TWI253469B - Apparatus and method for determining biological reaction kinetic parameters - Google Patents

Apparatus and method for determining biological reaction kinetic parameters Download PDF

Info

Publication number
TWI253469B
TWI253469B TW91124882A TW91124882A TWI253469B TW I253469 B TWI253469 B TW I253469B TW 91124882 A TW91124882 A TW 91124882A TW 91124882 A TW91124882 A TW 91124882A TW I253469 B TWI253469 B TW I253469B
Authority
TW
Taiwan
Prior art keywords
oxygen uptake
data
oxygen
reaction
matrix
Prior art date
Application number
TW91124882A
Other languages
Chinese (zh)
Inventor
Jou-Feng Jiang
Yung-Shing Wu
Original Assignee
Chaoyang University Of Technol
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chaoyang University Of Technol filed Critical Chaoyang University Of Technol
Priority to TW91124882A priority Critical patent/TWI253469B/en
Application granted granted Critical
Publication of TWI253469B publication Critical patent/TWI253469B/en

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

This invention is relating to a novel apparatus and method for determining kinetic parameters for biological systems. The aerobic seed culture is first acclimated in a master reactor. The acclimated culture is then transferred to reaction vessels for kinetic tests. The novel unit consists of a temperature control unit and an oxygen supply system to determine oxygen uptake data and the corresponding times (Ou vs. t). By using a computation unit, on-line uptake rate data are calculated (dOu/dt vs. Ou), which are then used to estimate the four kinetic parameters: maximum growth rate (Yg), maximum specific growth rate (mum), half-velocity constant (Ks), and decay constant (kd). This allows for evaluating the kinetic characteristics of aerobic treatment systems.

Description

1253469 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種生物反應動力參數測定設備及方法’尤指 一種透過生物好氧性處理系統所構成的生物反應動力參數測定 之方法者。 【先前技術】 傳統之生物反應動力研究多仰賴操作連續馴化槽 (chemostat),在不同污泥齡(solids retention time 簡稱 SRT)之穩籲 態下,量測其出流水基質濃度與菌量(Z),以求取生物反應動 力參數。 然而,連續馴化槽常因水分蒸發或壁面形成生物膜,造成污 泥齡不易控制精確;因習用的連續馴化槽係採空氣曝氣方式,可 能因傳氧速率小於基質降解需氧速率造成質傳限制,若改以純氧 曝氣則因屬開放系統而有氧氣易爆性之安全顧慮;又因採一般磁 石攪拌’效果有限,亦容易造成氧傳或質傳限制。而且,基質濃泰 度與卤ϊ之量測多倚賴化學需氧量(chemical oxygen demand簡 稱C0D)與揮發性懸浮固體量(volatile suspended solid簡稱VSS) 分析,分析耗時、費工、誤差大。 呼吸儀(respirometer)可以獲得大量即時累積攝氧數據 vs· 〇 ’具有省時、省力、高精確度' 自動連續監測等特性,適 付曰生物反應動力研究之實驗需求。惟目前最廣泛使用之M〇n〇d 動力模式為基質濃度與菌量(幻所構成之函數,無法逕行利用 6 1253469 呼吸儀所得大量即時累積攝氧數據(o„vs. 〇。 因此Grady等人曾於1989年提出—利用單—批次呼吸儀攝 氧數據’求取動力參數之演算法。此法採用數值方法聯立解基質 ⑻、菌量⑺、產物(户)與攝氧量⑻等四微分方程式,同時: 行反應動力參數最佳化之求取。由於此法以格點搜尋 (gdd-Searching)之方式’求取能獲得以累積攝氧量之實驗值與預 測值差值最小平方和為目標函數(objective functi〇n)之動力參 數,故稱為格點搜尋演算法。格點搜尋演算法確實能有效應用呼 吸儀可取得大量攝氧數據之優點,但是有時僅能求得目標函數之 局部最小值(1〇Cal minimum),甚至有時會有發散(diver#)而無 解之情形發生且尚須進行部分之基質⑻、菌量⑺、產物(户) 等濃度分析,以求取演算法所需初值。 由此可知白用之呼吸儀在操作求取動力參數之演算法使用 上仍有須要改進之缺點,有鑑於此,發明人經過長期之研究開 發,研製出一種生物反應動力參數測定設備及方法,以期解決 或改善習用呼吸儀於求取動力參數使用上之缺點。 【發明内容】 本發明主要目的在提供一種生物反應動力參數測定設備及 方法’其包括可以用來測量反應動力試驗的即時累積攝氧數據 (Ou vs· t),同時使用線性與複線性迴歸法從質量平衡(mass balance)模式可以測定出生物反應動力試驗的生物反應動力參 1253469 數如·一最大生長係數(Yg)、一最大比生長速率(…)、一半飽 韦數(Ks)與一衰減係數(kd),以及一初始基質濃度值(s〇)與 初始U生物濃度值等,以構成一種具有準確性的生物反 應動力研究工具。 為達到上述目的,本發明主要係一種生物反應動力參數測定方 法,包括下列步驟: 培養好氧性菌種,使菌種進行生物反應; 控制及加熱菌種至一設定溫度值; 提供及里測该菌種所需的攝氧量,並輸出—即時累積攝⑽據⑽ vs. 〇 ; 利用該即時累積攝氧數據(a vs. 〇計算出一攝氧率數據(机紐BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biological reaction dynamic parameter measuring apparatus and method, and more particularly to a method for measuring a biological reaction dynamic parameter formed by a biological aerobic treatment system. [Prior Art] Traditional bioreactor dynamic research relies on the operation of a continuous chemostat, measuring the concentration and amount of the outflow water matrix under the steady state of solids retention time (SRT). ) to obtain bio-dynamic parameters. However, the continuous domestication tank often causes the sludge age to be difficult to control accurately due to evaporation of water or biofilm formation on the wall surface; the conventional domestication tank adopts air aeration mode, which may cause mass transfer due to the oxygen transmission rate being lower than the matrix degradation oxygen demand rate. Restriction, if it is changed to pure oxygen aeration, it is an open system and has the safety concern of oxygen explosion; and because of the limited effect of general magnet stirring, it is also easy to cause oxygen transmission or mass transfer restriction. Moreover, the measurement of the substrate concentration and the haloxime relies on chemical oxygen demand (COD) and volatile suspended solid (VSS) analysis, and the analysis is time-consuming, labor-intensive, and error-prone. The respirometer can obtain a large number of real-time cumulative oxygen uptake data vs· 〇 ' with time-saving, labor-saving, high-accuracy' automatic continuous monitoring and other characteristics, suitable for the experimental needs of bio-reactive dynamics research. However, the most widely used M〇n〇d dynamic mode is the matrix concentration and the amount of bacteria (a function of the illusion, and it is impossible to use the 6 1253469 ventilator to obtain a large amount of instantaneous cumulative oxygen uptake data (o„vs. 〇. Therefore, Grady et al. In 1989, the author proposed the algorithm for obtaining the dynamic parameters using the single-batch respirometer oxygen data. This method uses a numerical method to solve the matrix (8), the amount of bacteria (7), the product (household) and the oxygen uptake (8). Wait for the four-differential equation, and at the same time: the optimization of the dynamic response parameters of the line. Because this method uses the method of gdd-searching to obtain the difference between the experimental value and the predicted value of the cumulative oxygen uptake. The least square sum is the dynamic parameter of the objective function (objective functi〇n), so it is called the grid search algorithm. The grid search algorithm can effectively apply the advantages of the respirometer to obtain a large amount of oxygen uptake data, but sometimes it can only Find the local minimum of the objective function (1〇Cal minimum), and sometimes even divergence (diver#) without solution, and still need to carry out partial matrix (8), bacterial amount (7), product (household) concentration analysis In order to obtain the initial value required for the algorithm. It can be seen that the respirator used by the white is still in need of improvement in the operation of the algorithm for calculating the dynamic parameters. In view of this, the inventor has developed through long-term research and development. A biological reaction dynamic parameter measuring device and method are provided to solve or improve the disadvantages of the conventional breathing apparatus in determining the use of the power parameter. SUMMARY OF THE INVENTION The main object of the present invention is to provide a biological reaction dynamic parameter measuring device and method 'including It can be used to measure the instantaneous cumulative oxygen uptake data (Ou vs·t) of the reaction dynamic test, and the linear response and the complex linear regression method can be used to determine the bioreaction dynamics of the bioreactor dynamic test from the mass balance mode. Such as a maximum growth coefficient (Yg), a maximum specific growth rate (...), a half full vitamin number (Ks) and an attenuation coefficient (kd), and an initial matrix concentration value (s〇) and initial U bioconcentration value Etc. to form a bioreactive power research tool with accuracy. To achieve the above object, the present invention is mainly a living being The method for determining the dynamic parameters includes the following steps: cultivating the aerobic species to make the biological reaction of the strain; controlling and heating the strain to a set temperature value; providing and measuring the oxygen uptake required for the strain, and Output - instant accumulation (10) according to (10) vs. 〇; using this instant cumulative oxygen uptake data (a vs. 〇 calculate an oxygen uptake rate data (machine

Vs· 〇u); 利用該攝氧率數據vs· α)計算出一生物最大生長係數 (¾)、一最大比生長速率(〜)、一半飽和常數(Κ)與一衰減係數(h), 以及一初始基質濃度值(D與一初始菌量濃度值(不),藉以評估好 氧性生物處理系統的反應動力特性。 本發明之次要目的在提供一種生物反應動力參數測定所須之設 備,其設備具有可程式即時線上監控大量瞬間攝氧數據之功能,可用 於進行生物反應動力參數演算法分析,以瞭解生物反應動力學特性。 為達上述之次要目的,本發明生物反應動力參數測定設備主 要包含有: 1253469 一可供馴化後之好氧性菌種植入並進行生物反應的反應瓶; 一控制該反應瓶至一設定溫度值之溫度控制單元; 一提供及紀錄該反應瓶所需攝氧量之供氧系統,其可輸出一 即時累積攝氧數據(% VS. ί); 一攝氧率計算單元,其藉由該即時累積攝氧數據vs. 〇 計算出一攝氧率數據心vs. (9W);與 一生物反應動力參數計算單元,該生物反應動力參數計算單 元係可藉由該攝氧率數據vs. 計算出一最大生長係數 (rg),一最大比生長速率(//J,一半飽和常數(A)和一衰減係數 (h),以及一初始基質濃度值(&)與一初始微生物濃度值(D者。 【實施方式】 為使貴審查委員進一步了解前述發明目的及特徵,茲詳細說明 如后: 請參考第一圖,本發明所提供之生物反應動力參數測定設 備及方法,主要係使用一馴化槽(10)培養好氧性菌種,並將菌種 植入一反應瓶(11)中,藉以實現期望的生物反應;使用一溫度控 制單元(13)可控制該反應瓶(11)至一設定溫度值;藉由一供氧系 統(12)提供及紀錄該反應瓶(11)所需的攝氧量,該供氧系統(12) 所輸出的數據為一即時累積攝氧數據(〇„ vs. ί);同時藉由一攝 氧率計算單元(14)依上述即時累積攝氧數據vs. 〇計算出反 應瓶(11)内的攝氧率,該攝氧率計算單元(14)所輸出的數據為一 1253469 即時攝氧率數據vs. Ow),最後由一生物反應動力參數計 算單元(15)依上述攝氧率數據(说Λ/Λ vs. Ow)計算出生物反應動 力參數如:一最大生長係數(rg)、一最大比生長速率(//J、一半 飽和常數(A)與一衰減係數(匕),以及一初始基質濃度值(&) 與一初始微生物濃度值(尤),藉以評估好氧性生物處理系統的 反應動力特性。 以下係針對上述之生物反應動力參數演算進行推導: 對一半連續操作之呼吸儀系統,基於底下假設: 1. 系統植種來源為已馴化菌種; 2. 系統設定為具恆溫控制、強力攪拌(避免質傳或氧傳限制) 與密閉式純氧供氣(避免水分蒸發造成反應體積擾動)之 呼吸儀系統; 3. 系統以半連續操作獲取具再現性之批次攝氧數據; 4. 基質含有足量營養物質與緩衝溶液,但不含任何抑制或毒 性物質。 其反應動力相關之主導方程式(governing equations)與初始 條件(initial conditions)如下所列: 微生物之質量平衡式:办7 A ^ =MgX- kdX (1) 基質之質量平衡式:必= -μ,Χ/Υ, (2) Monod 動力式:= /½ / (K + S) (3) BOD平衡式·· =—必/出 ~ dX/dt (4) 1253469 初始條件:當 (5) 其中/^為比生長速率,t為衰減係數,心為最大生長係數^為 最大比生長速率為半飽和常數’又與不分別為基值與微生物之初 始濃度值。而且所有濃度之單位均採用生化需氧量⑴。ehemieal oxygen demand,BOD)之單位,如 mg/L b〇d。 對於一批次dO〆心vs· 攝氧率圖,可依基質是否耗盡而 分為:基質耗盡前之外呼吸期(exogenous phase)與基質耗盡後之 内呼吸期(endogenous phase)。上述所列方程式經序列推導後,鲁 可分別對外、内呼吸期求得其不含基質濃度(S)與菌量(z)之攝氧 率與累積攝氧量(〇m)關係式·· 在外呼吸期可表示成 dOJdt - (aj 〇u2 + a2 qu+ / (〇u+ a4) 其中 (6a) (6b) (6c) (6d) (6e) (6f) (6g) (6h) aj = λ] λ3 CC2 = ^1 +λ2 λ3 a3 = λ2 X〇 CC4 ~ ^4 A; = (l/Fg- l) um + kd ^ = [(Wg-l)MmS〇 + kd(Ks + S0)] [Yg/(l+kdec°)^i] ^=l/[(l+^6>c°)/7g-l] = (Ks + S0) [Yg /(\ + kd Θ;) - 1] 11 1253469 ^c°=l/ [βηι s〇 / (Ks + S0) - kd]; (6i) 在内呼吸期可表示成 dOJdt ^ Pj〇u + β2 ⑺ 其中 β l 二-kd (7a) βι = kd {Χ〇 + S〇), (7b) 上述内呼吸期之關係式為一線性迴歸(simple linear regression,SLR)公式;外呼吸期之關係式則可改寫為複迴歸 (multiple linear regression,MLR)公式: [〇uxdOJdt] = aj [Ou2] + a2 [0U] + cx3 - cx4 [dOJdt] 因此,對於一批次dCWi vs. (9M攝氧圖之外、内呼吸期,分 別進行複迴歸與線性迴歸,即可求得四個外呼吸參數(α】,α2, α3, α4)與兩個内呼吸參數(爲,/¾)。這六個參數經上述代數式聯立求 解,可求得四個動力參數rg,&,h)與兩個初始濃度值(&, U,其詳細演算過程如下所列步驟: 步驟 1 :選取數據處理時距(data handling interval,ir) ·· = (10 〜100)χΔί’ 其中 Δί 為數據擷取時距(data acquisition interval)。 步驟2 :做攝氧率圖vs· (9J :以選取之數據處理時 距(ir),對攝氧圖(OmVS· ί)取線性迴歸求得斜率轉換成攝氧率圖 、dOu/dt ns· 〇u) 〇 步驟 3 :選取區分點(separation point,Gp):從‘ =5 〜π-3, 12 1253469 其中"為攝氧率圖(30〆心vs. 〇m)上之總點數。 步驟4:計算爲和/?2:針對攝氧率圖(i/(VAvs. 上之。〜 ”數據點,以Σι (OUR’ —0URi)2為目標函數作線性迴歸計算出爲 和馬。 步驟5 :計算α7, α2, %和々:針對攝氧率圖(3〇/心vs·队) 上之1〜4數據點,以Σι (Ο: 〇URie — % 〇υΕ^2為目標函數作 複線性迴歸計算出α/,α2, α3和a。 步驟6·什算b和不·^:以步驟4所得之爲和爲計算出心和; 步驟7··計算~匕,&,又和a :以步驟5所得之的,%和❿計 算出又和不。 步驟8 · e十异0„和OUR之估測值和〇URe):以步驟6和7 所得之4 ~ rg,尤,&和尤,利用IMSL之F〇RTRAN副程式 (subroutine)依原列之質量平衡方程組計算出〇/vs· ?。再以中間差分法 (central difference)求斜率計算出 vs 。 步驟9 :選取最佳區分點(tp):移動攝氧率圖(奶vs.⑹上之 區分點(k),重複步驟3〜8,並以REav = {ΣίνΛ[(〇υΐ^ — OURi)2+(<^ie — 〇ui)2] //'(OURf+O^H/wxlOO%為最小值目標函 數,求取最佳區分點(Gp)。 步驟10 :選取最佳數據處理時距(ir):改變攝氧圖(〇M vs· ί) 上之數據處理時距(G),重複步驟1〜9 ’並以REav = d [(OUR,一 〇11&)2+(〇/ — (^)2:1/^(01112+(^2)}^ χ 100%為最小 13 1253469 值目標函數,求取最佳數據處理時距(ο)。 接著針對本發明中所需之好氣性菌種進行馴化培養說明。 本發明採用一酬化槽培養好氧性菌種,其裝置如第—图所 示,特點包括:在10升反應瓶(11)中,靠空氣泵(16)打入空氣, 經瓶底之曝氣石(17)曝氣以維持溶氧1〜2毫克/升;依溫度測棒 (18)測值可以比例積分微分(PID)補溫溫度控制器(13)連動加熱 棒(19)以維持高溫55t:,精確度0.rc ;反應瓶(11)底置一加重 型稀土磁石(20)以磁力攪拌器(21)強力攪拌以維持反應瓶(ιι)内 溶氧與溫度均句分布;為避免大量水分蒸發,反應瓶(11)頂部連 接一冷凝回流管(22);基質與營養鹽為避免酸敗分置兩個4升玻 璃瓶(23)、(24)中,利用蠕動泵(25)依設定流速同時連續進流到 反應瓶(11)中,並靠反應瓶(11)出流口維持液面高度以控制污泥 齡(SRT)。 以下以一貫施例具體說明本發明之操作實施方法: 馴化培養 馴化坧養操作,先自北部某食品油脂自發性高溫好氧廢水 (ATAT)實廠之好氧曝氣池,取回1〇公升菌種,植入反應瓶中, 再以10 g/L COD葡萄糖人工水樣控制SRT二1〇天進流,定期由 出流水取樣分析C〇D、pH與MLSS,並觀察污泥沈降性、顏色、 泡沫與顯微鏡菌相,以監控馴化情形。 本發明須關化科,經由穩·操作,以提供所有反應動力試 14 1253469 驗植種來源,操作至所有反應動力試驗完成為止。 反應動力試驗 反應動力試驗為本發明之核心實驗,所使用設備,如第三圖 所示,乃由一反應瓶(30)、一供氧系統(33)、一溫度控制單元' 一磁力攪拌單元,與一訊號數據監控處理單元等五大部分所組 成,具有可程式即時線上監控大量累積攝氧之功能,可用於進行 生物反應動力參數演算法分析,以瞭解生物反應動力特性。 其中,該供氧系統可設定反應瓶(30)瓶頂空間氧含量,根據 氧氣監測器(3 1)測量值,以電腦程式依開/關控制方式連動控制閥 (32)由供氧源(33)供氧,控制閥(32)每開一次可定量供氧,電腦 程式紀錄累積開放次數可換算成攝氧量,氧化產生二氧化碳由一 吸收瓶(34)中強鹼溶液所吸收,另外尚裝有一氣體循環泵(35)以 利反應瓶(30)頂部空間與供氧系統連通管線中氣體之均勻分 布;反應瓶(30)底置入一加重型稀土磁石(41),可以磁力攪拌器 (42)強力驅動攪拌,不易脫速,且轉速可調整;訊號數據監控處 理單元(43)是利用界面控制商業軟體撰寫之程式,可以線上即時 監控攪拌轉速、溫度、累積攝氧量等數據,並可繪製成線上即時 動態圖;溫控系統依反應瓶(30)内所置溫度測棒(18)測值,並連 動一加熱棒(19),可控制反應瓶(30)之溫度。 進行反應動力試驗時,先自馴化槽植種至反應瓶(30)中,採 半連續進流操作,每日以針筒依所控制之SRT換算抽取定量污 15 1253469 泥廢棄,隨即添加等體積葡萄糠人工水樣,待每日累積攝氧趨勢 達穩定再現,即可終止該批試驗。 第四圖所示為利用本發明生物反應動力參數測定設備,以葡 萄糖人工水樣半連續操作在55 °C,每曰進流基質濃度(6>)= 10,000 mg/L COD,污泥齡(SRT) = 10 d之連續八天攝氧曲線(Ow vs. ί),其數據擷取時距(Δί)為1分鐘。由於本發明是以vs.久 圖配合所開發移動演算法(sweeping algorithm)進行動力參數估 算,因此須將第四圖之vs. ί圖取斜率轉換成Ot/i? vs. 圖。 為避免取斜率造成誤差,本發明首先分別設定以每10,20,..., 100 min為數據處理時距(〇,對0„vs. ί圖取線性迴歸求得斜率, 再以所開發演算法進行動力參數估算,其估算結果之好壞可由目 標函數 REav = {ZiVr[(OURie - OURi)2+(Owie - Oui)2]/^ (OURp+OjM/nxlOO%之八天平均值比較而得。第五圖所示為以 不同數據處理時距之目標函數八天平均值,由圖中同時顯示之二 次趨勢線可知以67 min為數據處理時距,對(9wvs. ί圖取斜率最 佳。這是因為當數據處理時距太小時,斜率OUR之擾動誤差大; 而當數據處理時距太大時,斜率OUR之瞬時曲線特性又會被線 性迴歸之直線特性所遮蔽。 表1為以67 min為數據處理時距,對vs. ί圖取線性迴歸 得斜率,再以本發明所開發演算法進行動力參數估算所得之結 果。其結果顯示每日之動力參數變異性大,此結果亦可由第四圖 16 1253469 之每日之攝氧變異性大觀察得知,顯系本發明所開發之動力參數 移動演算法敏感度高。由於這八天攝氧數據複現性不高,取其全 部平均值意義不大,所以僅以較具複現性之第二天(圖6a)與第五 天(圖6b)動力參數平均值得:最大生長速率常數為&37 l/d, 生長係數(¾ 為 〇_84 mg BOD bi()mass/ mg BOD of substrate,半飽和濃度(&)為82.3 mg/LB〇D,衰減係數(心)為0.44 Ι/d。 表1 連續八天之生物反應動力參數估异值Vs· 〇u); using the oxygen uptake data vs·α) to calculate a maximum growth coefficient (3⁄4), a maximum specific growth rate (~), a half saturation constant (Κ), and an attenuation coefficient (h), And an initial matrix concentration value (D and an initial bacterial concentration value (not) to evaluate the reaction dynamics of the aerobic biological treatment system. The secondary object of the present invention is to provide a device for measuring biological reaction dynamic parameters The device has the function of programmable large-time instantaneous oxygen uptake data on a programmable line, which can be used for performing bio-reactive dynamic parameter algorithm analysis to understand the biological reaction dynamics characteristics. For the above secondary purpose, the biological reaction dynamic parameter of the present invention The measuring equipment mainly comprises: 1253469 a reaction bottle into which the aerobic bacteria can be grown and bioreacted; a temperature control unit that controls the reaction bottle to a set temperature value; and provides and records the reaction bottle An oxygen supply system requiring an oxygen uptake, which can output an instantaneous cumulative oxygen uptake data (% VS. ί); an oxygen uptake rate calculation unit by which the instantaneous cumulative oxygen uptake Data vs. 〇 Calculate an oxygen uptake data heart vs. (9W); and a biological reaction dynamic parameter calculation unit that can calculate a maximum growth by the oxygen uptake data vs. Coefficient (rg), a maximum specific growth rate (//J, half saturation constant (A) and an attenuation coefficient (h), and an initial matrix concentration value (&) and an initial microbial concentration value (D. EMBODIMENT OF THE INVENTION In order to make the reviewer further understand the above objects and features of the present invention, the following is a detailed description: Referring to the first figure, the apparatus and method for measuring biological reaction dynamic parameters provided by the present invention mainly use a domestication tank (10). Cultivating aerobic species and planting the bacteria into a reaction flask (11) to achieve the desired biological reaction; using a temperature control unit (13) to control the reaction flask (11) to a set temperature value The oxygen supply required by the oxygen supply system (12) is provided by an oxygen supply system (12), and the data output by the oxygen supply system (12) is an instantaneous cumulative oxygen uptake data (〇„ vs. ί Oxygen rate calculation unit (14) Calculate the oxygen uptake rate in the reaction flask (11) according to the above-mentioned instantaneous cumulative oxygen uptake data vs. ,, and the data output by the oxygen uptake rate calculation unit (14) is a 1253469 instantaneous oxygen uptake rate data vs. Ow Finally, a biological reaction dynamic parameter calculation unit (15) calculates a biological reaction dynamic parameter according to the above oxygen uptake data (say Λ/Λ vs. Ow) such as: a maximum growth coefficient (rg), a maximum specific growth rate (//J, half saturation constant (A) and an attenuation coefficient (匕), and an initial matrix concentration value (&) and an initial microbial concentration value (especially) to evaluate the reaction dynamics of the aerobic biological treatment system The following is a derivation of the above-mentioned biological reaction dynamic parameter calculation: For a half-continuous operation of the respirator system, based on the following assumptions: 1. The system plant source is the domesticated strain; 2. The system is set to have constant temperature control, strong Respiratory system with agitation (to avoid mass transfer or oxygen transfer restriction) and closed pure oxygen supply (to avoid reaction volume disturbance caused by evaporation of water); 3. System to obtain reproducible batch oxygen uptake in semi-continuous operation According to; 4. The matrix contains sufficient nutrients and buffer solution, but does not contain any inhibitory or toxic substances. The governing equations and initial conditions associated with the reaction kinetics are listed below: Mass balance of microorganisms: 7 A ^ =MgX- kdX (1) Mass balance of matrix: must = -μ, Χ/Υ, (2) Monod Power type: = /1⁄2 / (K + S) (3) BOD balance type ··=—must/out~ dX/dt (4) 1253469 Initial condition: When (5) where / ^ is the specific growth rate, t is the attenuation coefficient, the heart is the maximum growth coefficient ^ is the maximum specific growth rate is the half-saturation constant' and the initial value is not the base value and the initial concentration of the microorganism. Biochemical oxygen demand (1) is used for all concentrations. Unit of ehemieal oxygen demand, BOD), such as mg/L b〇d. For a batch of dO v heart vs. oxygen uptake rate map, it can be divided according to whether the matrix is depleted: the exogenous phase before the matrix is exhausted and the endogenous phase after the matrix is depleted. After the above-mentioned equations were deduced by sequence, Luke obtained the relationship between the oxygen uptake rate and the cumulative oxygen uptake (〇m) of the substrate concentration (S) and the bacterial amount (z) in the external and internal respiratory phases. In the external respiratory phase, it can be expressed as dOJdt - (aj 〇u2 + a2 qu+ / (〇u+ a4) where (6a) (6b) (6c) (6d) (6e) (6f) (6g) (6h) aj = λ] Λ3 CC2 = ^1 +λ2 λ3 a3 = λ2 X〇CC4 ~ ^4 A; = (l/Fg- l) um + kd ^ = [(Wg-l)MmS〇+ kd(Ks + S0)] [Yg /(l+kdec°)^i] ^=l/[(l+^6>c°)/7g-l] = (Ks + S0) [Yg /(\ + kd Θ;) - 1] 11 1253469 ^ c°=l/ [βηι s〇/ (Ks + S0) - kd]; (6i) can be expressed as dOJdt ^ Pj〇u + β2 in the internal respiratory phase (7) where β l di-kd (7a) βι = kd { Χ〇+ S〇), (7b) The relationship between the above internal breathing periods is a simple linear regression (SLR) formula; the relationship between external breathing periods can be rewritten as a multiple linear regression (MLR) formula. : [〇uxdOJdt] = aj [Ou2] + a2 [0U] + cx3 - cx4 [dOJdt] Therefore, for a batch of dCWi vs. (9M Oxygenogram, internal respiratory phase, complex regression and linear regression, respectively) , Four external breathing parameters (α), α2, α3, α4) and two internal breathing parameters (for /3⁄4) can be obtained. These six parameters are solved by the above algebraic equations, and four dynamic parameters can be obtained. Rg, &, h) and two initial concentration values (&, U, the detailed calculation process is as follows: Step 1: Select data processing interval (ir) ·· = (10 ~ 100 ) χΔί' where Δί is the data acquisition interval. Step 2: Do the oxygen uptake rate vs. (9J: Process the time interval (ir) with the selected data, vs. Oxygen map (OmVS· ί) Take the linear regression to obtain the slope conversion to the oxygen uptake rate map, dOu/dt ns· 〇u) 〇 Step 3: Select the separation point (Gp): from '=5 ~π-3, 12 1253469 where " The total number of points on the oxygen uptake rate map (30 hearts vs. 〇m). Step 4: Calculate as and /? 2: For the oxygen uptake rate map (i/(VAvs. on the ~~) data point, use Σι (OUR' - 0URi) 2 as the objective function for linear regression to calculate the sum. Step 5: Calculate α7, α2, %, and 々: for the 1~4 data points on the oxygen uptake graph (3〇/心 vs·team), with Σι (Ο: 〇URie — % 〇υΕ^2 as the objective function Calculate the α/, α2, α3 and a by complex linear regression. Step 6· Calculate b and not ^: Calculate the sum of the sums obtained by the step 4; Step 7·· Calculate ~匕, & And a: calculated in step 5, % and ❿ calculate the sum and the no. Step 8 · e ten different 0 „ and OUR estimates and 〇URe): 4 ~ rg obtained in steps 6 and 7, In particular, &, especially, using the F〇RTRAN subroutine (subroutine) of IMSL to calculate 〇/vs·? according to the original mass balance equations. Then calculate the slope by the central difference method to calculate vs. 9: Select the best distinguishing point (tp): move the oxygen uptake rate map (the difference point (k) on the milk vs. (6), repeat steps 3 to 8, and use REav = {ΣίνΛ[(〇υΐ^ — OURi)2 +(<^ie — 〇ui)2] //'(OURf+O^H/wxlOO% is The minimum objective function is used to find the best distinguishing point (Gp) Step 10: Select the best data processing time interval (ir): change the data processing time interval (G) on the methoxy graph (〇M vs· ί), Repeat steps 1~9' and use REav = d [(OUR, 〇11&)2+(〇/ — (^)2:1/^(01112+(^2)}^ χ 100% for the minimum 13 1253469 The value objective function is used to obtain the optimal data processing time interval (ο). Next, the domesticated culture of the aerobic species required in the present invention is described. The present invention uses a rejuvenation tank to culture aerobic species, and the device thereof is In the first figure, the characteristics include: in the 10 liter reaction bottle (11), the air is pumped by the air pump (16), and the aeration stone (17) at the bottom of the bottle is aerated to maintain the dissolved oxygen 1~2 mg/升; according to the temperature measuring rod (18) measured value can be proportional integral differential (PID) temperature compensation temperature controller (13) linkage heating rod (19) to maintain high temperature 55t:, accuracy 0.rc; reaction bottle (11) bottom Set a heavy-duty rare earth magnet (20) with a magnetic stirrer (21) to maintain the dissolved oxygen and temperature distribution in the reaction bottle (1); to avoid evaporation of large amounts of water, the top of the reaction bottle (11) is connected Condensate return pipe (22); base and nutrient salt to avoid rancid separation of two 4 liter glass bottles (23), (24), using a peristaltic pump (25) at a set flow rate while continuously feeding into the reaction bottle (11) In the middle, the liquid level is maintained by the outlet of the reaction bottle (11) to control the sludge age (SRT). The following is a detailed description of the operation method of the present invention in a consistent manner: Domestication, cultivation, domestication and maintenance operation, first from the aerobic aeration tank of a high-temperature aerobic wastewater (ATAT) plant in the northern food, the oil is taken back 1 liter The strain was implanted into the reaction flask, and the SRT was used to control the inflow of SRT for 1 day and 1 day with 10 g/L COD glucose artificial water sample. The C出D, pH and MLSS were periodically sampled from the outflow water, and the sedimentation of the sludge was observed. Color, foam and microscopic bacteria to monitor domestication. The present invention is required to be used in the Department of Chemical Engineering to provide a source of all reagents for testing, and to operate until all reaction dynamic tests are completed. Reaction Dynamic Test The reaction dynamic test is the core experiment of the present invention. The equipment used, as shown in the third figure, is composed of a reaction bottle (30), an oxygen supply system (33), a temperature control unit, and a magnetic stirring unit. It consists of five parts, including a signal data monitoring and processing unit. It has the function of programmable large-scale cumulative oxygen uptake on the program. It can be used to analyze the dynamic reaction dynamic parameter algorithm to understand the dynamic characteristics of biological reaction. Wherein, the oxygen supply system can set the oxygen content of the top space of the reaction bottle (30), and according to the measured value of the oxygen monitor (3 1), the control valve (32) is connected by the computer program according to the on/off control mode (the oxygen supply source) 33) Oxygen supply, the control valve (32) can be used for quantitative oxygen supply every time. The computer program records the cumulative opening times and can be converted into oxygen uptake. The oxidation produces carbon dioxide absorbed by a strong alkali solution in an absorption bottle (34). A gas circulation pump (35) is installed to facilitate uniform distribution of gas in the communication space between the head space of the reaction bottle (30) and the oxygen supply system; a heavy-duty rare earth magnet (41) is placed at the bottom of the reaction bottle (30), and the magnetic stirrer can be used. (42) Strong driving and stirring, not easy to speed off, and the speed can be adjusted; the signal data monitoring and processing unit (43) is a program for controlling the commercial software to be written by the interface, and can directly monitor the data such as the stirring speed, temperature, and cumulative oxygen uptake on the line. It can be drawn into an online dynamic map; the temperature control system can measure the temperature of the reaction bottle (30) according to the temperature measurement rod (18) in the reaction bottle (30) and a heating rod (19). In the reaction dynamic test, the planting is carried out from the domestication tank to the reaction flask (30), and a semi-continuous inflow operation is carried out. The syringe is decontaminated according to the SRT converted by the syringe every day, and the sludge is discarded. The artificial water sample of grape vines can be terminated after the cumulative oxygen uptake trend reaches a stable reproduction. The fourth figure shows the use of the bioreactor dynamic parameter measuring device of the present invention, with a semi-continuous operation of glucose artificial water sample at 55 ° C, a feed medium concentration per ( (6 >) = 10,000 mg / L COD, sludge age ( SRT) = 10 days of continuous eight-day oxygen uptake curve (Ow vs. ί) with a data acquisition time interval (Δί) of 1 minute. Since the present invention performs the dynamic parameter estimation based on the vs. long graph and the developed sweeping algorithm, the slope of the vs. ί map of the fourth graph must be converted into the Ot/i? vs. graph. In order to avoid the error caused by the slope, the present invention firstly sets the data processing time interval every 10, 20, ..., 100 min respectively (〇, the linear regression is obtained for the 0 „vs. ί graph, and then the slope is developed. The algorithm performs dynamic parameter estimation, and the estimation result can be compared by the objective function REav = {ZiVr[(OURie - OURi)2+(Owie - Oui)2]/^ (OURp+OjM/nx100% of the eight-day average) The fifth graph shows the eight-day average of the objective function with different data processing time. The second trend line displayed at the same time in the figure shows that the data processing time interval is 67 min, which is (9wvs. ί The slope is optimal. This is because when the data processing time is too small, the disturbance error of the slope OUR is large; and when the data processing time is too large, the instantaneous curve characteristic of the slope OUR is obscured by the linear characteristic of the linear regression. Table 1 is the result of processing the time interval with 67 min as the data, taking the linear regression of the vs. ί graph, and estimating the dynamic parameters by the algorithm developed by the present invention. The results show that the daily dynamic parameter variability is large. This result can also be taken from the daily image of the fourth figure 16 1253469 Observed by the large oxygen variability, the dynamic parameter dynamic algorithm developed by the invention has high sensitivity. Since the reproducibility of the eight-day oxygen uptake data is not high, it is of little significance to take all the average values. On the second day of reproducibility (Fig. 6a) and the fifth day (Fig. 6b), the average dynamic parameters are worth: the maximum growth rate constant is & 37 l/d, and the growth coefficient (3⁄4 is 〇_84 mg BOD bi() Mass/ mg BOD of substrate, the half-saturation concentration (&) was 82.3 mg/LB〇D, and the attenuation coefficient (heart) was 0.44 Ι/d. Table 1 Estimated values of dynamic parameters of biological response for eight consecutive days

Day b f^m V K; kd REav 1 2.72 0.98 4.92 0.12 16.1 % 2 6.36 0.85 60.2 0.50 2.11 % 3 25.8 0.94 138. 0.63 4.89 % 4 6.18 0.89 127. 0.19 5.06 % 5 6.39 0.82 104. 0.38 2.47 % 6 10.8 0.91 1.40 2.19 3.33 % 7 0.59 0.43 3.04 0.31 1.39 % 8 1.12 0.52 11.5 0.67 2.01 % Avg·* 6.37 0.84 82.3 0.44Day bf^m VK; kd REav 1 2.72 0.98 4.92 0.12 16.1 % 2 6.36 0.85 60.2 0.50 2.11 % 3 25.8 0.94 138. 0.63 4.89 % 4 6.18 0.89 127. 0.19 5.06 % 5 6.39 0.82 104. 0.38 2.47 % 6 10.8 0.91 1.40 2.19 3.33 % 7 0.59 0.43 3.04 0.31 1.39 % 8 1.12 0.52 11.5 0.67 2.01 % Avg·* 6.37 0.84 82.3 0.44

Notes: &之單位為mgBOD/L An和h之單位為1/d & 之單位為 mg BOD of biomass/mg BOD of substrate 僅計算第2和第5天 17 1253469 由上述貫驗結果證實本發明為一種有用的生物只 w久應動力研 究工具。其中,當系統以10,000 mg/L COD進流葡萄糖和操作在 10天的污泥齡(SRT)時,測定出最大生長速率(/^)為637 i/d, 最大生長係數(心)為 0.84 mg BOD of biomass/ mg BQD f substrate,半飽和常數(7Q為82.3 mg/L BOD,衰減係數為〇44 1/d。 由上述之說明及具體實施例可知,本發明之生物反應動力參 數測定設備及方法,其測量反應動力試驗的線上即時累積攝氧數 據vs· ί),將之轉換為攝氧率數據(〇UR vs· 〇w),再根據從質 量平衡(mass balance)模式所推導之兩不含基質濃度與菌量(幻 之攝氧率(OUR)與攝氧量⑼)關係式,同時使用線性與複線性迴 歸法測定出生物反應動力試驗的生物反應動力參數如最大生長 係數(心)、最大比生長速率(~)、半飽和常數(7ς)與衰減係數(h) 等,以及兩個初始濃度值。其特點在不須進行基質(r、 菌置⑻、產物(Ρ)等濃度分析實驗(如COD或VSS實驗),且 不會有發散(diverge)而無解之情形發生,仍可藉以構成一種準確 的生物反應動力研究工具。 上列詳細說明係針對本發明之一可行實施例之具體說明,惟 該實施例並非用以限制本發明之專利範圍,凡未脫離本發明技術 精神所為之等效實施或變更,均應包含於本案之專利範圍中。 本發明確可獲致如前揭所述的各項優點,不但在技術思想上 1253469 確屬創新,並能較習用物品增進上述多項功效,遂已兼具實用性 與進步性,同時未被使用於相關學術界或產業界,同時具有新穎 性,符合發明專利要件,爰依法提出申請。Notes: & units are mgBOD/L An and h are units of 1/d & units are mg BOD of biomass/mg BOD of substrate Only 2nd and 5th days are calculated 17 1253469 Confirmed by the above test results Invented as a useful bio-only research tool. Among them, when the system infused glucose with 10,000 mg/L COD and operated at 10 days of sludge age (SRT), the maximum growth rate (/^) was determined to be 637 i/d, and the maximum growth coefficient (heart) was 0.84. Mg BOD of biomass / mg BQD f substrate, half saturation constant (7Q is 82.3 mg / L BOD, attenuation coefficient is 〇 44 1 / d. From the above description and specific examples, the biological reaction dynamic parameter measuring device of the present invention And method for measuring the instantaneous cumulative oxygen uptake data vs. ί of the reaction kinetic test, converting it into oxygen uptake data (〇UR vs· 〇w), and then deriving from the mass balance mode The two do not contain the relationship between the substrate concentration and the amount of bacteria (the oxygen uptake rate (OUR) and oxygen uptake (9)), and the linear response and complex linear regression method are used to determine the biological response dynamic parameters of the bioreactor dynamic test, such as the maximum growth coefficient ( Heart), maximum specific growth rate (~), half-saturation constant (7ς) and attenuation coefficient (h), and two initial concentration values. It is characterized in that it does not need to carry out concentration analysis experiments (such as COD or VSS experiments) on the substrate (r, bacteria (8), product (Ρ), etc., and there is no diverge and no solution, and it can still constitute a kind of The above is a detailed description of a possible embodiment of the present invention, which is not intended to limit the scope of the present invention, and is not equivalent to the technical spirit of the present invention. The implementation or the change should be included in the scope of the patent of the present invention. The present invention can achieve the advantages as described above, and not only in the technical idea, 1253469 is innovative, and can enhance the above-mentioned multiple functions compared with the conventional articles. It has been both practical and progressive, and has not been used in relevant academic or industrial circles. At the same time, it has novelty and meets the requirements of invention patents.

19 1253469 【圖式簡單說明】 第一圖:係本發明生物反應動力參數測定設備之系統配置示意 圖; 第二圖:係本發明中培養所有反應動力試驗所需好氧性菌種,其 植種來源之馴化槽示意圖; 第二圖:係本發明生物反應動力參數測定設備所使用呼吸儀設備 示意圖; 第四圖:使用呼吸儀設備,以葡萄糖人工水樣測得之攝氧曲線圖; 第五圖:使用本發明生物反應動力參數測定方法,以葡萄糖人工 K樣測得攝氧曲線圖,在不同數據處理時距之攝氧率計算效果比較 圖;以及 第六圖:使用本發明生物反應動力參數測定方法,以葡萄糖人工 水樣測得之攝氧率曲線圖。 【主要元件符號說明】 10馴化槽 11反應瓶 12供氧系統 13溫度控制單元 Η攝氧率計算單元 15生物動力參數計算單元 16空氣泵 20 1253469 17曝氣石 18溫度測棒 19加熱棒 20加重型稀土磁石 21磁力攪拌器 22冷凝回流管 23基質玻璃瓶 24營養鹽玻璃瓶 25蠕動泵 30反應瓶 31氧氣監測器 32控制閥 33供氧源 34二氧化碳吸收瓶 35氣體循環泵 41稀土磁石 42磁力攪拌器 43訊號數據監控處理單元19 1253469 [Simple description of the diagram] The first diagram is a schematic diagram of the system configuration of the biological reaction dynamic parameter measuring device of the present invention; The second figure is the aerobic species required for culturing all the reaction dynamic tests in the present invention, and the planting thereof Schematic diagram of the domestication tank of the source; Fig. 2 is a schematic diagram of the apparatus for the apparatus used in the biological parameter dynamic parameter measuring apparatus of the present invention; Fourth: the oxygen uptake curve measured by the artificial water sample of glucose using the apparatus of the breathing apparatus; Fig.: Using the biological reaction dynamic parameter determination method of the present invention, the oxygen uptake curve is measured by the artificial K sample of glucose, and the comparison of the oxygen uptake calculation results at different data processing times; and the sixth figure: using the biological reaction power of the present invention The parameter measurement method is an oxygen absorption rate curve measured by a glucose artificial water sample. [Main component symbol description] 10 domestication tank 11 reaction bottle 12 oxygen supply system 13 temperature control unit Η oxygen uptake calculation unit 15 biodynamic parameter calculation unit 16 air pump 20 1253469 17 aeration stone 18 temperature measuring rod 19 heating rod 20 weighting Type rare earth magnet 21 magnetic stirrer 22 condensing return tube 23 matrix glass bottle 24 nutrient glass bottle 25 peristaltic pump 30 reaction bottle 31 oxygen monitor 32 control valve 33 oxygen source 34 carbon dioxide absorption bottle 35 gas circulation pump 41 rare earth magnet 42 magnetic Mixer 43 signal data monitoring and processing unit

Claims (1)

1253469 十、申請專利範圍: 1· 一種生物反應動力參數測定方法,包括下列步驟: 培養好氧性菌種,使菌種進行生物反應; 控制及加熱菌種至一設定溫度值; 累積攝氧數據 提供及量測該菌種所需的攝氧量,並輸出一即時 {〇u vs. t); Vdt 利用該即時累積攝氧數據((9W vs. ί)計算出一攝氧率數據(奶 vs. Ou); VS. 利用該即時累積攝氧數據(〇„ vs· ί)及該攝氧率數據(奶/命 計算出一最大生長係數(4)、一最大比生長速率(A)、_半飽和Α數 ([)、一衰減係數(h)、一初始基質濃度值(¾)與一初始 曲 σ _里〉辰度值 (不)。 2·如申請專利範圍第1項所述之生物反應動力參數測定方法其中 該即時累積攝氧數據(0M vs. 〇係由一提供及量測菌種所需攝氧旦的 供氧系統所輸出測定者。 3.如申請專利範圍第1項所述之生物反應動力參數測定方法,其中 該攝氧率數據(Α9/Λ vs· Ομ)係由該即時累積攝氧數據vs· 〇經由 選取一最佳數據處理時距之線性迴歸後,所求得之斜率者。 4_如申請專利範圍第1項所述之生物反應動力參數測定方法,其中 該攝氧率數據vs_ Ο,),可依基質是否耗盡而分為:基質耗盡 前之外呼吸期(exogenous phase)與基質耗盡後之内呼吸期 (endogenous phase),經由質量平衡分析與方程式推導後,在外呼吸 22 1253469 期可表示成 dOJdt = (a7 + a2〇u + as) / (〇w + 其中 aj = λ\ Λ3 a2 = λ\ XQ + χ2 ^ 6^3 = A X0 (X^ - /I4 mi)"m+kd λ2 = [(1/Yg -\)UmS〇 + hd{Ks +s〇)] [Yg/{l +kd η ^=^[(l+kdec°)/Yg^i] λ4 = (Ks + s0) [p^ /(2+^ <9c〇) ^ JJ θ〇°-\Ι [/Jm SQ / + s〇) _ kd]; 在内呼吸期可表示成 dOJdt = β! 〇u+ 仏 其中 βι = -kd P2 = kd{X0 + S〇) o 5·如申請專利範㈣1賴述之生物反應動力參數败方法,其 中tr亥最大生長係婁文(4)、該最大比生長速率(仏)、該半飽矛口常數⑹、 該衰減係數(^、該初始基質濃度值(又)與該初始菌量濃度值,係 由如申請專利範圍第3項所述之攝氧率數據⑻細vs· α),經由如 23 1253469 申請專利範圍第4項所述之攝氧率數據vS α)表示式迴歸所 得者。 6_ —種生物反應動力參數測定設備,包括有: 一可供於馴化後之好氧性菌種植入並進行生物反應的反應瓶; 一控制該反應瓶至一設定溫度值之溫度控制單元; 一 k供及3己錄3亥反應瓶所需攝氧ϊ之供氧系統,其可輸出^一即 時累積攝氧數據(〇wvs. ί); 一攝氧率計算單元’其藉由該即時累積攝氧數據(仏vs· 計算出 一攝氧率數據(AVAvs. 〇M);與 一生物反應動力參數計算單元,該生物反應動力參數計算單先 係可藉由輯齡㈣⑽/力vs·⑹計算ώ —最大钱係數⑹'一 最大比生長速率⑹、-半飽和常數⑹、—衰減係數⑹)、一初始 基質濃度值(¾)與一初始菌量濃度值(;)者。 241253469 X. Patent application scope: 1. A method for determining the biological response dynamic parameters, including the following steps: cultivating aerobic species, allowing the bacteria to react biologically; controlling and heating the bacteria to a set temperature value; cumulative oxygen uptake data Provide and measure the oxygen uptake required for the strain and output an instant {〇u vs. t); Vdt uses the instant cumulative oxygen uptake data ((9W vs. ί) to calculate an oxygen uptake data (milk Vs. Ou); VS. Using the instant cumulative oxygen uptake data (〇„ vs· ί) and the oxygen uptake data (milk/life to calculate a maximum growth coefficient (4), a maximum specific growth rate (A), _ half-saturated enthalpy ([), an attenuation coefficient (h), an initial matrix concentration value (3⁄4) and an initial σ _ 里 〉 辰 值 ( 。 。 。 。 。 2 2 2 2 2 2 2 2 2 2 2 2 2 The method for measuring the biological response kinetic parameter, wherein the instantaneous cumulative oxygen uptake data (0M vs. 〇 is outputted by an oxygen supply system for providing and measuring the oxydans required by the strain. 3. If the patent application scope is 1 The method for determining the biological response kinetic parameter described in the item, wherein the oxygen uptake rate data (Α9/Λ vs · Ομ) is the slope obtained by linear regression of the instantaneous cumulative oxygen uptake data vs· 〇 by selecting an optimal data processing time interval. 4_ The biological reaction power as described in claim 1 The parameter determination method, wherein the oxygen uptake rate data vs_ Ο,) can be divided according to whether the matrix is exhausted: an exogenous phase before the matrix is exhausted and an endogenous phase after the matrix is exhausted. After mass balance analysis and equation derivation, it can be expressed as dOJdt = (a7 + a2〇u + as) / (〇w + where aj = λ\ Λ3 a2 = λ\ XQ + χ2 ^ 6^) in the period of external breathing 22 1253469 3 = A X0 (X^ - /I4 mi)"m+kd λ2 = [(1/Yg -\)UmS〇+ hd{Ks +s〇)] [Yg/{l +kd η ^=^[ (l+kdec°)/Yg^i] λ4 = (Ks + s0) [p^ /(2+^ <9c〇) ^ JJ θ〇°-\Ι [/Jm SQ / + s〇) _ kd ]; in the internal breathing period can be expressed as dOJdt = β! 〇u + 仏 where βι = -kd P2 = kd{X0 + S〇) o 5 · as applied for the patent (4) 1 Depends on the biological response dynamic parameter failure method, where tr Maximum growth system of Hai (4), the maximum specific growth rate (仏), the half full a spear constant (6), the attenuation coefficient (^, the initial matrix concentration value (again) and the initial bacterial concentration value, which are obtained by the oxygen uptake rate data (8) as described in claim 3, (v)·α), The obtained value is expressed by the oxygen uptake rate data vS α) as described in item 4 of the patent application No. 23 1253469. 6_—a biological reaction dynamic parameter measuring device, comprising: a reaction bottle for aurifying the aerobic bacteria after domestication and performing a biological reaction; a temperature control unit for controlling the reaction bottle to a set temperature value; A k-and 3-received oxygen-receiving system for the 3 amp reaction bottle, which can output an instant cumulative oxygen uptake data (〇wvs. ί); an oxygen uptake calculation unit' Cumulative oxygen uptake data (仏vs· Calculate an oxygen uptake rate data (AVAvs. 〇M); and a biological reaction dynamic parameter calculation unit, the biological response dynamic parameter calculation single precursor system can be calculated by age (4) (10) / force vs · (6) Calculate ώ - maximum money coefficient (6) 'one maximum specific growth rate (6), - half saturation constant (6), - attenuation coefficient (6)), an initial matrix concentration value (3⁄4) and an initial bacterial concentration value (;). twenty four
TW91124882A 2002-10-25 2002-10-25 Apparatus and method for determining biological reaction kinetic parameters TWI253469B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91124882A TWI253469B (en) 2002-10-25 2002-10-25 Apparatus and method for determining biological reaction kinetic parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91124882A TWI253469B (en) 2002-10-25 2002-10-25 Apparatus and method for determining biological reaction kinetic parameters

Publications (1)

Publication Number Publication Date
TWI253469B true TWI253469B (en) 2006-04-21

Family

ID=37586616

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91124882A TWI253469B (en) 2002-10-25 2002-10-25 Apparatus and method for determining biological reaction kinetic parameters

Country Status (1)

Country Link
TW (1) TWI253469B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716631B (en) * 2016-08-30 2021-01-21 美商法蘭絲解決方案公司 Bioreactor system and method of carrying out bioreaction in bioreactor system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI716631B (en) * 2016-08-30 2021-01-21 美商法蘭絲解決方案公司 Bioreactor system and method of carrying out bioreaction in bioreactor system

Similar Documents

Publication Publication Date Title
Caldwell et al. Study of attached cells in continuous-flow slide culture
Chao et al. A complex community in a simple habitat: an experimental study with bacteria and phage
Tsuchiya et al. Predator-prey interactions of Dictyostelium discoideum and Escherichia coli in continuous culture
Jannasch Growth of marine bacteria at limiting concentrations of organic carbon in seawater 1
Miller et al. Design and use of multiplexed chemostat arrays
EP1053299B1 (en) Protocol for simulated natural biofilm formation
Sokol Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida)
Ghaly et al. Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production
Kinniment et al. Measurements of the distribution of adenylate concentrations and adenylate energy charge across Pseudomonas aeruginosa biofilms
Hope et al. Laboratory modelling of manganese biofiltration using biofilms of Leptothrix discophora
NO336517B1 (en) Device that increases the rate of reproduction of living cells or cultured organism through natural selection and method of achieving this
CN110055301A (en) A method of the culture medium of detection Bifidobacterium and quickly detection count
Dykhuizen [45] Chemostats used for studying natural selection and adaptive evolution
Pollard et al. Measuring in situ bacterial specific growth rates and population dynamics in wastewater
JP2010082590A (en) Simple measuring method for bacillus bacteria
Gaudy Jr et al. Control of growth rate by initial substrate concentration at values below maximum rate
Chiu et al. ATP pools in activated sludge
CN106010950A (en) Method and device for simple determination of activity of nitrifying bacteria
TWI253469B (en) Apparatus and method for determining biological reaction kinetic parameters
US20220220527A1 (en) Method for measuring the activity of a culture of microalgae
RU2192474C2 (en) Method of monitoring of microbiological process in flow of liquid (versions)
Ibarra et al. Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes
TW494089B (en) Method of monitoring and controlling a microbiological process in a fluid supply having a microbial population
Rahman et al. A simple cost-effective manometric respirometer: design and application in wastewater biomonitoring
Buswell et al. [5] Use of continuous culture bioreactors for the study of pathogens such as Campylobacter jejuni and Escherichia coli O 157 in biofilms

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees