷媒は、第1の接続配管(6)を経て、第6の逆止弁(
35)、熱源機側熱交換器(3)に流入し熱交換して蒸
発しガス状態となった冷媒は、四方切換弁(2)、アキ
ュムレータ(4)を経て圧縮機(1)に吸入される循環
サイクルを構成し、暖房運転を行う。このとき、三方切
換弁(8)はそれぞれの第20(8b)は閉路、第10
(8a)及び第30(8C)は開路されている。
Next, the case of only heating operation will be described using FIG. 2. That is, as shown by the broken line arrow in FIG. 2, the high temperature and high pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2), the fifth check valve (34), and the second connection. Piping (7) passes through the gas-liquid separator 0z, and the first branch 00)
, three-way switching valve (8), first connection pipe on the indoor unit side (6b
), (6c), (6d), and each indoor unit (B), (C
), (D) exchanges heat with indoor air, condenses and liquefies, heating the room. Then, this liquid refrigerant passes through the first flow rate adjustment device (9) that is controlled by the degree of subcooling at the outlet of each indoor heat exchanger (5), and then passes through the second connection on the indoor unit side. The pipes (7b), (7c), and (7d) flow into the second branch part 01), merge, and further pass through the fourth flow rate regulator α, where they flow into the first flow rate regulator (9).
) or the fourth flow rate regulator G force, the pressure is reduced to a low pressure two-phase state. Then, the refrigerant reduced to a low pressure passes through the first connection pipe (6) and passes through the sixth check valve (
35) The refrigerant that flows into the heat source machine side heat exchanger (3), undergoes heat exchange, evaporates, and becomes a gas is sucked into the compressor (1) via the four-way switching valve (2) and the accumulator (4). A circulation cycle is configured to perform heating operation. At this time, the three-way switching valve (8) has the 20th (8b) closed and the 10th
(8a) and the 30th (8C) are open circuits.

この時、第1の接続配管(6)か低圧、第2の接続配管
(7)か高圧のため必然的に第5の逆止弁(34)、第
6の逆止弁(35)へ冷媒は流通する。
At this time, since the first connection pipe (6) has low pressure and the second connection pipe (7) has high pressure, the refrigerant inevitably flows to the fifth check valve (34) and the sixth check valve (35). is distributed.

冷暖房同時運転における暖房主体の場合について第3図
を用いて説明する。ここでは室内機(B)、(C)の2
台か暖房、室内機(D)1台か冷房しようとしている場
合について説明する。
A case in which heating is the main component in simultaneous cooling and heating operation will be described with reference to FIG. Here, two indoor units (B) and (C) are shown.
We will explain the case where one indoor unit (D) is used for heating and one indoor unit (D) is used for cooling.

すなわち、第3図に実線矢印で示すように圧縮機(1)
より吐出された高温高圧の冷媒ガスは四方切換弁(2)
、第5の逆止弁(34)、第2の接続配管(7)を通り
、中継機(E)へ送られ、気液分離装置α2を通り、そ
して第1の分岐部α0)、室内機(B)、(C)に接続
された三方切換弁(8)、室内機側の第1の接続配管(
6b)、(6C)の順に通り、暖房しようとしている室
内機(B)、 (C’)に流入した冷媒は、室内側熱交
換器(5)で室内空気と熱交換して凝縮液化し、室内を
暖房する。そして、この液状態となった冷媒は、室内側
熱交換器(5)の出口の過冷却度により制御され、はぼ
全開状態の第1の流xm整装置I f9)を通り少し減
圧されて高圧と低圧の中間の圧力(中間圧)になり、室
内機側の第2の接続配管(7b)、(7C)から第2の
分岐部αυに流入する。そして、室内機側の第2の接続
配管(7d)を通り冷房しようとしている室内機(D)
に入り、室内側熱交換器(5)の出口の過熱度により制
御される第1の流量調整装置t (9+により減圧され
た後に室内側熱交換器(5)に入り熱交換して蒸発しガ
ス状態となって室内を冷房し、室内機(D)に接続され
た三方切換弁(8)を介して第1の接続配管(6)に流
入する。
That is, as shown by the solid line arrow in Fig. 3, the compressor (1)
The high temperature and high pressure refrigerant gas discharged from the four-way switching valve (2)
, the fifth check valve (34), the second connection pipe (7), the relay machine (E), the gas-liquid separator α2, the first branch α0), and the indoor unit. (B), the three-way switching valve (8) connected to (C), the first connection pipe on the indoor unit side (
The refrigerant that passes through steps 6b) and (6C) in this order and flows into the indoor units (B) and (C') that are being heated is condensed and liquefied by exchanging heat with the indoor air in the indoor heat exchanger (5). Heat the room. Then, this liquid refrigerant is controlled by the degree of subcooling at the outlet of the indoor heat exchanger (5), and is slightly depressurized through the first flow regulating device (I f9) which is almost fully open. The pressure becomes intermediate between high pressure and low pressure (intermediate pressure), and flows into the second branch part αυ from the second connection pipes (7b) and (7C) on the indoor unit side. Then, the indoor unit (D) that is about to be cooled through the second connection pipe (7d) on the indoor unit side.
After being depressurized by 9+, it enters the indoor heat exchanger (5) and undergoes heat exchange and evaporates. It becomes a gas, cools the room, and flows into the first connection pipe (6) via the three-way switching valve (8) connected to the indoor unit (D).

一方、他の冷媒は第2の分岐部aυを通り、第2の接続
配管(7)の高圧と第2の分岐部aυの中間圧の差を一
定にするように制御される開閉自在な第5の流量調整装
置Q7)を通って、冷房しようとしている室内機(D)
を通った冷媒と合流して太い第1の接続配管(6)に流
入し、第6の逆止弁(35)、熱源機側熱交換器(3)
に流入し熱交換して蒸発しガス状態となる。その冷媒は
、四方切換弁(2)、アキュムレタ(4)を経て圧縮機
(])に吸入される循環サイクルを構成し、暖房主体運
転を行う。このとき、冷房しようとしている室内機(D
)の室内側熱交換器(5)の蒸発圧力と熱源側熱交換器
(3)の蒸発圧力の圧力差か、太い第1の接続配管(6
)に切り換えるために小さくなる。このとき、室内機(
B)、(C)に接続された三方切換弁(8)はそれぞれ
の第20(8b)は閉路、第10(8a)及び第30(
8c)は開路されている。また室内機(D)に接続され
た三方切換弁(8)は第20(8b)及び第30(8c
)は開路、第10(8a)は閉路されている。
On the other hand, the other refrigerant passes through the second branch part aυ, and is controlled to keep the difference between the high pressure of the second connecting pipe (7) and the intermediate pressure of the second branch part aυ constant. The indoor unit (D) that is trying to cool down through the flow rate adjustment device Q7) of No. 5
It joins with the refrigerant that has passed through and flows into the thick first connection pipe (6), the sixth check valve (35), and the heat source equipment side heat exchanger (3).
It flows into the water, exchanges heat and evaporates, becoming a gas. The refrigerant forms a circulation cycle in which the refrigerant passes through the four-way switching valve (2) and the accumulator (4) and is sucked into the compressor (]) to perform heating-based operation. At this time, the indoor unit (D
), or the pressure difference between the evaporation pressure of the indoor heat exchanger (5) and the evaporation pressure of the heat source side heat exchanger (3), or the thick first connection pipe (6
) to switch to smaller size. At this time, the indoor unit (
In the three-way switching valves (8) connected to B) and (C), the 20th (8b) is closed, and the 10th (8a) and 30th (8a) are closed, respectively.
8c) is open circuited. In addition, the three-way switching valve (8) connected to the indoor unit (D) is the 20th (8b) and 30th (8c)
) is open, and the 10th (8a) is closed.

この時、第1の接続配管(6)か低圧、第2の接続配管
(7)か高圧のため必然的に第5の逆止弁(34)、第
6の逆止弁(35)へ冷媒は流通する。
At this time, since the first connection pipe (6) has low pressure and the second connection pipe (7) has high pressure, the refrigerant inevitably flows to the fifth check valve (34) and the sixth check valve (35). is distributed.

また、このサイクルの時、一部の液冷媒は各室内機側の
第2の接続配管(7b)、(7c)、(7d)の合流部
からバイパス配管側へ入り、第3の流量調整装置09て
低圧まで減圧されて第2の熱交換部(+6a)で第2の
分岐部0υの各室内機側の第2の接続配管(7b)、(
7c)、(7d)の合流部との間で、更に第1の熱交換
部a9で第2の流量制御装置03へ流入する冷媒との間
て熱交換を行い蒸発した冷媒は、第1の接続配管(6)
へ入り、第6の逆止弁(35)を経て、熱源機側熱交換
器(3)に流入し熱交換して蒸発しガス状態となる。そ
して、この冷媒は四方切換弁(2)、アキュムレータ(
4)を経て圧縮機(1)に吸入される。
Also, during this cycle, some liquid refrigerant enters the bypass pipe side from the confluence of the second connection pipes (7b), (7c), and (7d) on each indoor unit side, and enters the third flow rate adjustment device. 09, the pressure is reduced to low pressure, and the second connection pipe (7b) on each indoor unit side of the second branch part 0υ in the second heat exchange part (+6a), (
7c) and (7d) and the refrigerant flowing into the second flow rate control device 03 at the first heat exchange section a9, the evaporated refrigerant is transferred to the first heat exchange section a9. Connection piping (6)
It flows into the heat exchanger (3) on the heat source side through the sixth check valve (35), where it exchanges heat and evaporates into a gas state. Then, this refrigerant is transferred to the four-way switching valve (2), the accumulator (
4) and is sucked into the compressor (1).

一方、第1及び第2及び第3の熱交換部α翅、(+6a
)、(16b)、(16c)、(16d)て熱交換し冷
却され過冷却度を十分につけられた上記第2の分岐部0
υの冷媒は冷房しようとしている室内機(D)へ流入す
る。
On the other hand, the first, second and third heat exchanger α wings, (+6a
), (16b), (16c), and (16d), the second branch part 0 is cooled by heat exchange and has a sufficient degree of supercooling.
The refrigerant υ flows into the indoor unit (D) that is attempting to cool the room.

冷暖房同時運転における冷房主体の場合について第4図
を用いて説明する。ここでは、室内機(B) 、(C)
の2台が冷房、室内機(D)1台か暖房しようとしてい
る場合について説明する。すなわち、第4図に実線矢印
で示すように圧縮機(1)より吐出された高温高圧の冷
媒ガスは四方切換弁(2)を通り、熱源機側熱交換器(
3)て任意量熱交換して2相の高温高圧ガスとなり、第
3の逆止弁(32)、第2の接続配管(7)より、中継
機(E)の気液分離装置α力へ送られる。ここで、ガス
状冷媒と液状冷媒に分離され、分離されたガス状冷媒を
第1の分岐部α0)、:方切換弁(8)、室内機側の第
1の接続配管(6d)の順に通り、暖房しようとしてい
る室内機(D)に流入し、室内側熱交換器(5)で室内
空気と熱交換して凝縮液化し、室内を暖房する。更に、
室内側熱交換器(5)の出口の過冷却度により制御され
ほぼ全開状態の第1の流量調整装置(9)を通り少し減
圧されて、高圧と低圧の中間の圧力(中間圧)となり、
第2の分岐部αDに流入する。一方、残りの液状冷媒は
高圧と中間圧の差を一定にするように制御される第2の
流量調整装置03を通って第2の分岐部ODに流入し、
暖房しようとしている室内機(D)を通った冷媒と合流
する。そして、第2の分岐部0υ、室内機側の第2の接
続配管(7b)、(7c)を通り、各室内機(B)、(
C)に流入する。そして、この冷媒は、室内機(B)、
(C)の室内側熱交換器(5)の出口の過熱度により制
御される第1の流量調整装置(9)により低圧まで減圧
されて室内側熱交換器(5)で室内空気と熱交換して蒸
発しガス化され室内を冷房する。そして、このガス状態
となった冷媒は、室内機側の第1の接続配管(6b)、
(6C)、室内機(B)、(C)に接続された三方切換
弁(8)、第1の分岐部00)、第1の接続配管(6)
、14の逆止弁(33)、四方切換弁(2)、アキュム
レータ(4)を経て圧縮機(1)に吸入される循環サイ
クルを構成し、冷房主体運転を行う。このとき、室内機
(B)、(C)に接続された三方切換弁(8)はそれぞ
れの第10(8a)は閉路、第20(8b)及び第30
(8C)は開路されている。また室内機(D)に接続さ
れた三方切換弁(8)は第10(8a)及び第30(8
c)は開路、第20(8b)は閉路されている。
A case in which cooling is the main component in simultaneous heating and cooling operation will be described with reference to FIG. 4. Here, indoor units (B), (C)
The case where two indoor units (D) are trying to cool the room and one indoor unit (D) is trying to heat the room will be explained. That is, as shown by the solid line arrow in FIG. 4, the high temperature and high pressure refrigerant gas discharged from the compressor (1) passes through the four-way switching valve (2) and is transferred to the heat source equipment side heat exchanger (
3) The arbitrary amount of heat is exchanged to form a two-phase high-temperature, high-pressure gas, which is then passed through the third check valve (32) and second connection pipe (7) to the gas-liquid separation device α of the relay machine (E). Sent. Here, the gaseous refrigerant is separated into a gaseous refrigerant and a liquid refrigerant, and the separated gaseous refrigerant is transferred to the first branch part α0), the direction switching valve (8), and the first connection pipe (6d) on the indoor unit side in this order. The air then flows into the indoor unit (D) that is attempting to heat the room, exchanges heat with indoor air in the indoor heat exchanger (5), condenses and liquefies, and heats the room. Furthermore,
It is controlled by the degree of subcooling at the outlet of the indoor heat exchanger (5) and is slightly reduced in pressure through the first flow rate regulator (9) which is in an almost fully open state, and becomes a pressure between high pressure and low pressure (intermediate pressure).
It flows into the second branch αD. On the other hand, the remaining liquid refrigerant flows into the second branch part OD through the second flow regulating device 03 that is controlled to keep the difference between the high pressure and the intermediate pressure constant,
It joins with the refrigerant that has passed through the indoor unit (D) that is being heated. Then, it passes through the second branch part 0υ and the second connection pipes (7b), (7c) on the indoor unit side, and passes through each indoor unit (B), (
C). This refrigerant is then used in the indoor unit (B),
The pressure is reduced to a low pressure by the first flow regulator (9), which is controlled by the degree of superheating at the outlet of the indoor heat exchanger (5) in (C), and the indoor heat exchanger (5) exchanges heat with indoor air. It evaporates and becomes gas, cooling the room. Then, this refrigerant in a gas state is transferred to the first connection pipe (6b) on the indoor unit side,
(6C), indoor unit (B), three-way switching valve (8) connected to (C), first branch part 00), first connection pipe (6)
, 14 check valves (33), a four-way switching valve (2), and an accumulator (4) to form a circulation cycle in which air is sucked into the compressor (1), and air-conditioning is mainly performed. At this time, the three-way switching valves (8) connected to the indoor units (B) and (C) are such that the 10th (8a) is closed, the 20th (8b) and the 30th
(8C) is open. In addition, the three-way switching valve (8) connected to the indoor unit (D) is the 10th (8a) and the 30th (8th)
c) is open, and the 20th (8b) is closed.

このとき、第1の接続配管(6)か低圧、第2の接続配
管(7)か高圧のため必然的に第3の逆止弁(32)、
第4の逆止弁(3釦へ冷媒は流通する。
At this time, since the first connecting pipe (6) has a low pressure and the second connecting pipe (7) has a high pressure, the third check valve (32),
Refrigerant flows to the fourth check valve (3 buttons).

また、このサイクルの時、一部の液冷媒は各室内機側の
第2の接続配管(7b)、(7C)、(7d)の合流部
からバイパス配管04)へ入り、第3の流量調整装置O
5て低圧まで減圧されて第2の熱交換部(+6a)で第
2の分岐部0υの各室内機側の第2の接続配管(7b)
、(7C)、(7d)の合流部との間で、更に第1の熱
交換部09)で第2の流量制御装置へ流入する冷媒との
間で熱交換を行い蒸発した冷媒は、第1の接続配管(6
)へ入り、第4の逆止弁(33)、四方切換弁(2)、
アキュムレータ(4)を経て圧縮機(1)に吸入される
。一方、第1及び第2及び第3の熱交換部α印、(16
a)、(+6b)、(16C)、(16d)て熱交換し
冷却され過冷却度を十分につけられた上記第2の分岐部
Gυの冷媒は冷房しようとしている室内機(B)、(C
)へ流入する。
Also, during this cycle, some of the liquid refrigerant enters the bypass pipe 04) from the confluence of the second connection pipes (7b), (7C), and (7d) on each indoor unit side, and enters the bypass pipe 04). Equipment O
5, the pressure is reduced to low pressure, and the second connection pipe (7b) on each indoor unit side of the second branch part 0υ is connected to the second heat exchange part (+6a).
, (7C), and (7d), and the refrigerant that is evaporated through heat exchange with the refrigerant flowing into the second flow rate control device in the first heat exchange section 09). 1 connection piping (6
), the fourth check valve (33), the four-way switching valve (2),
It is sucked into the compressor (1) via the accumulator (4). On the other hand, the first, second and third heat exchange parts α mark, (16
a), (+6b), (16C), and (16d), the refrigerant in the second branch Gυ, which has been cooled by heat exchange and has been sufficiently subcooled, is sent to the indoor units (B) and (C) that are being cooled.
).

また、気液分離装置α2にて分離されたガス状冷媒と液
状冷媒の境界面である液面か、気液分離装置azの液抜
き配管(41)より下にある場合は、ガス状冷媒か液抜
き配管(41)に流入し第5の流量制御装置(42)に
て低圧まで減圧される。第5の流量制御装置(42)の
入口かガス状態のため、第5の流量制御装置(42)を
流れる冷媒は少ない。このため、液抜き配管(41)を
流れる冷媒は、第4の熱交換部(43)にて、気液分離
装置α2から第1の分岐部αωに流入する高圧ガス状冷
媒と熱交換して低圧の過熱ガスになって、第1の接続配
管(6)に流入する。
In addition, if the liquid level is the interface between the gaseous refrigerant and liquid refrigerant separated in the gas-liquid separator α2, or if it is below the liquid drain pipe (41) of the gas-liquid separator az, the gaseous refrigerant The liquid flows into the drain pipe (41) and is reduced to a low pressure by the fifth flow rate control device (42). Since the inlet of the fifth flow rate control device (42) is in a gas state, there is little refrigerant flowing through the fifth flow rate control device (42). Therefore, the refrigerant flowing through the liquid draining pipe (41) exchanges heat with the high-pressure gaseous refrigerant flowing from the gas-liquid separator α2 to the first branch αω in the fourth heat exchange part (43). The superheated gas becomes a low-pressure superheated gas and flows into the first connecting pipe (6).

逆に気液分離装置G3にて分離されたガス状冷媒と液状
冷媒の境界面である液面か、気液分離装置azの液抜き
配管(41)より上にある場合は、液状冷媒か液抜き配
管(41)に流入し第5の流量制御装置(42)にて低
圧まで減圧される。第5の流量制御装置(42)の入口
か液状態のため、第5の流量制御装置(42)を流れる
冷媒は、上記入り口かガス状状態の場合と比へ多い。こ
のため、液抜き配管(41)を流れる冷媒は、第4の熱
交換部(43)にて、気液分離装#03から第1の分岐
部aωに流入する高圧ガス状冷媒と熱交換しても、低圧
の過熱ガスにならず、2相状態で、第1の接続配管(6
)に流入する。
Conversely, if the liquid level is the interface between the gaseous refrigerant and the liquid refrigerant separated in the gas-liquid separator G3, or is above the liquid drain pipe (41) of the gas-liquid separator az, the liquid refrigerant or liquid It flows into the extraction pipe (41) and is depressurized to a low pressure by the fifth flow rate control device (42). Since the inlet of the fifth flow rate control device (42) is in a liquid state, the amount of refrigerant flowing through the fifth flow rate control device (42) is greater than when the inlet is in a gaseous state. Therefore, the refrigerant flowing through the liquid drain pipe (41) exchanges heat with the high-pressure gaseous refrigerant flowing from the gas-liquid separator #03 into the first branch part aω in the fourth heat exchange part (43). Even if the first connection pipe (6
).

なお、上記実施例では三方切換弁(8)を設けて室内機
側の第1の接続配管(6b)、(6c)、(6d)と、
第1の接続配管(6)または、第2の接続配管(7)に
切り換え可能に接続しているか、第5図に示すように2
つの電磁開閉弁(30)、(31)等の開閉弁を設けて
上述したように切り換え可能に接続しても同様な作用効
果か得られる。
In addition, in the above embodiment, a three-way switching valve (8) is provided to connect the first connection pipes (6b), (6c), (6d) on the indoor unit side,
Either it is switchably connected to the first connection pipe (6) or the second connection pipe (7), or it is connected to the second connection pipe (7) as shown in FIG.
Similar effects can be obtained even if two electromagnetic on-off valves (30), (31) or other on-off valves are provided and connected in a switchable manner as described above.

次に上記第1実施例の冷房主体運転における、第3の流
量制御装置α9の制御について説明する。
Next, the control of the third flow rate control device α9 in the cooling-based operation of the first embodiment will be explained.

第4図において冷凍サイクルの流量制御による流量か熱
源機側熱交換器(3)の処理能力より少ないと、気液分
離装置Oaに流入する冷媒の乾き度か低下し、ガス状冷
媒か不足し、気液分離装置QZ内のガス状冷媒と液状冷
媒の境界面である液面か上昇し、気液分離装置O2から
液状冷媒かガス状冷媒に混入して第1の分岐部α0)、
室内機側の第1の接続配管(6d)を経て、暖房しよう
としている室内機(D)へ流入することにより、室内機
(D)の室内側熱交換器(5d)の出口での過冷却度か
増大し暖房能力不足となる。また、気液分離装置α2の
液面か上昇することにより、液抜き配管(4I)へ液状
冷媒か流入し、第5の流量制御装置(42)の入り口か
液状態となるため、第5の流量制御装置(42)を流れ
る流量か増加し、第4の熱交換部(43)て熱交換され
ても、過熱ガス状態にならず、2相状態のまま、第1の
接続配管(6)に流入し、第2の温度検出器での検出温
度と第3の圧力検出器での検出圧力から求めた過熟度は
、小さくなる。そこで第3の流量制御装置α9の開度を
増加させることて冷凍サイクルの流量制御による流量を
増加させ、気液分離装置α2に流入する冷媒の乾き度を
増加させ、適性な量のガス状冷媒を確保し暖房しようと
している室内111(d)の暖房能力を確保てきる。
In Fig. 4, if the flow rate controlled by the flow rate of the refrigeration cycle is less than the processing capacity of the heat exchanger (3) on the heat source side, the dryness of the refrigerant flowing into the gas-liquid separator Oa will decrease, resulting in a shortage of gaseous refrigerant. , the liquid level at the interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separator QZ rises, and the liquid refrigerant or the gaseous refrigerant mixes from the gas-liquid separator O2 to the first branch part α0),
By flowing into the indoor unit (D) to be heated through the first connection pipe (6d) on the indoor unit side, supercooling occurs at the outlet of the indoor heat exchanger (5d) of the indoor unit (D). temperature increases, resulting in insufficient heating capacity. In addition, as the liquid level of the gas-liquid separator α2 rises, liquid refrigerant flows into the liquid drain pipe (4I) and becomes liquid at the entrance of the fifth flow rate control device (42). Even if the flow rate flowing through the flow rate control device (42) increases and heat is exchanged in the fourth heat exchanger (43), the first connection pipe (6) does not become a superheated gas state and remains in a two-phase state. The degree of overripeness determined from the temperature detected by the second temperature sensor and the pressure detected by the third pressure sensor becomes small. Therefore, by increasing the opening degree of the third flow rate control device α9, the flow rate by the flow rate control of the refrigeration cycle is increased, and the dryness of the refrigerant flowing into the gas-liquid separation device α2 is increased, and an appropriate amount of gaseous refrigerant is The heating capacity of the room 111(d) to be heated can be secured.

一方、冷凍サイクルの流量制御による流量が熱源機側熱
交換器(3)の処理能力より多いと、気液分離装置αり
に流入する冷媒の乾き度か増加し、ガス状冷媒の流量か
過多の状態になり、気液分離装置α2内のガス状冷媒と
液状冷媒の境界面である液面が低下し、気液分離装置α
のからガス状冷媒が液状冷媒に混入して第1の熱交換部
側に流入するため、第1の熱交換部α窃の出口、即ち第
2の流量制御装置03入り口での過冷却度が低下し、第
1及び第2及び第3の熱交換部α(2)、(16a) 
、(16b)、(+6c)、(16d)て熱交換能力不
足となり、第2の分岐部αυから冷房しようとしている
室内機(B)、(C)へ流入する冷媒の過冷却度か不足
し、冷媒の分配性か低下する。また、気液分離装置02
の液面か低下することにより、液抜き配管(41)へガ
ス状冷媒か流入し、第5の流量制御装置(42)の入り
口かガス状態となるため、第5の流量制御装置(42)
を流れる流量か減少し、第4の熱交換部(43)て熱交
換されて、過熱ガス状態になって、第1の接続配管(6
)に流入し、第2の温度検出器での検出温度と第3の圧
力検出器での検出圧力から求めた過熱度は、大きくなる
。そこで第3の流量制御装置09の開度を減少させるこ
とて冷凍サイクルの流量制御による流量を減少させ、気
液分離装置α2に流入する冷媒の乾き度を低下させ、適
性な量のガス状冷媒を確保しすることて第1の熱交換部
09)へのガス状冷媒の流入を防ぎ、冷房しようとして
いる室内機(B)、(C)への流入する冷媒の十分な過
冷却度を確保し、冷媒の分配性を確保てきる。
On the other hand, if the flow rate due to the flow rate control of the refrigeration cycle is greater than the processing capacity of the heat exchanger (3) on the heat source side, the dryness of the refrigerant flowing into the gas-liquid separator increases, and the flow rate of the gaseous refrigerant becomes excessive. The state of
Since the gaseous refrigerant mixes with the liquid refrigerant and flows into the first heat exchanger side, the degree of supercooling at the outlet of the first heat exchanger α, that is, the inlet of the second flow rate control device 03 increases. The first, second and third heat exchange parts α(2), (16a)
, (16b), (+6c), and (16d), the heat exchange capacity is insufficient, and the degree of supercooling of the refrigerant flowing from the second branch part αυ to the indoor units (B) and (C) that are attempting to cool the air is insufficient. , refrigerant distribution deteriorates. In addition, gas-liquid separation device 02
As the liquid level decreases, gaseous refrigerant flows into the liquid drain pipe (41) and enters the fifth flow rate control device (42) into a gas state.
The flow rate decreases, heat is exchanged in the fourth heat exchange section (43), the state becomes a superheated gas, and the first connection pipe (6
), and the degree of superheat determined from the temperature detected by the second temperature detector and the pressure detected by the third pressure detector increases. Therefore, by reducing the opening degree of the third flow rate control device 09, the flow rate controlled by the flow rate control of the refrigeration cycle is reduced, the dryness of the refrigerant flowing into the gas-liquid separation device α2 is reduced, and an appropriate amount of gaseous refrigerant is By ensuring that the gaseous refrigerant is prevented from flowing into the first heat exchange section 09), a sufficient degree of supercooling is ensured for the refrigerant flowing into the indoor units (B) and (C) that are attempting to cool the room. This ensures good refrigerant distribution.

以下第6図、第7図、第8図を用いて説明する。This will be explained below using FIGS. 6, 7, and 8.

第6図は上記第1実施例の第3の流量制御装置09の制
御についての構成図である。第1の温度検出器(23)
の検出温度と第1の圧力検出器(25)の検出圧力から
過冷却度(第1の過冷却度(SCI)とする)を第1の
過冷却度算出手段(27)にて算出し、第2の温度検出
器(51)の検出温度と第3の圧力検出器(52)の検
出圧力から第4の熱交換部(43)の出口の過熱度(第
1の過熱度(SHI)とする)を第1の過熱度算出手段
(28)にて算出し、制御手段(29)にて第1の過冷
却度及び第1の過熱度から第3の流量制御装置の開度を
決定し制御する。
FIG. 6 is a block diagram of the control of the third flow rate control device 09 of the first embodiment. First temperature detector (23)
The degree of supercooling (referred to as the first degree of supercooling (SCI)) is calculated by the first degree of supercooling calculating means (27) from the detected temperature and the detected pressure of the first pressure detector (25), The degree of superheat (first degree of superheat (SHI)) at the outlet of the fourth heat exchange section (43) is calculated from the temperature detected by the second temperature detector (51) and the pressure detected by the third pressure detector (52). ) is calculated by the first degree of superheat calculation means (28), and the degree of opening of the third flow rate control device is determined by the control means (29) from the first degree of supercooling and the first degree of superheat. Control.

第7図は上記第1実施例の電気接続を示す回路図である
。(60)は制御装置(59)内のマイクロコンピュー
タであり、CP U (61)、メモリ(62)、入力
回路(63)、出力回路(64)を有している。(65
)、(66)、(67)、(68)、(69)、(70
)はそれぞれ第1及び第2及び第3の温度検出器(23
)、(51)、(53)、第1及び第2及び第3の圧力
検出器(25)、(26)、(52)と直列な抵抗、(
71)は第1及び第2及び第3の温度検出器(23)、
(51)、(53)、第1及び第2及び第3の圧力検出
器(25)、(26)、(52)の検出出力をディジタ
ル出力に変換するA/D変換器であり、その出力は入力
回路(63)に与えられる。第3の流量制御装置α9の
開度を制御する制御トランジスタ(72)、(73)は
抵抗(74)、(75)を介して出力回路(74)に接
続されている。
FIG. 7 is a circuit diagram showing the electrical connections of the first embodiment. (60) is a microcomputer in the control device (59), and includes a CPU (61), a memory (62), an input circuit (63), and an output circuit (64). (65
), (66), (67), (68), (69), (70
) are the first, second and third temperature detectors (23
), (51), (53), resistors in series with the first, second and third pressure detectors (25), (26), (52), (
71) are first, second and third temperature detectors (23);
(51), (53) are A/D converters that convert the detection outputs of the first, second, and third pressure detectors (25), (26), and (52) into digital outputs; is given to the input circuit (63). Control transistors (72) and (73) that control the opening degree of the third flow rate control device α9 are connected to an output circuit (74) via resistors (74) and (75).

第8図はマイクロコンピュータ(60)のメモリ(62
)に記憶された第3の流量制御装置09の開度制御プロ
グラムを示すフローチャートである。ステップ(80)
にて、第1の過熱度SHIかあらかしめ設定した第1の
設定値以上かを判定し、以上の場合は、ステップ(82
)へ、そうでない場合はステップ(81)へ進む。ステ
ップ(81)では第3の流量制御装置しの開度を増加さ
せる。ステップ(82)では、第1の過冷却度SCIか
あらかしめ設定した第2の設定値以上かを判定し、以上
の場合はステップ(84)へ そうでない場合はステッ
プ(83)へ進む。
Figure 8 shows the memory (62) of the microcomputer (60).
) is a flowchart showing an opening degree control program for the third flow rate control device 09 stored in FIG. Step (80)
At step (82), it is determined whether the first superheat degree SHI is equal to or higher than the preset first set value.
), otherwise proceed to step (81). In step (81), the opening degree of the third flow rate control device is increased. In step (82), it is determined whether the first degree of supercooling SCI is greater than or equal to a predetermined second setting value, and if so, proceed to step (84); otherwise, proceed to step (83).

ステップ(83)では第3の流量制御装置09の開度を
減少させる。ステップ(84)では第3の流量制御装置
09の開度を変化させない。
In step (83), the opening degree of the third flow rate control device 09 is decreased. In step (84), the opening degree of the third flow rate control device 09 is not changed.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明の空気調和装置は、圧縮
機、四方切換弁、熱源機側熱交換器、アキュムレータ等
、よりなる1台の熱源機と、室内側熱交換器、第1の流
量M釦装置等からなる複数台の室内機とを、第1、第2
の接続配管を介して接続したものにおいて、上記複数台
の室内機の上記室内側熱交換器の一方を上記第1の接続
配管または、気液分離装置を介して第2の接続配管に切
り換え可能に接続する第1の分岐部と、上記複数台の室
内機の上記室内側熱交換器の他方を、上記第1の流量制
御装置を介して上記第2の接続配管に接続してなる第2
の分岐部とを上記気液分離装置及び第2の流量制御装置
を介して接続すると共に、上記第2の分岐部と第1の接
続配管を第4の流量制御装置を介して接続し、更に一端
か上記第2の分岐部に接続され、他端か第3の流量制御
装置を介して上記第1の接続配管へ接続されたバイパス
配管を備え、上記第3の流量制御装置と上記第1の接続
配管との間のバイパス配管と、上記第2の接続配管と上
記第2の流量制御装置を接続する配管との間て熱交換を
行う第1の熱交換部を備え、更に一端か上記気液分離装
置に接続され、他端か第5の流量制御装置を介して上記
第1の接続配管へ接続された液抜き配管を備え、上記第
5の流量制御装置と上記第1の接続配管との間の液抜き
配管と、上記気液分離装置と第1の分岐部を接続する配
管との間て熱交換を行う第4の熱交換部を備え、上記第
1の分岐部、第2の分岐部、第2の流量制御装置、第3
の流量制御装置、第4の流量制御装置、第5の流量制御
装置、第1の熱交換部、第4の熱交換部、液抜き配管及
びバイパス配管を内蔵させた中継機を、上記熱源機と上
記複数台の室内機との間に介在させると共に、上記第1
の接続配管は上記第2の接続配管より大径に構成し、上
記第1の接続配管を低圧に、上記第2の接続配管を高圧
に切換え可能とする切換弁を上記熱源機の上記第1の及
び第2の接続配管間に備えたものであることを特徴とす
る空気調和装置。
As explained above, the air conditioner of the present invention includes one heat source device including a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., an indoor heat exchanger, and a first flow rate M. A plurality of indoor units consisting of button devices, etc. are connected to the first and second indoor units.
in which one of the indoor heat exchangers of the plurality of indoor units can be switched to the first connection pipe or the second connection pipe via the gas-liquid separation device. and the other of the indoor heat exchangers of the plurality of indoor units are connected to the second connection pipe via the first flow rate control device.
connecting the branch part through the gas-liquid separation device and a second flow rate control device, and connecting the second branch unit and the first connection pipe through a fourth flow rate control device, and further a bypass pipe connected at one end to the second branch section and at the other end connected to the first connection pipe via a third flow rate control device, the third flow rate control device and the first a first heat exchange section that performs heat exchange between a bypass piping between the connecting piping and a piping connecting the second connecting piping and the second flow rate control device; a liquid draining pipe connected to the gas-liquid separation device and connected to the first connecting pipe via the other end or the fifth flow rate control device, the fifth flow rate control device and the first connection line; and a fourth heat exchange section that performs heat exchange between a liquid drain pipe between the gas-liquid separator and the first branch section, and a fourth heat exchange section that performs heat exchange between the first branch section and the second branch section. branch, a second flow control device, a third
A repeater incorporating a flow rate control device, a fourth flow rate control device, a fifth flow rate control device, a first heat exchange section, a fourth heat exchange section, a liquid drain pipe, and a bypass pipe is connected to the heat source device. and the plurality of indoor units, and the first
The connecting pipe is configured to have a larger diameter than the second connecting pipe, and a switching valve that enables switching the first connecting pipe to low pressure and the second connecting pipe to high pressure is connected to the first connecting pipe of the heat source device. An air conditioner, characterized in that it is provided between the first and second connecting pipes.

従って、冷暖房を選択的に、かつ一方の室内機では冷房
、他方の室内機では暖房を同時に行うことかでき、しか
も室内機へ分配される前に液冷媒の過冷却度を十分にと
ることかてきるのて液冷媒の分配性か向上する。
Therefore, it is possible to perform heating and cooling selectively, with one indoor unit performing cooling and the other indoor unit heating at the same time.Moreover, it is possible to sufficiently subcool the liquid refrigerant before it is distributed to the indoor units. This improves the distribution of liquid refrigerant.

また、冷房主体運転時における制御を、上記気液分離装
置内のガス状冷媒と液状冷媒の境界面を上記液抜き配管
の位置より低く、かつ第1の熱交換部出口の冷媒状態を
設定した過冷却度になるように制御を行うことで、暖房
をしようとしている室内機の適正な暖房能力を確保し、
冷房しようとしている室内機へ流入する冷媒の十分な過
冷却度を確保することかできる。即ち、気液分離装置内
のガス状冷媒と液状冷媒の境界面を液抜き配管の位置よ
り低くなるように第3の流量制御装置の開度を増加させ
ることて、冷凍サイクルの流量制御による流量か熱源機
側熱交換機の処理能力より少ないために、中継機に流入
する冷媒の乾き度か低下して、ガス状冷媒の不足による
暖房能力不足の状態になることを防止し、かつ第2の流
量制御装置の入り口側の過冷却度を、設定した過冷却度
になるように第3の流量制御装置の開度を減少させるこ
とて、冷凍サイクルの流量制御による流量か熱源機側熱
交換機の熱交換能力より多いために、中継機に流入する
冷媒の乾き度か増加して、ガス状冷媒の流量か過多の状
態になることを防止し、暖房しようとしている室内機へ
流入しきれないガス状冷媒か第2の熱交換部へ さらに
第1の熱交換部へ流入し、第1及び第2の熱交換部で熱
交換能力不足となり、第2の分岐部から冷房しようとし
ている室内機へ流入する冷媒の過冷却度か不足し、冷媒
の分配性が低下するような状態になることを防止するこ
とかできる。
In addition, control during cooling-main operation is performed by setting the interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separation device to be lower than the position of the liquid drain pipe, and setting the refrigerant state at the outlet of the first heat exchange section. By controlling the temperature to a supercooling degree, we ensure that the indoor unit that is trying to heat the room has an appropriate heating capacity.
It is possible to ensure a sufficient degree of subcooling of the refrigerant flowing into the indoor unit to be cooled. That is, by increasing the opening degree of the third flow rate control device so that the interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separator is lower than the position of the liquid drain pipe, the flow rate by controlling the flow rate of the refrigeration cycle can be increased. This prevents the dryness of the refrigerant flowing into the repeater from decreasing due to the processing capacity of the heat exchanger on the heat source equipment side, thereby preventing the heating capacity from being insufficient due to the lack of gaseous refrigerant. By reducing the degree of opening of the third flow rate control device so that the degree of supercooling on the inlet side of the flow rate control device becomes the set degree of supercooling, the flow rate due to the flow rate control of the refrigeration cycle or that of the heat exchanger on the heat source machine side is reduced. Because the amount exceeds the heat exchange capacity, the dryness of the refrigerant flowing into the repeater increases, preventing the flow rate of gaseous refrigerant from becoming excessive, and prevents gas that cannot flow into the indoor unit that is trying to heat. The refrigerant flows into the second heat exchange section, and then flows into the first heat exchange section, where the heat exchange capacity is insufficient in the first and second heat exchange sections, and flows from the second branch section to the indoor unit that is trying to cool the air. It is possible to prevent a situation in which the degree of subcooling of the inflowing refrigerant is insufficient and the distribution of the refrigerant is reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1実施例の空気調和装置の冷媒系
を中心とする全体構成図である。第2図は第1図で示し
た一実施例の冷房又は暖房のみの運転動作状態図、第3
図は第1図で示した一実施例の暖房主体(暖房しようと
している室内機の合計容量か冷房しようとしている室内
機の合計容量より大きい場合)の運転動作状態図、第4
図は第1図で示した一実施例の冷房主体(冷房しようと
している室内機の合計容量か暖房しようとしている室内
機の合計容量より大きい場合)の運転動作状態図、第5
図はこの発明の他の実施例の空気調釦装置の冷媒系を中
心とする全体構成図、第6図は第1実施例の第3の流量
制御装置の制御についての構成図、第7図はその電気接
続を示す回路図、第8図はその動作を示すフローチャー
トである。 図において、(A)は熱源機、(B)、(C)、(D)
は室内機、(E)は中継機、(1)は圧縮機、(2)は
四方切換弁、(3)は熱源機側熱交換器、(4)はアキ
ュムレータ、(5b)、(5c)、(5d)は室内側熱
交換器、(6)は第1の接続配管、(6b)、(6C)
、(6d)は室内機側の第1の接続配管、(7)は第2
の接続配管、(7b)、(7C)、(7d)は室内機側
の第2の接続配管、(8b)、(8C)、(8d)は三
方切換弁、(9b)、(9C)、(9d)は第1の流量
調整装置、叫は第1の分岐部、αDは第2の分岐部、O
2は気液分離装置、03は第2の流量調整装置、04)
はバイパス配管、09は第3の流量調整装置、(16a
)、<16b)、(16c)、(+6d)は第2及び第
3の熱交換部、(19)は第1の熱交換部、07)は第
4の流量制御装置、(23)は第1の温度検出器、(2
5)は第1の圧力検出器、(51)は第2の温度検出器
、(52)は第3の圧力検出器、(27)は第1の過冷
却度算出手段、(28)は第1の過熱度算出手段、(2
9)は制御手段、(32)は第3の逆止弁、(33)は
第4の逆止弁、(34)は第5の逆止弁、(35)は第
6の逆止弁、(4o)は切換弁、(41)は液抜き配管
、(42)は第5の流量制御装置、(43)は第4の熱
交換部である。 なお、図中、同一符号は同一 または相当部分を示す。 代  理  人   大  岩  増  雄第8図
FIG. 1 is an overall configuration diagram centered on the refrigerant system of an air conditioner according to a first embodiment of the present invention. Figure 2 is a diagram of the operating state of only cooling or heating of the embodiment shown in Figure 1;
The figure is a diagram of the operating state of the heating main body (when the total capacity of the indoor units trying to heat the room is larger than the total capacity of the indoor units trying to cool the room) of the embodiment shown in Figure 1.
The figure is a diagram of the operating state of the cooling-main unit (when the total capacity of the indoor units attempting to cool the system is larger than the total capacity of the indoor units attempting to heat the vehicle) of the embodiment shown in Figure 1.
The figure is an overall configuration diagram centered on the refrigerant system of an air conditioning button device according to another embodiment of the present invention, FIG. 6 is a configuration diagram of the control of the third flow rate control device of the first embodiment, and FIG. 7 is a circuit diagram showing its electrical connections, and FIG. 8 is a flow chart showing its operation. In the figure, (A) is a heat source device, (B), (C), (D)
is an indoor unit, (E) is a repeater, (1) is a compressor, (2) is a four-way switching valve, (3) is a heat exchanger on the heat source side, (4) is an accumulator, (5b), (5c) , (5d) is the indoor heat exchanger, (6) is the first connection pipe, (6b), (6C)
, (6d) is the first connection pipe on the indoor unit side, and (7) is the second connection pipe.
(7b), (7C), (7d) are the second connection pipes on the indoor unit side, (8b), (8C), (8d) are three-way switching valves, (9b), (9C), (9d) is the first flow rate adjustment device, O is the first branch, αD is the second branch, O
2 is a gas-liquid separation device, 03 is a second flow rate adjustment device, 04)
09 is a bypass pipe, 09 is a third flow rate adjustment device, (16a
), <16b), (16c), (+6d) are the second and third heat exchange parts, (19) is the first heat exchange part, 07) is the fourth flow rate control device, and (23) is the second heat exchange part. 1 temperature sensor, (2
5) is the first pressure detector, (51) is the second temperature detector, (52) is the third pressure detector, (27) is the first supercooling degree calculation means, and (28) is the first 1 superheat degree calculation means, (2
9) is a control means, (32) is a third check valve, (33) is a fourth check valve, (34) is a fifth check valve, (35) is a sixth check valve, (4o) is a switching valve, (41) is a drain pipe, (42) is a fifth flow rate control device, and (43) is a fourth heat exchange section. In addition, the same symbols in the figures indicate the same or equivalent parts. Agent Masuo Oiwa Figure 8

Claims (1)

【特許請求の範囲】  圧縮機、四方切換弁、熱源機側熱交換機、アキュムレ
ータ等、よりなる1台の熱源機と、室内側熱交換器、第
1の流量制御装置等からなる複数台の室内機とを、第1
、第2の接続配管を介して接続したものにおいて、上記
複数台の室内機の上記室内側熱交換器の一方を上記第1
の接続配管または、気液分離装置を介して第2の接続配
管に切り換え可能に接続する第1の分岐部と、上記複数
台の室内機の上記室内側熱交換器の他方を、上記第1の
流量制御装置を介して上記第2の接続配管に接続してな
る第2の分岐部とを上記気液分離装置及び第2の流量制
御装置を介して接続すると共に、上記第2の分岐部と第
1の接続配管を第4の流量制御装置を介して接続し、更
に一端が上記第2の分岐部に接続され、他端が第3の流
量制御装置を介して上記第1の接続配管へ接続されたバ
イパス配管を備え、上記第3の流量制御装置と上記第1
の接続配管との間のバイパス配管と、上記第2の接続配
管と上記第2の流量制御装置を接続する配管との間で熱
交換を行う第1の熱交換部を備え、上記気液分離装置内
のガス状冷媒と液状冷媒の境界面を検知する境界面検知
手段を備え、上記第1の分岐部、第2の分岐部、第2の
流量制御装置、第3の流量制御装置、第4の流量制御装
置、第1の熱交換部、境界面検知手段及びバイパス配管
を内蔵させた中継機を、上記熱源機と上記複数台の室内
機との間に介在させると共に、上記第1の接続配管は上
記第2の接続配管より大径に構成し、 上記第1の接続配管を低圧に、上記第2の接続配管を高
圧に切換え可能とする切換弁を上記熱源機の上記第1の
及び第2の接続配管間に備え、上記気液分離装置内のガ
ス状冷媒と液状冷媒の境界面をあらかじめ設定した位置
より低く、かつ第1の熱交換部出口の冷媒状態を設定し
た過冷却度になるように制御することを特徴とする空気
調和装置。
[Scope of Claims] One heat source device consisting of a compressor, a four-way switching valve, a heat exchanger on the heat source side, an accumulator, etc., and a plurality of indoor units consisting of an indoor heat exchanger, a first flow rate control device, etc. machine and the first
, connected via a second connection pipe, one of the indoor heat exchangers of the plurality of indoor units is connected to the first connection pipe.
or a first branch part that is switchably connected to a second connection pipe via a gas-liquid separator, and the other of the indoor heat exchangers of the plurality of indoor units. a second branch section connected to the second connection pipe via the flow rate control device, and a second branch section connected to the second connection pipe via the gas-liquid separation device and the second flow rate control device; and a first connecting pipe via a fourth flow control device, one end of which is connected to the second branch, and the other end of which is connected to the first connecting pipe via a third flow rate control device. a bypass pipe connected to the third flow rate control device and the first flow rate control device;
a first heat exchange section that performs heat exchange between a bypass piping between the connecting piping and a piping connecting the second connecting piping and the second flow rate control device; Boundary surface detection means for detecting the boundary surface between the gaseous refrigerant and the liquid refrigerant in the apparatus is provided, and the first branch section, the second branch section, the second flow control device, the third flow control device, and the third flow control device are provided. A repeater having a built-in flow rate control device, a first heat exchanger, a boundary surface detection means, and bypass piping of No. 4 is interposed between the heat source device and the plurality of indoor units, and the first The connecting pipe is configured to have a larger diameter than the second connecting pipe, and a switching valve that enables switching the first connecting pipe to low pressure and the second connecting pipe to high pressure is installed in the first connecting pipe of the heat source device. and a supercooling device provided between the second connecting pipe, in which the interface between the gaseous refrigerant and the liquid refrigerant in the gas-liquid separation device is lower than a predetermined position, and the refrigerant state at the outlet of the first heat exchange section is set. An air conditioner characterized by controlling the temperature to
JP2107910A 1990-04-23 1990-04-23 Air conditioner Expired - Lifetime JP2525927B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2107910A JP2525927B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU74381/91A AU636215B2 (en) 1990-04-23 1991-04-15 Air conditioning apparatus
EP91303443A EP0453271B1 (en) 1990-04-23 1991-04-17 Air conditioning apparatus
ES199191303443T ES2046853T3 (en) 1990-04-23 1991-04-17 AIR CONDITIONER.
DE91303443T DE69100424T2 (en) 1990-04-23 1991-04-17 Air conditioner.
US07/687,434 US5156014A (en) 1990-04-23 1991-04-18 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107910A JP2525927B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046367A true JPH046367A (en) 1992-01-10
JP2525927B2 JP2525927B2 (en) 1996-08-21

Family

ID=14471161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107910A Expired - Lifetime JP2525927B2 (en) 1990-04-23 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2525927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759008A (en) * 2018-06-12 2018-11-06 广东美的暖通设备有限公司 Control method, device and the air-conditioning with it of air-conditioning
CN115900117A (en) * 2023-01-10 2023-04-04 中国空气动力研究与发展中心低速空气动力研究所 Heat exchanger for icing wind tunnel thermal flow field, uniformity control device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320574A (en) * 1989-06-19 1991-01-29 Sanyo Electric Co Ltd Air-conditioning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320574A (en) * 1989-06-19 1991-01-29 Sanyo Electric Co Ltd Air-conditioning apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759008A (en) * 2018-06-12 2018-11-06 广东美的暖通设备有限公司 Control method, device and the air-conditioning with it of air-conditioning
CN108759008B (en) * 2018-06-12 2020-09-04 广东美的暖通设备有限公司 Control method and device of air conditioner and air conditioner with control device
US11333379B2 (en) 2018-06-12 2022-05-17 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Air conditioner controlling method and apparatus and air conditioner having the same
CN115900117A (en) * 2023-01-10 2023-04-04 中国空气动力研究与发展中心低速空气动力研究所 Heat exchanger for icing wind tunnel thermal flow field, uniformity control device and method
CN115900117B (en) * 2023-01-10 2023-04-28 中国空气动力研究与发展中心低速空气动力研究所 Heat exchanger for icing wind tunnel hot flow field, uniformity control device and uniformity control method

Also Published As

Publication number Publication date
JP2525927B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
JPWO2019053876A1 (en) Air conditioner
JP2875507B2 (en) Air conditioner
JP2004317091A (en) Air conditioner, refrigerant circuit of air conditioner and control method for refrigerant circuit in air conditioner
JP2944507B2 (en) Air conditioner
JPH046367A (en) Air-conditioner
JP2598550B2 (en) Air conditioner
JPH046372A (en) Air conditioner
JP2718308B2 (en) Air conditioner
JP2601052B2 (en) Air conditioner
JP2727733B2 (en) Air conditioner
JP2765970B2 (en) Air conditioner
JP2536229B2 (en) Air conditioner
JPH046364A (en) Air-conditioner
JPH0752044B2 (en) Air conditioner
JPH04347466A (en) Air conditioner
JPH04371763A (en) Air conditioner
JP2508310B2 (en) Air conditioner and air conditioner control method
JP2508311B2 (en) Air conditioner
JPH086980B2 (en) Air conditioner
JPH04110573A (en) Air conditioner
JP3092214B2 (en) Air conditioner
JP2723380B2 (en) Air conditioner
JPH03125869A (en) Air conditioner
JPH05231749A (en) Air conditioner
JPH04366373A (en) Air conditioning apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080531

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090531

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100531

Year of fee payment: 14

EXPY Cancellation because of completion of term