JPH04629B2 - - Google Patents

Info

Publication number
JPH04629B2
JPH04629B2 JP11805981A JP11805981A JPH04629B2 JP H04629 B2 JPH04629 B2 JP H04629B2 JP 11805981 A JP11805981 A JP 11805981A JP 11805981 A JP11805981 A JP 11805981A JP H04629 B2 JPH04629 B2 JP H04629B2
Authority
JP
Japan
Prior art keywords
water
dilution
section
automatic
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11805981A
Other languages
Japanese (ja)
Other versions
JPS5837559A (en
Inventor
Takashi Tamagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOTSUKAIDO KAIHATSUKYOKU KAIHATSU DOBOKU KENKYUSHOCHO
Original Assignee
HOTSUKAIDO KAIHATSUKYOKU KAIHATSU DOBOKU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOTSUKAIDO KAIHATSUKYOKU KAIHATSU DOBOKU KENKYUSHOCHO filed Critical HOTSUKAIDO KAIHATSUKYOKU KAIHATSU DOBOKU KENKYUSHOCHO
Priority to JP56118059A priority Critical patent/JPS5837559A/en
Publication of JPS5837559A publication Critical patent/JPS5837559A/en
Publication of JPH04629B2 publication Critical patent/JPH04629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 本発明は、河川、湖沼、海域等の公共用水域に
おける環境水および工業排水、工業用水、上水用
原水あるいは下水などの水質試験として、衛生学
上の水質を判定するのに重要な細菌試験を、迅速
かつ衛生的に行い、その試験工程を自動かつ連続
的に操作し測定することのできる装置の発明に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a method for determining hygienic water quality as a water quality test for environmental water, industrial wastewater, industrial water, raw water for drinking water, sewage, etc. in public water bodies such as rivers, lakes, sea areas, etc. This invention relates to an apparatus that can quickly and hygienically carry out important bacterial tests in the field of research, and that can automatically and continuously operate and measure the testing process.

細菌の測定試験は、周知の通り水の衛生学的安
全性の度合の確認や、排出処理施設の能率を判定
するのに必要不可欠なものである。
As is well known, bacterial measurement tests are essential for confirming the degree of sanitary safety of water and determining the efficiency of wastewater treatment facilities.

特に、大腸菌群数の測定は水質汚濁試験の一つ
として水質判定の基礎をなす極めて重要な項目で
あり、とりわけ公害防止法における環境水質基準
項目および水質汚濁防止法に基づく排出基準項目
として測定が義務付けられている。
In particular, the measurement of the number of coliform bacteria is an extremely important item that forms the basis of water quality judgment as one of the water pollution tests, and is especially important as an environmental water quality standard item under the Pollution Control Act and a discharge standard item based on the Water Pollution Control Act. Mandatory.

また、現在、河川や湖沼、海域等においては水
質管理上、公共用水域における水質の継続的な監
視や異常水の発見など環境基準項目を主要な測定
項目として水質の常時監視をめざして数多くの自
動監視装置の設置がなされており、種々の自動化
された測定装置による観測が行われている。
Currently, in rivers, lakes, marine areas, etc., a large number of efforts are being made to constantly monitor water quality, with environmental standard items as the main measurement items, such as continuous monitoring of water quality in public water bodies and detection of abnormal water. Automatic monitoring equipment has been installed, and observations are being made using various automated measuring devices.

しかし、現状の水質監視装置の測定項目には、
まだ細菌を指標とする自動化された測定装置はな
く、特に生活環境項目の一つとなつている大腸菌
群数を自動連続的に測定する装置は見当たらな
い。
However, the measurement items of current water quality monitoring devices include:
There is still no automated measuring device that uses bacteria as an indicator, and in particular, there is no device that can automatically and continuously measure the number of coliform bacteria, which is one of the living environment items.

従つて本発明による細菌連続自動測定装置は、
その指標項目として早急に望まれていた。
Therefore, the continuous automatic bacterial measurement device according to the present invention has the following features:
This was urgently desired as an indicator item.

従来、細菌の測定試験は上水試験法、衛生試験
法等に記載されている如く、検水を目的の細菌の
種類に適した培養液に植種し、一定時間繁殖に適
した温度に培養し増殖させ、その増殖した菌体ま
たは増殖状態によつて判断された方法で判定し、
その菌体数を求めるものである。
Traditionally, bacteria measurement tests involve inoculating sampled water into a culture solution suitable for the type of bacteria and culturing it at a temperature suitable for reproduction for a certain period of time, as described in clean water testing methods, sanitary testing methods, etc. and grow it, and judge it by a method determined by the grown bacterial cells or growth state,
The number of bacterial cells is determined.

特に、「水質汚濁に係る環境基準」における大
腸菌群数の測定は、“最確数による定量法”と言
われるもので、検水10ml、1ml、0.1ml、0.01ml
……のように連続四段階(試料量が0.1ml以下の
場合は1mlに希釈して用いる。)の五本ずつ
BGLB発酵管に移植し、35〜37℃、48±3時間培
養する。
In particular, the measurement of the number of coliform bacteria in the "Environmental Standards Related to Water Pollution" is called the "quantification method using the most probable number", and the test water is 10 ml, 1 ml, 0.1 ml, 0.01 ml.
Five bottles each in four consecutive stages (if the sample amount is less than 0.1 ml, dilute to 1 ml)
Transfer to a BGLB fermentation tube and culture at 35-37°C for 48±3 hours.

ガス発生を認めたものを大腸菌群数陽性管と
し、各試料量における陽性管数を求め、これから
100ml中の最確数を最確数表を用いて算出する。
The tubes in which gas generation was observed are considered to be positive for coliform count, and the number of positive tubes for each sample amount is determined.
Calculate the most probable number in 100 ml using the most probable number table.

この際、検水はその最大量を移植したものの全
部かまたは大多数の大腸菌群陽性となるように、
また、最小量を移植し、その全部かまたは大多数
が大腸菌群陰性となるように適当に希釈して用い
る、所謂十倍希釈法または十進法希釈法と呼ばれ
るものである。
At this time, the sample water should be tested so that all or most of the transplanted water will be positive for coliform bacteria.
Another method is the so-called 10-fold dilution method or decimal dilution method, in which a minimum amount is transplanted and diluted appropriately so that all or most of the transplanted sample is negative for coliform bacteria.

この方法によつて前述の細菌試験を行うために
は試験室での手分析による数多くの複雑な操作工
程と多大の時間を要するもので人為的誤差を起こ
りやすく、細菌の種類によつては取扱いの不注意
で感染を招く恐れもある。
In order to perform the above-mentioned bacterial test using this method, it requires a large number of complicated operating steps and a large amount of time due to manual analysis in the laboratory, which is prone to human error, and may be difficult to handle depending on the type of bacteria. There is also a risk of infection due to carelessness.

また、公共用水域など広範囲の観測地点をもつ
細菌試験においても、現地で前述のごとき試験操
作を行うことはむずかしく、通常、細菌用の採水
器によつて試料水を採取し、要冷・保存を行い数
時間以内に準備された試験室において速やかに試
験操作を行わなくてはならない実情にある。
In addition, even in bacterial tests that involve a wide range of observation points, such as public water bodies, it is difficult to perform the above-mentioned test operations on-site, and sample water is usually collected using a water sampler for bacteria, which requires cooling. The current situation is that test operations must be performed promptly in a prepared test room within a few hours of storage.

従つて試料水に運搬に係わる交通の停滞や遠距
離による試験操作の遅れなどによつて試料水の変
質を招く恐れも生じるため、試験操作の迅速性に
欠け、また緊急時における準備の不足など種々の
障害も起こりやすく、水質管理上多くの問題点が
ある。
Therefore, there is a risk of deterioration of the quality of the sample water due to traffic stagnation related to transporting the sample water or delays in test operations due to long distances, resulting in a lack of promptness in test operations and a lack of preparation for emergencies. Various disorders are likely to occur, and there are many problems in water quality management.

従つて、細菌を取扱う試験においては、熟練を
要した技術者の必要性はもとより充分に設備の整
つた環境施設も備えなければならないため多大な
費用を要するものである。
Therefore, tests involving bacteria require not only highly skilled technicians but also fully equipped environmental facilities, which requires a great deal of expense.

本発明は、かかる問題を解決するためなしたも
ので、直接採取した試料水を直ちに自動的に操作
し連続して測定が行える細菌の自動測定装置を提
供するものである。
The present invention was made to solve this problem, and provides an automatic bacterial measurement device that can immediately and automatically operate and continuously measure directly collected sample water.

一般に、ある検水中に細菌の存在を目測によつ
て確認することはむずかしい。従つて通常検水を
適当な培養液に植種し、その増殖した培養液の状
態を種々の方法で判定することが行われている。
その判定の一つに次のようなものがある。
Generally, it is difficult to visually confirm the presence of bacteria in a given water sample. Therefore, it is common practice to inoculate sample water into an appropriate culture solution and to determine the state of the culture solution in which it has grown using various methods.
One of the judgments is as follows.

細菌を有する検水を培養液に植種し、経時的に
その増殖した細胞の変化数をグラフに表わすと第
7図のAのような生育曲線が得られる。
When a sample water containing bacteria is inoculated into a culture solution and the change in the number of proliferated cells is graphed over time, a growth curve as shown in A in FIG. 7 is obtained.

この生育曲線による細胞の生育過程は、通常、
図中の四つの時期に分けられる。
The cell growth process according to this growth curve is usually
It is divided into four periods in the figure.

ここで、細胞数の増加のほとんどない誘導期を
経て細菌は急激に増殖を始める。最初の細胞数を
仮にaとすると、細胞は二分裂によつて増殖する
ので 一世代後の細胞数 =a×2=a×21 二世代後の細胞数 =a×2×2=a×22 n 世代後の細胞数b = =a×2n 従つて対数期においては細胞数bは指数的に増加
する。
Here, bacteria begin to rapidly proliferate after a lag phase in which there is almost no increase in cell number. If the initial number of cells is a, cells proliferate by binary fission, so the number of cells after one generation = a x 2 = a x 2 1 The number of cells after two generations = a x 2 x 2 = a x Number of cells after 2 2 n generations b = = a x 2 n Therefore, in the logarithmic phase, the number of cells b increases exponentially.

両辺の対数をとると log b=log a+n log 2 n=(log b+log a)/log 2 n世代に要した時間をt、細胞の平均世代時間を
gとすると g=t/n=log 2×t/log b−log a=0.301 t/
log b−log a となる。同一菌株・同一培養条件においては、g
とlog aは、一定であるから、対数期における細
胞数の対数(log b)と時間(t)とは直線関係
にある。同様に、ある細胞数の細菌を培養して増
殖した細胞の経時的な変化を濁度計もしくは分光
光度計で測定すると、第7図のBのような曲線が
得られる。
Taking the logarithm of both sides, log b=log a+n log 2 n=(log b+log a)/log 2 If the time required for n generations is t, and the average cell generation time is g, then g=t/n=log 2× t/log b-log a=0.301 t/
log b−log a. For the same strain and the same culture conditions, g
Since and log a are constant, there is a linear relationship between the logarithm of the number of cells in the logarithmic phase (log b) and time (t). Similarly, when a certain number of bacteria are cultured and changes in the proliferated cells over time are measured using a turbidity meter or a spectrophotometer, a curve like B in FIG. 7 is obtained.

この曲線の生育過程の対数期においては前述と
同様の直接関係があり、この直線関係にある任意
の培養時間の測定値を求めることによつて、その
細菌の増殖細胞数を知ることができるものとされ
ている。
In the logarithmic phase of the growth process of this curve, there is a direct relationship similar to that described above, and by obtaining the measured value for any culture time that has this linear relationship, the number of proliferating cells of the bacteria can be determined. It is said that

従つて前述から次のようなことがいえる。 Therefore, the following can be said from the above.

今、ある細胞Eを互いに異なる細胞の数量とし
てそれぞれe1、e2、e3とし、これを同一の条件で
培養しその増殖経過を濁度計もしくは分光光度計
で測定すると、第7図のCのような生育曲線が得
られる。
Now, if a certain cell E has different numbers of cells e1, e2, and e3, and they are cultured under the same conditions and their growth progress is measured with a turbidity meter or spectrophotometer, it will look like C in Figure 7. A growth curve can be obtained.

ただし、e1>e2>e3とする。ここでe1、e2、e3
における各生育曲線の共通する対数期の区間を求
め、これをt1〜t2とする。
However, e1>e2>e3. where e1, e2, e3
Find the common logarithmic phase interval of each growth curve in , and define this as t1 to t2.

今、この区間に任意の培養時間tmを設け、こ
のtmと交差する各生育曲線の交点を求め、その
交点における関係を第7図のDに表わすと、培養
時間tmにおける増殖細胞数の測定値が、その細
胞の植種時における互いに異なる細胞数としての
関係曲線が得られる。
Now, set an arbitrary culture time tm in this section, find the intersection of each growth curve that intersects with this tm, and show the relationship at the intersection as D in Figure 7.The measured value of the number of proliferating cells at the culture time tm However, a relationship curve representing the number of cells that differ from each other at the time of seeding of the cells can be obtained.

従つて、前述のごとく対数期の区間にあつて直
線関係の範囲が広く、かつ、種々の測定条件を満
たすような培養時間を設定し、その時間における
細菌の細胞数の異なる増殖細胞数の測定値を計り
それを標準線として作成することによつて、新た
に同一条件で求めた未知細胞数の培養液を測定す
ることによつて植種前の正確な細胞数を知ること
が可能となる。
Therefore, as mentioned above, the culture time is set such that the range of the linear relationship is wide in the logarithmic phase interval and satisfies various measurement conditions, and the number of proliferating cells with different numbers of bacterial cells at that time is measured. By measuring the value and creating it as a standard line, it becomes possible to know the exact number of cells before inoculation by measuring the culture solution with the unknown number of cells newly determined under the same conditions. .

前述を基にして、一般に細菌の連続自動測定化
を具体化して行うには、下記のような工程操作が
必要である。
Based on the above, in general, the following process operations are required to carry out continuous automatic measurement of bacteria.

検水の自動採取。 Automatic collection of water test.

検水の細菌数の推定。 Estimating the number of bacteria in sampled water.

検水の自動希釈調整。 Automatic dilution adjustment of test water.

希釈調整後の自動植種・自動培養。 Automatic seeding and automatic cultivation after dilution adjustment.

植種培養後の自動測定・測定値の自動記録。 Automatic measurement and automatic recording of measured values after inoculation cultivation.

工程各部の自動殺菌・自動洗浄。 Automatic sterilization and automatic cleaning of each part of the process.

各部の連続自動操作による制御。 Control by continuous automatic operation of each part.

現在、前述の各工程を自動的に行うことのでき
るものは、の自動採取装置、 の自動植種・自動培養、 の自動測定・測定値の自動記録装置、 の自動殺菌・自動洗浄操作などである。
Currently, the above-mentioned processes can be performed automatically using automatic collection equipment, automatic inoculation and cultivation, automatic measurement and automatic recording of measured values, and automatic sterilization and cleaning operations. be.

しかし、 の検水の細菌数の推定は、の植種後の増殖
細菌数が濁度計もしくは分光光度計で測定しうる
範囲が限られているため、その測定可能な範囲の
増殖数として検水を希釈して適当な細菌数に調整
しておかなければならない必要があるためであ
る。
However, in order to estimate the number of bacteria in sample water, the number of proliferating bacteria after inoculation is limited to the range that can be measured using a turbidity meter or spectrophotometer. This is because it is necessary to dilute the water and adjust the number of bacteria to an appropriate level.

従つて、の検水中の細菌数を予め、推定する
工程操作を設け、さらに、によつて推定した適
性な検水量を希釈・調整してその必要量を得る
の工程操作を行う希釈・調整機能をもつ装置が当
然必要となつてくる。
Therefore, a dilution/adjustment function is provided to preliminarily estimate the number of bacteria in the sample water, and then perform a process operation to dilute and adjust the appropriate sample water volume estimated by , to obtain the required amount. Naturally, a device with this will become necessary.

従来、この種の装置としては、被希釈液を希釈
液に単に定量加えるか、または、希釈容器を複数
備えて順次希釈して行くなどの形式のものがあつ
た。
Conventionally, this type of apparatus has been of the type that simply adds a fixed amount of the liquid to be diluted to the diluted liquid, or has a plurality of dilution containers and sequentially dilutes the liquid.

従つて、前述のような細菌試験を行うための幾
段階もの操作希釈が行え、かつ任意に必要な希釈
率の検水を得る特殊な希釈調整操作を充分満足し
て行える装置がなかつたため、細菌測定試験の自
動化および、連続化をより困難としてきた。
Therefore, there was no equipment that could perform multiple stages of operational dilution to perform the above-mentioned bacterial test, and that could perform the special dilution adjustment operation to arbitrarily obtain the required dilution rate. This has made it more difficult to automate and serialize measurement tests.

本発明は、この希釈調整操作を第3図に示す連
続希釈調整装置2aとして細菌測定試験の希釈調
整操作を自動連続化して行うことを可能にならし
めた。
The present invention has made it possible to automatically and continuously perform this dilution adjustment operation as a serial dilution adjustment device 2a shown in FIG. 3 for a bacteria measurement test.

連続希釈調整装置2aは、導入した一定量の検
水の一部量を残し他を排出することによつて、新
たに排出された容量分の希釈液を加えて元の量と
し混合するというものである。
The continuous dilution adjustment device 2a is a device that discharges a certain amount of test water that has been introduced, leaving a portion of the sample water, and then adds a newly discharged volume of diluent to restore the original volume and mix. It is.

この操作を反復して繰返すことによつて検水原
液の幾倍もの目的の希釈量まで連続して行える装
置である。
By repeating this operation repeatedly, this device can continuously dilute the sample water to a desired dilution amount many times the original solution.

連続希釈調整装置2aによつて希釈操作を自動
かつ連続して行えることによつて検水の培養後の
増殖細菌数を測定可能な範囲にまで調整すること
ができるようになつた。
By automatically and continuously performing the dilution operation using the serial dilution adjustment device 2a, it has become possible to adjust the number of proliferating bacteria in the sample water after culturing to a measurable range.

しかし、目的の希釈量を推定して指示するの
手段が前述のごとく重要となる。
However, as mentioned above, a means of estimating and instructing the desired dilution amount is important.

そのためには、順次実測された測定値を基に、
その測定値の変動要素を充分考慮して推定するこ
とが望ましく、その実測ごとのデータを希釈量指
示部7に設けられた記憶装置に入力し希釈量の推
定指示命令に応じて、この記憶装置より呼び出し
適正な推定値を演算し新たな検水の希釈量として
指示することにより可能となる。
To do this, based on the sequentially measured values,
It is desirable to make an estimation by fully considering the fluctuation factors of the measured value, and the data for each actual measurement is input into the storage device provided in the dilution amount instruction section 7, and in response to the command for estimating the dilution amount, this storage device This is possible by calculating a more appropriate estimated value and instructing it as a new dilution amount for the sample water.

しかし、現在このような検水の変動に応じて希
釈量を自動的に推定し指示する機能を有する細菌
試験装置は見受けられない。
However, there is currently no bacterial test device that has the function of automatically estimating and instructing the dilution amount in response to such fluctuations in the sample water.

従つて、本発明は、これを希釈量指示部7に組
み込むことによつて検水の著しい変動にも充分に
対応でき、さらにその操作を本発明の連続希釈調
整装置2aによつて行うことによつて細菌試験の
連続および自動化による測定試験が広範囲な領域
の試験装置として実用可能となつた。
Therefore, by incorporating this into the dilution amount indicator 7, the present invention can sufficiently cope with significant fluctuations in the sample water, and furthermore, the continuous dilution adjustment device 2a of the present invention can perform this operation. As a result, continuous and automated bacterial testing has become practical as testing equipment for a wide range of areas.

本発明は、細菌の種類に適した液体培地に検水
を目的の希釈量まで希釈調整し、適温に培養した
のち、その生育増殖する細菌の培養液を測定液と
して濁度計もしくは分光光度計を用いて光が培養
液中の増殖細菌体を通過することによる吸収量や
散乱量を、ランバート・ベールの法則に従つて、
予め作成された検量線より検水の菌体数を算出し
合せてその実測値を希釈量の推定資料として記憶
装置に確保し、さらに新たな検水の希釈量を演算
し推定することによつて細菌試験操作を自動連続
的に測定しうるようになしたものである。
The present invention involves diluting sample water to a desired dilution amount in a liquid medium suitable for the type of bacteria, culturing it at an appropriate temperature, and using the culture solution of the growing bacteria as a measurement solution using a turbidity meter or spectrophotometer. The amount of absorption and scattering of light as it passes through the proliferating bacterial bodies in the culture solution is calculated using the Beer-Lambert law.
By calculating the number of bacteria in the sample water using a pre-prepared calibration curve, storing the measured value in the storage device as data for estimating the amount of dilution, and then calculating and estimating the amount of dilution in the new sample water. This allows automatic and continuous measurement of bacterial test operations.

本装置は、第1図に示すごとく試料水採取部
1、検水自動調整部2、自動培養部3、自動測定
記録部4、薬液貯蔵部5、殺菌洗浄部6、希釈量
指示部7および工程自動操作部8より構成され
る。
As shown in FIG. 1, this device consists of a sample water collection section 1, a sample water automatic adjustment section 2, an automatic culture section 3, an automatic measurement recording section 4, a chemical solution storage section 5, a sterilization washing section 6, a dilution amount indicating section 7, and It is composed of a process automatic operation section 8.

本装置における各部の概要と、その機能を第2
図によつて説明する。
The second section provides an overview of each part of this device and its functions.
This will be explained using figures.

試料水採取部1には、試料水1aを常時導入す
る検水槽1bを設け、試料水1aは検水槽1bに
一部を残留しながら順次越流して排出される。
The water sample collection section 1 is provided with a water test tank 1b into which sample water 1a is constantly introduced, and the sample water 1a is sequentially overflowed and discharged while a portion remains in the water test tank 1b.

採水ノズル1cは、飲料水1aを連続希釈調整
装置2aに導入するため検水槽1bの液中に挿入
されノズルの先端には砂等の固形物を除去するた
めフイルターを装着してある。
The water sampling nozzle 1c is inserted into the liquid in the water test tank 1b in order to introduce the drinking water 1a into the continuous dilution adjustment device 2a, and a filter is attached to the tip of the nozzle to remove solid matter such as sand.

検水自動調整部2には検水槽1bより導入した
試料水1a(以下検水という。)を希釈調整するた
め連続希釈調整装置2aを設け、この装置の操作
に必要な吸入ポンプ2bは、吸入する外気中に細
菌類の混入を防ぐため除菌フイルター2cを取付
けてある。
The test water automatic adjustment unit 2 is equipped with a continuous dilution adjustment device 2a for diluting the sample water 1a (hereinafter referred to as test water) introduced from the test water tank 1b. A sterilization filter 2c is installed to prevent bacteria from entering the outside air.

自動培養部3には、細菌の培養に必要な温度を
設定でき、かつ自動コントロールが可能なふ卵器
3aを設け、その内部に検水を植種培養する発酵
管3fが、回転テーブル3cにそれぞれ挿入され
て一周している。
The automatic culture section 3 is equipped with an incubator 3a that can set the temperature necessary for culturing bacteria and can be automatically controlled, and fermentation tubes 3f for inoculating and culturing the sample water inside the incubator 3a are placed on the rotary table 3c. It has been inserted and is going around.

回転テーブル3cは、発酵管3fが一定時刻ご
と植種・測定の操作終了に伴つて順次移動を要す
るため駆動し、その駆動操作は後述する自動操作
部8の測定周期の設定条件により移動装置3bに
よつて行われる。
The rotary table 3c is driven because the fermentation tube 3f needs to be moved sequentially as the seeding and measurement operations are completed at regular intervals, and the driving operation is performed by the moving device 3b according to the setting conditions of the measurement cycle of the automatic operation section 8, which will be described later. It is carried out by.

移動装置3bの片端に発酵管3f内に検水を注
入したり測定のために検水培養液を吸入する導管
等を一定範囲で上下するノズル上下機構3dが備
えてある。
A nozzle up/down mechanism 3d is provided at one end of the moving device 3b to move up and down within a certain range a conduit for injecting test water into the fermentation tube 3f or sucking in a test water culture solution for measurement.

また、植種や測定等の操作に使用中の発酵管3
f以外で、回転テーブル3c内に一周されている
培養中の発酵管3f等は、外気中の細菌類の混入
を防止するため上向き管の開口部を覆うように下
向〓型のダストカバー3eを取付けてある。
In addition, the fermentation tube 3 used for operations such as seeding and measurement
In addition to f, fermentation tubes 3f, etc., which are being cultured and are circled in the rotary table 3c, are covered with a downward-facing dust cover 3e to cover the opening of the upward-facing tubes to prevent bacteria from entering the outside air. is installed.

自動測定記録部4には、自動培養部3で培養に
よつて増殖した検水培養液を測定するため濁度計
もしくは分光光度計(以下、測定計という。)4
aが設けられ、その測定値を表示する表示計4b
と測定値、あるいは測定値を細菌数に変換された
数値を記録するための記録計4cがある。
The automatic measurement recording section 4 includes a turbidity meter or a spectrophotometer (hereinafter referred to as a measuring meter) 4 for measuring the sample water culture solution grown by culturing in the automatic culture section 3.
a display meter 4b for displaying the measured value.
There is a recorder 4c for recording the measured value or a numerical value obtained by converting the measured value into the number of bacteria.

さらに測定された検水の培養液あるいは、洗浄
水などの排液を一時貯留し殺菌液の排入による混
合の効果によつて無害として処理できる排液処理
槽4dおよび吸引ポンプ4eが備えられている。
Furthermore, a waste liquid treatment tank 4d and a suction pump 4e are provided which can temporarily store the culture solution of the measured sample water or the waste liquid such as washing water and treat it as harmless through the mixing effect by discharging the sterilizing liquid. There is.

薬液貯蔵部5には、本装置に使用される各薬液
があり、検水中の細菌を増殖させる培養液5eが
培養液貯槽5iに貯留されている。
The chemical solution storage section 5 contains each chemical solution used in this device, and a culture solution 5e for growing bacteria in the sample water is stored in a culture solution storage tank 5i.

培養液5eは、あらかじめ高圧滅菌など種々の
滅菌方法で処理したものを室温4℃程に自動調整
された低温器5aの中に入れ長期間保存を確保す
る。
The culture solution 5e is previously treated with various sterilization methods such as high-pressure sterilization and placed in a low temperature chamber 5a whose room temperature is automatically adjusted to about 4° C. to ensure long-term storage.

生理食塩水として使用する食塩液5cは、使用
時に細菌の種類に適した濃度となるように調整し
培養液5eと同様に事前に滅菌処理し、食塩液貯
槽5gに貯留する。
The saline solution 5c used as physiological saline is adjusted to a concentration suitable for the type of bacteria at the time of use, sterilized in advance in the same manner as the culture solution 5e, and stored in the saline storage tank 5g.

滅菌した前記2つの薬液は、さらに、除菌フイ
ルター5r,5sを備えて安全性を確保する。
The two sterilized chemical solutions are further provided with sterilization filters 5r and 5s to ensure safety.

殺菌洗浄部6には、希釈水あるいは洗浄水とし
て使用する精製水6bがあり、水道水などの市水
6nをイオ交換器6pで精製し、除菌フイルター
6qを設けて細菌の混入を除去して精製水貯槽6
fに貯留される。
The sterilization and washing section 6 has purified water 6b used as dilution water or washing water, and city water 6n such as tap water is purified with an io exchanger 6p, and a sterilization filter 6q is provided to remove bacteria. Purified water storage tank 6
It is stored in f.

精製水6bの補給は、測定サイクルごとに電磁
弁6oを開いて市水6nを導入し、精製水貯槽6
fの備えてある定量レベルセンサー6vの感知に
より自動的に電磁弁6oを閉じて補給を完了す
る。
To replenish the purified water 6b, open the solenoid valve 6o every measurement cycle to introduce city water 6n, and fill the purified water storage tank 6.
The electromagnetic valve 6o is automatically closed by the detection by the fixed quantity level sensor 6v provided in the tank f, thereby completing the replenishment.

殺菌液6dは、連続希釈調整装置2aや発酵管
3fなどの内部を殺菌する液として殺菌液貯槽6
hに貯留される。
The sterilizing liquid 6d is stored in the sterilizing liquid storage tank 6 as a liquid for sterilizing the inside of the serial dilution adjustment device 2a, the fermentation tube 3f, etc.
It is stored in h.

各薬液は、使途に応じて使用量を自由に調整で
きる計量器6j,5k,6l,5mを有し、ま
た、各薬液貯槽は細菌の混入を防ぐため栓で密閉
し、さらに、計量に伴う貯槽内の気圧量を補うた
めの導管5tを連結し、その端管を殺菌液貯槽6
hに挿入し、かつ、同貯槽に通気管6uを設けて
調圧すると同時に混入する外気中の細菌類は殺菌
液6dによつて殺菌し各薬液への細菌類の混入を
防止する。
Each chemical solution has a measuring device 6j, 5k, 6l, 5m that allows you to freely adjust the amount used according to the purpose of use, and each chemical solution storage tank is sealed with a stopper to prevent bacteria from entering. A conduit 5t for supplementing the air pressure inside the storage tank is connected, and the end pipe is connected to the sterilizing liquid storage tank 6.
h, and at the same time the pressure is adjusted by providing a ventilation pipe 6u in the same storage tank, bacteria in the outside air mixed in are sterilized by the sterilizing liquid 6d, thereby preventing the contamination of bacteria into each chemical liquid.

希釈量指示部7は、実測されたデータを記憶さ
せておく記憶装置と、検水の変動に応じて自動的
に希釈量を推定する機能が設けられている。
The dilution amount instructing section 7 is provided with a storage device for storing actually measured data and a function of automatically estimating the dilution amount according to fluctuations in the sampled water.

工程自動操作部8は、測定周期・培養時間など
の条件を任意に測定することにより細菌の種類に
適した測定条件が得られると共に、各部を自動操
作によつて制御する。
The process automatic operation section 8 can obtain measurement conditions suitable for the type of bacteria by arbitrarily measuring conditions such as measurement period and culture time, and also controls each section by automatic operation.

次に、本装置の各部における関連性と、その動
作を第2図および第3図によつて説明する。
Next, the relationship between each part of this device and its operation will be explained with reference to FIGS. 2 and 3.

予め、工程自動操作部8に、培養時間、測定周
期(希釈量指示部7に、初期値として、細菌数換
算係数、初期希釈量値、標準希釈基準値、測定値
適正範囲を入力する)を設定する。
In advance, enter the culture time and measurement cycle into the process automatic operation section 8 (input the bacterial count conversion coefficient, initial dilution amount value, standard dilution reference value, and measurement value appropriate range as initial values into the dilution amount instruction section 7). Set.

また、発酵管3fに殺菌液6d、連続希釈調整
装置2aに精製水6bを注入しておく。
Further, a sterilizing solution 6d is injected into the fermentation tube 3f, and purified water 6b is injected into the continuous dilution adjustment device 2a.

工程自動操作部8のスタートにより予め降下し
ているノズル上下機構3dの収入管3hから発酵
管3fの殺菌液6dをピンチバルブ4fを開き吸
引ポンプ4eの駆動により吸引する。
The sterilizing liquid 6d in the fermentation tube 3f is sucked from the income tube 3h of the nozzle up/down mechanism 3d, which has been lowered in advance by the start of the process automatic operation section 8, by opening the pinch valve 4f and driving the suction pump 4e.

吸引された殺菌液6dは測定計4aのフローセ
ル4iを通つて排液処理槽4dに貯留される。
The sucked sterilizing liquid 6d passes through the flow cell 4i of the measuring meter 4a and is stored in the wastewater treatment tank 4d.

連続希釈調整装置2aに注入されている洗浄水
を、ピンチバルブ2fおよび電磁弁2gを開いて
吸入ポンプ2bの吸入圧により注入管3gより発
酵管3fに入つた洗浄水は、前述の殺菌液6dと
同様ピンチバルブ4fを開き吸入管3hより吸引
ポンプ4eの吸引力でフローセル4iを洗浄しな
がら排液処理槽4dに貯留される。
The pinch valve 2f and the solenoid valve 2g are opened, and the washing water that has been injected into the continuous dilution adjustment device 2a enters the fermentation tube 3f from the injection pipe 3g by the suction pressure of the suction pump 2b. Similarly, the pinch valve 4f is opened and the flow cell 4i is cleaned through the suction pipe 3h by the suction force of the suction pump 4e, and the liquid is stored in the wastewater treatment tank 4d.

電磁弁2hを開き精製水6bを計量器6jによ
つて連続希釈調整装置2aに注入した洗浄水は、
撹拌を行うため電磁弁2gを開き吸入ポンプ2b
を駆動する。
The cleaning water is obtained by opening the solenoid valve 2h and injecting the purified water 6b into the continuous dilution adjustment device 2a using the meter 6j.
Open the solenoid valve 2g to stir the suction pump 2b.
to drive.

この洗浄水は、前述の操作で行つた工程と同
様、発酵管3fに送給し管内の洗浄を行つた後、
測定計4aのフローセル4iを洗浄して排液処理
槽4dに貯留する。
This washing water is fed to the fermentation tube 3f and the inside of the tube is washed, as in the process described above.
The flow cell 4i of the measuring meter 4a is cleaned and stored in the wastewater treatment tank 4d.

この洗浄操作は、洗浄効果を上げるため複数回
反復される。
This cleaning operation is repeated multiple times to improve the cleaning effect.

洗浄操作の終了した連続希釈調整装置2aに、
ピンチバルブ1dおよび電磁弁2iを開き吸引ポ
ンプ4eを駆動して検水槽1bの採水ノズル1c
より検水を吸入する。
To the continuous dilution adjustment device 2a after the cleaning operation,
Open the pinch valve 1d and solenoid valve 2i and drive the suction pump 4e to open the water sampling nozzle 1c in the water test tank 1b.
Inhale more sample water.

吸入された検水は定量センサー2dの感知によ
り吸引ポンプ4eが停止し同時に電磁弁2hが開
いて検水注入口2a3の先端までサイホン原理に
より検水槽1bへ逆排出される。
The sucked sample water is sensed by the quantitative sensor 2d, and the suction pump 4e is stopped, and at the same time, the solenoid valve 2h is opened, and the sample water is discharged back to the sample water tank 1b by the siphon principle up to the tip of the sample water injection port 2a3.

この検水注入口2a3までの容量を定量レベル
2a10とする。
The volume up to this sample water injection port 2a3 is defined as a quantitative level 2a10.

連続希釈調整装置2aに採取された定量の検水
は、工程自動操作部8に指示されている希釈回数
値まで希釈操作が行われる。
The fixed amount of test water sampled by the continuous dilution adjustment device 2a is diluted to the dilution number instructed by the process automatic operation section 8.

仮に希釈回数値をNとすると、N=0の場合、
検水と定量分をピンチバルブ2fおよび電磁弁2
gを開き、吸入ポンプ2bを駆動して送給管3g
より発酵管3fに注入する。
If the dilution number value is N, if N=0,
Test water and quantitative amount using pinch valve 2f and solenoid valve 2.
g, and drive the suction pump 2b to connect the feed pipe 3g.
Inject into the fermentation tube 3f.

N>0の場合は、検水の一部をピンチバルブ2
eおよび電磁弁2gを開いて吸入ポンプ2bを駆
動して排出する。
If N>0, a portion of the sample water is transferred to pinch valve 2.
e and the solenoid valve 2g are opened to drive the suction pump 2b to discharge.

この時、連続希釈調整装置2aに残る検水量は
検水排出口2a1が位置により検水調整レベル2
a11が異なり検水を任意に減量しうる。
At this time, the amount of test water remaining in the continuous dilution adjustment device 2a is determined by the test water adjustment level 2 depending on the position of the test water outlet 2a1.
Since a11 is different, the amount of sample water can be reduced arbitrarily.

今、仮に検水調整レベル2a11が検水定量レ
ベル2a10の1/10とする。
Now, it is assumed that the test water adjustment level 2a11 is 1/10 of the test water quantitative level 2a10.

これに希釈水として精製水6bを計量器6jに
よつて加え、さらに、食塩液5cを計量器5kに
よつて注入し、その全量が検水定量レベル2a1
0とする。
Purified water 6b is added as dilution water using a measuring device 6j, and saline solution 5c is further injected using a measuring device 5k, so that the total amount reaches the test water quantitative level 2a1.
Set to 0.

電磁弁2g,2hを開いて吸入ポンプ2bで撹
拌し混合した検水は、10倍に希釈調整された検水
となる。
The test water obtained by opening the electromagnetic valves 2g and 2h and stirring and mixing with the suction pump 2b becomes test water that has been diluted 10 times.

したがつて、前述の希釈操作を指示された希釈
回数値まで繰り返すことによつて目的の希釈量の
検水を調整することができる。
Therefore, by repeating the above-mentioned dilution operation up to the specified dilution number, it is possible to adjust the sample water to the desired dilution amount.

連続希釈調整装置2aで希釈調整された検水
は、ピンチバルブ2fおよび電磁弁2gを開いて
吸入ポンプ2bの吸入圧で送給管3gより発酵管
3f中の検水に培養液5eを計量器5mによつて
培養液注入管3iより注入し検水の培養が始めら
れる。
The test water diluted with the continuous dilution adjustment device 2a is then opened with the pinch valve 2f and the solenoid valve 2g, and the culture solution 5e is transferred from the feed pipe 3g to the test water in the fermentation tube 3f using the suction pressure of the suction pump 2b. 5m, the sample water is injected from the culture solution injection pipe 3i and culture of the sample water is started.

また、排液処理槽4dに貯留された排液は殺菌
液6dによつて処理されパンチバルブ4hを開い
て排出される。
Further, the waste liquid stored in the waste liquid treatment tank 4d is treated with the sterilizing liquid 6d, and is discharged by opening the punch valve 4h.

培養液5eを加えた発酵管3fに降下している
送給管3g、吸入管3hをノズル上下機構3dに
よつて上昇させたのち、移動装置3bの駆動によ
り回転テーブル3cが移動して新たな発酵管3f
が送られてくる。
After the feed pipe 3g and suction pipe 3h, which have descended to the fermentation pipe 3f to which the culture solution 5e has been added, are raised by the nozzle up/down mechanism 3d, the rotary table 3c is moved by the drive of the moving device 3b, and a new Fermentation tube 3f
will be sent.

この発酵管3fにノズル上下機構3dの駆動に
よつて吸入管3hを液の中間まで降下してくる。
The suction pipe 3h is lowered to the middle of the liquid by driving the nozzle up and down mechanism 3d into the fermentation pipe 3f.

発酵管3f中の液が、所定時間培養された検水
でない場合は、予め注入されている殺菌液6dを
吸入して測定がなされるため空測定となる。
If the liquid in the fermentation tube 3f is not test water that has been cultured for a predetermined period of time, the measurement is performed by inhaling the sterilizing liquid 6d that has been injected in advance, resulting in an empty measurement.

培養された検水である場合、ピンチバルブ4f
を開き吸引ポンプ4eを駆動して吸入管3hより
検水培養液の一部を吸入して一時吸引ポンプ4e
を停止させる。
If the sample water has been cultured, pinch valve 4f
Open it and drive the suction pump 4e to suck in a part of the sample water culture solution from the suction pipe 3h, and temporarily pump the suction pump 4e.
to stop.

フローセル4iに導入させた検水培養液は、液
の安定時間を経た後測定計4aにより測定がなさ
れる。
The test water culture solution introduced into the flow cell 4i is measured by the measuring meter 4a after the solution has stabilized.

この測定値は、表示計4bに表示されると共
に、希釈量指示部7に出力される。
This measured value is displayed on the display meter 4b and is also output to the dilution amount indicating section 7.

発酵管3fに残留している検水培養液は、培養
過程でフロツクなどが起きることもあり、したが
つて、ノズル上下機構3dの駆動により吸入管3
iを発酵管3fの底部まで降下して吸引ポンプ4
eによつて吸引した検水培養液をフローセル4i
に導入して目詰を起こさないようにするためにピ
ンチバルブ4gを開いてバイパス管で排液処理槽
4dに貯留する。
The test water culture solution remaining in the fermentation tube 3f may cause flocculation during the culture process, so the nozzle up and down mechanism 3d is driven to remove the culture solution from the suction tube 3.
i to the bottom of the fermentation tube 3f and remove the suction pump 4.
Transfer the sample water culture solution aspirated by e to the flow cell 4i.
In order to prevent the liquid from being introduced into the drain and causing clogging, the pinch valve 4g is opened and the liquid is stored in the wastewater treatment tank 4d via a bypass pipe.

電磁弁2hを開き連続希釈調整装置2aに、濯
ぎ水として精製水6bを注入し装置の壁面などに
付着した検水を洗い落とす。
The electromagnetic valve 2h is opened and purified water 6b is injected into the continuous dilution adjustment device 2a as rinsing water to wash off sample water adhering to the walls of the device.

この濯ぎ水は、ピンチバルブ2fおよび電磁弁
2gを開いて吸入ポンプ2bの吸入圧で送給管3
gより発酵管3fに送給され、発酵管3fの内壁
に残留している検水培養液を濯ぎ落とす。
This rinsing water is pumped into the feed pipe 3 with the suction pressure of the suction pump 2b by opening the pinch valve 2f and the solenoid valve 2g.
g to the fermentation tube 3f, and the test water culture solution remaining on the inner wall of the fermentation tube 3f is rinsed off.

さらに、ピンチバルブ4fを開き、吸引ポンプ
4eを駆動して吸入管3gより濯ぎ水を吸引しフ
ローセル4iを洗浄して排液処理槽4dに貯留す
る。
Furthermore, the pinch valve 4f is opened and the suction pump 4e is driven to suck rinsing water through the suction pipe 3g to wash the flow cell 4i and store it in the wastewater treatment tank 4d.

電磁弁2hを開き殺菌液6dを計量器6lによ
り連続希釈調整装置2aに注入する。
The solenoid valve 2h is opened and the sterilizing liquid 6d is injected into the continuous dilution adjustment device 2a using the meter 6l.

同様に、精製水6bを計量器6jにより加え、
さらに、電磁弁2gを開いて吸入ポンプ2bを駆
動して、撹拌し装置内を殺菌する。
Similarly, purified water 6b is added using a measuring device 6j,
Furthermore, the electromagnetic valve 2g is opened to drive the suction pump 2b to stir and sterilize the inside of the apparatus.

この殺菌液6dは濯ぎ水と同様にピンチバルブ
2fを開いて送給管3gより発酵管3fに送給さ
れ管内を殺菌する。
Similar to the rinsing water, this sterilizing liquid 6d is fed to the fermentation tube 3f from the feed tube 3g by opening the pinch valve 2f, and sterilizes the inside of the tube.

殺菌が行われた連続希釈調整装置2aに洗浄水
として精製水6bを計量器6jにより注入する。
Purified water 6b is injected as wash water into the sterilized serial dilution adjustment device 2a using a meter 6j.

また、精製水貯槽6fの精製水6bを補給する
ため電磁弁6oを開き市水6nをイオン交換器6
pを通じて精製し貯蔵する。
In addition, in order to replenish the purified water 6b in the purified water storage tank 6f, the solenoid valve 6o is opened and the city water 6n is supplied to the ion exchanger 6.
purified and stored through p.

測定計4aで測定された測定値は希釈量指示部
7に入力され、入力されたデータを基に新たな検
水の希釈量を推定し、その推定された希釈量を、
第5図のフローにしたがつて操作される。
The measurement value measured by the measuring meter 4a is input to the dilution amount indicator 7, and based on the input data, the dilution amount of the new sample water is estimated, and the estimated dilution amount is
The operation is performed according to the flow shown in FIG.

先ず、入力された測定値は適正に測定されたデ
ータであるかを判断し、判別された適正な測定値
は、初期値として測定された細菌数換算係数によ
つて測定検水の細菌数を演算し、さらに、希釈量
指示部7に内蔵されているデータ記憶装置に一時
記憶されている測定検水の調整時の希釈量値を呼
出し、あらためて検水の全細菌数を算出し、その
値は後に記録計4cに記録される。
First, it is determined whether the input measurement value is properly measured data, and the determined appropriate measurement value is determined by calculating the number of bacteria in the sample water using the bacteria count conversion coefficient measured as an initial value. Then, the dilution amount value at the time of adjustment of the measured sample water, which is temporarily stored in the data storage device built in the dilution amount indicator 7, is called up, the total number of bacteria in the sample water is calculated again, and that value is calculated. is later recorded on the recorder 4c.

また、同値はデータ記憶装置に順次記憶され、
この累積された記憶データから周期変動など種々
のパラメータを考慮して、標準希釈基準値を目標
に新たな検水の希釈量が推定される。
Also, the equivalent values are stored sequentially in the data storage device,
From this accumulated stored data, a new dilution amount of the test water is estimated with the standard dilution reference value as the target, taking into consideration various parameters such as periodic fluctuations.

推定された希釈量値は、連続希釈調整装置2a
の希釈回数として工程自動操作部8に出力される
と共にデータ記憶装置に一時記憶され、前述の如
く希釈した検水が培養後、測定され全細菌数の算
出を行うため用いられる。
The estimated dilution amount value is calculated by the continuous dilution adjustment device 2a.
The number of dilutions is outputted to the process automatic operation section 8 and temporarily stored in the data storage device, and the sample water diluted as described above is cultured and then measured and used to calculate the total number of bacteria.

希釈量指示部7の工程を処理した本装置は、1
サイクルによる全工程を終了し次のスタートまで
待機する。
This device which processed the process of the dilution amount indicating section 7 has 1
It completes all steps in the cycle and waits until the next start.

なお、第3図において、2a1は検水排水口、
2a2は検水送給口、2a4は精製水注入管、2
a5は食塩液注入管、2a6は吸気ノズル、2a
7は排気管、2a8はセンサー電極、2a9はキ
ヤツプである。
In addition, in Fig. 3, 2a1 is the water test drain port,
2a2 is the test water supply port, 2a4 is the purified water injection pipe, 2
a5 is the saline injection pipe, 2a6 is the intake nozzle, 2a
7 is an exhaust pipe, 2a8 is a sensor electrode, and 2a9 is a cap.

また、第4図において、 (イ)はスタート、 (ロ)は初期値設定、 (ハ)は初期値入力確認判断、 (ニ)は入力エラー警告表示、 (ホ)は連続自動操作のスタート、 (ヘ)は洗浄操作処理、 (ト)は検水採取処理、 (チ)は希釈操作判断、 (リ)は検水調整排出、 (ヌ)は食塩液、希釈水注入・撹拌、 (ル)は希釈操作完了判断、 (オ)は待機、 (ワ)は検水送給・培養液注入、 (カ)は検水培養、 (ヨ)は濯ぎ操作(連続希釈調整装置) (タ)は検水培養液の吸引・測定、 (レ)は測定値表示、 (ソ)は殺菌操作、 (ツ)は第5図への結合子、 (テ)は第5図からの結合子、 (ア)は記録計記録、 (サ)は待機命令である。 Also, in Figure 4, (b) is the start, (b) is the initial value setting, (c) is initial value input confirmation judgment, (d) is an input error warning display, (E) is the start of continuous automatic operation. (f) is cleaning operation processing, (g) is sample water collection process; (H) is dilution operation judgment, (li) is water test adjustment discharge; (nu) is saline solution, dilution water injection and stirring, (ru) is a judgment that the dilution operation is complete. (e) is waiting, (W): Test water supply, culture solution injection, (f) is water sample culture; (Y) is rinsing operation (continuous dilution adjustment device) (T) is aspiration and measurement of sample water culture solution, (R) indicates measured value, (S) is sterilization operation, (ツ) is the connector to Figure 5, (TE) is the connector from Figure 5, (A) is recorder record, (sa) is a standby command.

さらに、第5図において、 (ツ)は第4図からの結合子、 (ム)は測定値適正判断、 (ウ)は「否」による(マ)への結合子、 (ヰ)は「可」による細菌数変換演算、 (ノ)はデータ記憶装置、 (ヲ)は記憶希釈量値の呼び出し命令、 (ク)は全細菌数演算処理、 (ヤ)は全細菌数値の記憶命令、 (マ) は初期値設定による希釈量値使用回数の
判断、 (ケ)は記憶累積データ呼出し命令、 (フ)は希釈量推定計算、 (コ)は推定希釈量記憶命令、 (エ)は希釈量指示値出力命令、 (テ)は第4図への結合子である。
Furthermore, in Figure 5, (T) is the connector from Figure 4, (MU) is the appropriate judgment of the measured value, (C) is the connector to (MA) due to "no", and (I) is "possible". ” Bacteria count conversion calculation, (No) is the data storage device, (W) is the recall instruction for the stored dilution amount value, (H) is the total bacteria count calculation process, (Y) is the storage instruction for the total bacteria count, (Ma ) is the judgment of the number of times the dilution amount value is used by setting the initial value, (k) is the command to recall the stored accumulated data, (f) is the dilution amount estimation calculation, (g) is the command to store the estimated dilution amount, (d) is the dilution amount instruction The value output command (TE) is a connector to FIG.

細菌試験の測定は、環境保全の対策として環境
水質基準および水質汚濁防止法に基づく排出基準
における水質判定のための重要な項目の一つとな
つている。
Bacteria test measurements are one of the important items for determining water quality in environmental water quality standards and discharge standards based on the Water Pollution Control Law as a measure for environmental conservation.

従つて、環境保全の管理上、水質を汚染する産
業排水あるいは下水、または河川、湖沼、海域等
の水質試験を行う測定装置は、迅速、簡便、客観
的、高精度、省力化、自動連続化がなされたもの
でなければ十分な管理ができない。
Therefore, in order to manage environmental conservation, measuring equipment for testing industrial wastewater or sewage that pollutes water quality, or water quality testing for rivers, lakes, marshes, sea areas, etc., must be quick, simple, objective, highly accurate, labor-saving, and automatic. Adequate management cannot be achieved unless this is done.

本発明による細菌連続自動測定装置は、前述の
ごときに試験を検水の採取から測定に至るまでの
操作を自動連続的に行い、その全工程を最少30分
で行うことができる。
The automatic continuous bacterial measurement device according to the present invention automatically and continuously performs the operations from collection of sample water to measurement as described above, and can perform the entire process in a minimum of 30 minutes.

また、水質の変動に応じて検水の採取量を随時
調整することも可能なため、変動の著しい試料水
についても充分精度のよい測定結果が得られ、ま
た、環境基準項目の大腸菌群数試験のみならず、
種々の細菌についても測定を行うことができる。
In addition, since it is possible to adjust the amount of sample water to be sampled at any time according to changes in water quality, sufficiently accurate measurement results can be obtained even with sample water that fluctuates significantly. As well,
Measurements can also be made for various bacteria.

従つて、環境保全対策上貢献するところ大であ
る。
Therefore, it will greatly contribute to environmental conservation measures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は細菌連続自動測定装置の構成概略を示
すブロツク図、第2図は第1図の構成を示す詳細
説明図、第3図は連続希釈調整装置に係るもの
で、第3図Aは平面図、第3図BはA−A線断面
図、第3図CはB−B線断面図、第4図は本装置
の工程動作を示すフローチヤート図、第5図は希
釈量指示部の処理を示すフローチヤート図、第6
図は本装置における作動順序を示すタイムチヤー
ト図、第7図は細菌試験を濁度計もしくは分光光
度計で測定するための参考原理図に係るもので、
第7図Aは細菌の生育曲線、第7図Bは培養液に
よる細菌増殖変化図、第7図Cは細胞数の異なる
増殖変化図、第7図Dは同上より任意にとらえた
培養時間における初期細菌数の関係図である。 1……試料水採取部、2……検水自動調整部、
3……自動培養部、4……自動測定記録部、5…
…薬液貯蔵部、6……殺菌洗浄部、7……希釈量
指示部、8……工程自動操作部。
Figure 1 is a block diagram showing the outline of the configuration of a continuous automatic bacterial measurement device, Figure 2 is a detailed explanatory diagram showing the configuration of Figure 1, Figure 3 is related to the continuous dilution adjustment device, and Figure 3A is A plan view, FIG. 3B is a sectional view taken along line A-A, FIG. 3C is a sectional view taken along line B-B, FIG. 4 is a flowchart showing the process operation of this device, and FIG. 5 is a dilution amount indicator. Flowchart diagram showing the processing, No. 6
The figure is a time chart showing the operating sequence of this device, and Figure 7 is a reference principle diagram for measuring bacteria tests with a turbidity meter or spectrophotometer.
Figure 7A is a growth curve of bacteria, Figure 7B is a diagram of changes in bacterial growth depending on the culture solution, Figure 7C is a diagram of changes in growth for different cell numbers, and Figure 7D is a diagram of culture time taken arbitrarily from the above. It is a relationship diagram of the initial bacterial count. 1... Sample water collection section, 2... Water test automatic adjustment section,
3...Automatic culture section, 4...Automatic measurement recording section, 5...
... Chemical solution storage section, 6 ... Sterilization cleaning section, 7 ... Dilution amount instruction section, 8 ... Process automatic operation section.

Claims (1)

【特許請求の範囲】[Claims] 1 検水を自動的に採取する試料水採取部1と、
採取した検水を所望の希釈量に希釈するための工
程自動操作部8によつて連続自動的に操作され、
検水自動調整部2において導入した検水を、希釈
量指示部7で指示された希釈量まで調整する連続
希釈調整装置2aと、前記連続希釈調整装置2a
によつて希釈調整された検水を発酵管中の培養液
に植種し、所定時間適温に培養する自動培養部3
と、培養された検水の培養液を分取して濁度計も
しくは分光光度計で測定し、かつ測定した測定値
を表示し記録する自動測定記録部4と、工程操作
が行われた各部の殺菌及び洗浄を行うための殺菌
洗浄部6と、自動測定記録部4で測定されたデー
タを希釈量指示部7の記録装置に保存し、保存さ
れたデータを基に新たな検水の希釈量を算出する
希釈量指示部7と、各工程に使用される試薬等を
貯蔵する薬液貯蔵部5、及び前記各部を自動連続
に操作する工程自動操作部8より構成された細菌
連続自動測定装置。
1 A sample water collection unit 1 that automatically collects sample water;
Continuously and automatically operated by a process automatic operation unit 8 for diluting the collected sample water to a desired dilution amount,
A continuous dilution adjustment device 2a that adjusts the sample water introduced in the automatic test water adjustment section 2 to the dilution amount instructed by the dilution amount instruction section 7; and the continuous dilution adjustment device 2a.
An automatic culture section 3 inoculates the diluted test water into the culture solution in the fermentation tube and incubates it at an appropriate temperature for a predetermined period of time.
, an automatic measurement and recording section 4 that separates the culture solution of the cultured sample water and measures it with a turbidity meter or spectrophotometer, and displays and records the measured values, and each section where process operations are performed. The data measured by the sterilizing and cleaning unit 6 and the automatic measurement recording unit 4 are stored in the recording device of the dilution amount indicating unit 7, and new dilution of the sample water is performed based on the stored data. A continuous automatic bacterial measurement device consisting of a dilution amount indicating section 7 that calculates the amount, a chemical solution storage section 5 that stores reagents used in each step, and a process automatic operation section 8 that automatically and continuously operates each of the above sections. .
JP56118059A 1981-07-28 1981-07-28 Continuous and automatic measuring device of bacteria Granted JPS5837559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118059A JPS5837559A (en) 1981-07-28 1981-07-28 Continuous and automatic measuring device of bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118059A JPS5837559A (en) 1981-07-28 1981-07-28 Continuous and automatic measuring device of bacteria

Publications (2)

Publication Number Publication Date
JPS5837559A JPS5837559A (en) 1983-03-04
JPH04629B2 true JPH04629B2 (en) 1992-01-08

Family

ID=14726992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118059A Granted JPS5837559A (en) 1981-07-28 1981-07-28 Continuous and automatic measuring device of bacteria

Country Status (1)

Country Link
JP (1) JPS5837559A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1211721B (en) * 1987-08-13 1989-11-03 Genesis S R L EQUIPMENT FOR THE AUTOMATIC COUNTING OF MICROORGANISMS WHICH MAY BE PRESENT IN LIQUIDS, WITH PARTICULAR REFERENCE TO WATERS FOR HUMAN USE
US20040004717A1 (en) * 1996-11-13 2004-01-08 Reed Wayne F. Automatic mixing and dilution methods and apparatus for online characterization of equilibrium and non-equilibrium properties of solutions containing polymers and/or colloids
DE102008014029A1 (en) * 2008-03-13 2009-09-17 Verhülsdonk, Jürgen Determining microbial contamination of water, comprises supplying sample in a reaction chamber, adding determined quantity of nutrient solution, which is a minimal medium, and intermixing the mixture of nutrient solution and water sample
JP6180753B2 (en) * 2013-02-15 2017-08-16 株式会社江東微生物研究所 Microbiological testing system for food
JP6205844B2 (en) * 2013-05-27 2017-10-04 大日本印刷株式会社 Information processing apparatus, display system, and program

Also Published As

Publication number Publication date
JPS5837559A (en) 1983-03-04

Similar Documents

Publication Publication Date Title
WO2021212585A1 (en) Sludge settling velocity automatic measurement system
CN107287119B (en) Cell culture counting assembly
CN212031095U (en) Full-automatic pathological tissue processing device
CN109338017B (en) Method and device for automatically detecting pH value in haematococcus pluvialis culture process
CN110804644A (en) Method and device for detecting multiple microorganisms in food
JPH04629B2 (en)
CN110619488A (en) Method for evaluating cleaning condition of secondary water supply tank
JP3137396B2 (en) Sampling device
CN110704808B (en) Method for judging cleaning condition of secondary water supply and storage equipment
JP2004208663A (en) Cell culture system
CN113267383B (en) Fully-closed automatic sampling device capable of intelligently distinguishing waste liquid and using method thereof
CN110004056B (en) Cell quantity and cell activity detection method and detection cavity device for tissue engineering reactor
CN115245700B (en) Open-air online automatic acquisition and processing device of plankton
CN210487726U (en) Biological fermentation detection device
JPS63279730A (en) Culture-liquid controlling system
JPH04173097A (en) Method for measuring amount of bacterium cell
CN113667592B (en) Online rapid detection system and method for field fecal coliform
CN210005289U (en) Urine collection device and automatic effusion stirring system thereof
CN215404286U (en) Online real-time detection system for biological samples
CN219449706U (en) Online sterile sampling device of reactor
CN220730183U (en) Online water quality monitoring system based on aquatic organism metabolism
CN201099684Y (en) Biological specimen four sides isolated culture device
CN218321393U (en) Portable water microorganism sampling culture and detection integrated device
CN209858557U (en) Automatic calibrating device for ammonia nitrogen automatic monitor
TWI253469B (en) Apparatus and method for determining biological reaction kinetic parameters