JPH0462722A - Oxide superconducting structure body - Google Patents
Oxide superconducting structure bodyInfo
- Publication number
- JPH0462722A JPH0462722A JP2173364A JP17336490A JPH0462722A JP H0462722 A JPH0462722 A JP H0462722A JP 2173364 A JP2173364 A JP 2173364A JP 17336490 A JP17336490 A JP 17336490A JP H0462722 A JPH0462722 A JP H0462722A
- Authority
- JP
- Japan
- Prior art keywords
- oxide superconducting
- film
- base material
- superconducting
- stabilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 38
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims abstract description 13
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims abstract 2
- 238000000034 method Methods 0.000 abstract description 21
- 229910052797 bismuth Inorganic materials 0.000 abstract description 14
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 229910052709 silver Inorganic materials 0.000 abstract description 4
- 239000004332 silver Substances 0.000 abstract description 4
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 3
- 239000000523 sample Substances 0.000 description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- 239000010408 film Substances 0.000 description 18
- 239000007788 liquid Substances 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000000608 laser ablation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は、基材上にB i−Sr−Ca−Cu−〇系
(ビスマス系)酸化物超電導膜を形成した、酸化物超電
導構造体に関するもので、たとえば、超電導コイル、超
電導ケーブル等に使用される超電導線、磁気シールドに
使用される超電導シールド体、デバイス・センサ等に使
用される超電導素子などのように、適当な基材上に酸化
物超電導物質からなる膜を備える構造体に関するもので
ある。Detailed Description of the Invention [Industrial Application Field] The present invention provides an oxide superconducting structure in which a Bi-Sr-Ca-Cu-〇-based (bismuth-based) oxide superconducting film is formed on a base material. For example, superconducting wires used in superconducting coils and cables, superconducting shield bodies used in magnetic shields, superconducting elements used in devices and sensors, etc. The present invention relates to a structure including a film made of an oxide superconducting material.
[従来の技術]
ビスマス系酸化物超電導物質は、超電導状態になる臨界
温度が最高110に程度にもなり、液体窒素中での実用
化が有望視されている。特に、薄膜状態において高品質
のビスマス系酸化物超電導物質を得ることができる。[Prior Art] Bismuth-based oxide superconducting materials have a maximum critical temperature of about 110° C. for becoming superconducting, and are expected to be put to practical use in liquid nitrogen. In particular, a high quality bismuth-based oxide superconducting material can be obtained in a thin film state.
酸化物超電導膜を形成する方法としては、蒸着、スパッ
タリング、CVDル−ザアブレーション、等の気相法を
適用することができる。As a method for forming the oxide superconducting film, vapor phase methods such as vapor deposition, sputtering, CVD laser ablation, etc. can be applied.
[発明が解決しようとする課題]
高品質のビスマス系酸化物超電導膜を得るためには、高
温のプロセスを経る必要がある。たとえば、成膜中での
基材の温度は600℃以上とされ、成膜後、さらに80
0℃以上の熱処理を行なう必要がある。[Problems to be Solved by the Invention] In order to obtain a high-quality bismuth-based oxide superconducting film, it is necessary to undergo a high-temperature process. For example, the temperature of the base material during film formation is 600°C or higher, and after film formation, the temperature of the base material is 800°C or higher.
It is necessary to perform heat treatment at 0°C or higher.
しかしながら、このように高温で熱処理を行なうと、基
材と超電導層との間で拡散反応を生じ、形成した酸化物
超電導物質の超電導特性が劣化してしまうことがある。However, when heat treatment is performed at such a high temperature, a diffusion reaction occurs between the base material and the superconducting layer, and the superconducting properties of the formed oxide superconducting material may deteriorate.
それゆえに、この発明の目的は、高温での熱処理におい
ても、拡散反応による超電導特性への悪影響を少なくし
、優れた超電導特性を有するビスマス系酸化物超電導物
質を得るための構造を提供しようとすることである。Therefore, an object of the present invention is to provide a structure for obtaining a bismuth-based oxide superconducting material having excellent superconducting properties by reducing the adverse effects of diffusion reactions on superconducting properties even during heat treatment at high temperatures. That's true.
[課題を解決するための手段]
このような拡散反応を防止するために、基材と酸化物超
電導膜との間に中間層を設けることが考えられる。この
場合、高温での熱処理に耐えられるようにするには、中
間層の厚みは1μm以上にする場合もあり、したがって
、中間層は、耐熱性を有していること、酸化物超電導膜
との反応性が小さいこと、熱膨張係数が酸化物超電導膜
のそれに近いこと、超電導線の場合には可撓性を有して
いることが必要である。[Means for Solving the Problems] In order to prevent such a diffusion reaction, it is conceivable to provide an intermediate layer between the base material and the oxide superconducting film. In this case, in order to withstand heat treatment at high temperatures, the thickness of the intermediate layer may be 1 μm or more. Therefore, the intermediate layer must have heat resistance and be compatible with the oxide superconducting film. It needs to have low reactivity, a thermal expansion coefficient close to that of an oxide superconducting film, and, in the case of a superconducting wire, flexibility.
上述のように、耐熱性および可撓性を有し、かつ酸化物
超電導膜に熱膨張係数が近いセラミックスとして、たと
えば、YSCeSCaまたはMg元素を添加し安定化さ
せた安定化ジルコニアが知られている。本件発明者は、
これら添加されるべき元素のうち、YまたはCe元素は
、ビスマス系酸化物超電導物質と反応し、その超電導特
性を著しく低下させる一方、CaまたはMg元素は、そ
の超電導特性をほとんど低下させないことを見いだし、
この発明に到達したものである。As mentioned above, as a ceramic that has heat resistance and flexibility and has a coefficient of thermal expansion close to that of an oxide superconducting film, for example, stabilized zirconia stabilized by adding YSCeSCa or Mg element is known. . The inventor of this case is
Among these elements to be added, the Y or Ce elements react with the bismuth-based oxide superconducting material and significantly reduce its superconducting properties, while the Ca or Mg elements hardly reduce its superconducting properties. ,
This invention has been achieved.
すなわち、この発明は、基材上にビスマス系すなわちB
1−Sr−Ca−Cu−0系酸化物超電導膜を形成した
、酸化物超電導構造体に向けられるものであって、前記
基材と前記超電導膜との間に、Ca元素またはMg元素
を添加し安定化させた安定化ジルコニアからなる中間層
を設けたことを特徴としている。That is, this invention provides bismuth-based, ie B
It is intended for an oxide superconducting structure in which a 1-Sr-Ca-Cu-0-based oxide superconducting film is formed, wherein Ca element or Mg element is added between the base material and the superconducting film. It is characterized by the provision of an intermediate layer made of stabilized zirconia.
[作用]
安定化ジルコニアにおいて、その安定化のために添加さ
れるCa元素またはMg元素は、ビスマス系酸化物超電
導物質との反応があまり生じず、あるいは反応しても、
その超電導特性に及ぼす影響は小さい。このため、Ca
またはMg元素を添加し安定化させた安定化ジルコニア
を中間層として設けながら、基材上にビスマス系超電導
膜を形成すると、熱処理しても、その超電導特性が低下
することが避けられる。[Function] In stabilized zirconia, the Ca element or Mg element added for stabilization does not react much with the bismuth-based oxide superconducting material, or even if it reacts,
Its influence on superconducting properties is small. For this reason, Ca
Alternatively, if a bismuth-based superconducting film is formed on a base material while providing stabilized zirconia stabilized by adding Mg element as an intermediate layer, deterioration of the superconducting properties can be avoided even when heat-treated.
[実施例]
実施例I
Caを添加し安定化させたジルコニア中間層を、以下の
表1に示すような条件で、銀テープ上に作製した。この
中間層を設けた銀テープ上に、以下の表2に示す条件で
、B i−3r−Ca−Cu −0系酸化物超電導膜を
、RFマグネトロンスパッタ法により形成し、同じく表
2に示す条件で熱処理した。[Example] Example I A zirconia intermediate layer stabilized by adding Ca was prepared on a silver tape under the conditions shown in Table 1 below. On the silver tape provided with this intermediate layer, a Bi-3r-Ca-Cu-0 based oxide superconducting film was formed by RF magnetron sputtering under the conditions shown in Table 2 below. Heat treated under the following conditions.
表2 超電導膜の作製条件
得られた試料の超電導特性を、4端子法により評価した
。その結果、臨界温度(Tc)は98に1液体窒素中で
の臨界電流密度(J c)は28×IQ’A/cm2で
あった。Table 2 Conditions for producing superconducting films The superconducting properties of the obtained samples were evaluated by a four-probe method. As a result, the critical temperature (Tc) was 98:1, and the critical current density (Jc) in liquid nitrogen was 28×IQ'A/cm2.
実施例2
Mgを添加し安定化させたジルコニアを中間層として用
いたことを除いて、表1および表2に示す条件で試料を
得た。Example 2 Samples were obtained under the conditions shown in Tables 1 and 2, except that zirconia stabilized by adding Mg was used as the intermediate layer.
この試料の超電導特性を4端子法で測定したところ、T
cは96に1液体窒素中でのJcは24X10’A/c
m2であった。When the superconducting properties of this sample were measured using the four-terminal method, T
c is 1 in 96 Jc in liquid nitrogen is 24X10'A/c
It was m2.
比較例1
銀テープを基材として用い、中間層を設けないことを除
いて、表2の条件で試料を作製した。Comparative Example 1 A sample was prepared under the conditions shown in Table 2 except that a silver tape was used as a base material and no intermediate layer was provided.
得られた試料の超電導特性を4端子法により評価したと
ころ、Tcは55にであった。なお、JCについては、
液体窒素中での測定のため、これを測定することができ
なかった。When the superconducting properties of the obtained sample were evaluated by a four-probe method, Tc was found to be 55. Regarding JC,
This could not be measured because the measurement was carried out in liquid nitrogen.
実施例3
基材としてステンレス鋼を用いたことを除いて、実施例
1と同じ条件で試料を作製した。Example 3 A sample was produced under the same conditions as in Example 1, except that stainless steel was used as the base material.
得られた試料の超電導特性を4端子法で測定したところ
、Tcは97に1液体窒素中でのJcは22X10’A
/cm2であった。When the superconducting properties of the obtained sample were measured using the four-terminal method, Tc was 97 to 1, and Jc in liquid nitrogen was 22X10'A.
/cm2.
実施例4
基材としてステンレス鋼を用い、またMgを添加した安
定化ジルコニアを中間層として用いたことを除いて、実
施例1と同じ条件で試料を作製した。Example 4 A sample was prepared under the same conditions as Example 1, except that stainless steel was used as the base material and stabilized zirconia to which Mg was added was used as the intermediate layer.
得られた試料の超電導特性を4端子法で測定したところ
、Tcは97に1液体窒素中でのJcは19X10’A
/cm2であった。When the superconducting properties of the obtained sample were measured using the four-terminal method, Tc was 97 to 1, and Jc in liquid nitrogen was 19X10'A.
/cm2.
比較例2
基材としてステンレス鋼を用い、中間層を設けないこと
を除いて、実施例1と同じ条件で試料を作製した。Comparative Example 2 A sample was produced under the same conditions as Example 1, except that stainless steel was used as the base material and no intermediate layer was provided.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは38にであった。なお、比較例1と同様、Jc
は測定できなかった。When the superconducting properties of the obtained sample were evaluated using a four-terminal method, Tc was found to be 38. Note that, as in Comparative Example 1, Jc
could not be measured.
実施例5
基材としてイツトリア安定化ジルコニア(YSZ)を用
いたことを除いて、実施例1と同じ条件で試料を作製し
た。Example 5 A sample was prepared under the same conditions as in Example 1, except that itria-stabilized zirconia (YSZ) was used as the base material.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは99K、液体窒素中でのJcは29X10’A
/cm2であった。When the superconducting properties of the obtained sample were evaluated using the four-probe method, the Tc was 99K and the Jc in liquid nitrogen was 29X10'A.
/cm2.
実施例6
基材としてYSZを用い、またMgを添加した安定化ジ
ルコニアを中間層として用いたこと以外は、実施例1と
同じ条件で試料を作製した。Example 6 A sample was produced under the same conditions as Example 1, except that YSZ was used as the base material and stabilized zirconia to which Mg was added was used as the intermediate layer.
得られた試料の超電導側特性を4端子法で評価したとこ
ろ、Tcは96に1液体窒素中でのJcは26X10’
A/cm2であった。When the superconducting properties of the obtained sample were evaluated using the four-terminal method, Tc was 96 to 1, and Jc in liquid nitrogen was 26X10'.
It was A/cm2.
比較例3
基材としてYSZを用い、中間層を設けないことを除い
て、実施例1と同じ条件で試料を作製した。Comparative Example 3 A sample was produced under the same conditions as Example 1, except that YSZ was used as the base material and no intermediate layer was provided.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは43にであった。Jcについては、比較例1と
同様の理由で、測定できながった。When the superconducting properties of the obtained sample were evaluated using a four-terminal method, Tc was found to be 43. Regarding Jc, it could not be measured for the same reason as in Comparative Example 1.
実施例7
基材として石英を用いたこと以外は、実施例1と同じ条
件で試料を作製した。Example 7 A sample was prepared under the same conditions as Example 1 except that quartz was used as the base material.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは96に1液体窒素中でのJcは22X10’A
/am2であった。When the superconducting properties of the obtained sample were evaluated using the four-terminal method, Tc was 96 to 1, and Jc in liquid nitrogen was 22X10'A.
/am2.
実施例8
基材として石英を用い、Mgを添加した安定化ジルコニ
アを中間層として設けたこと以外は、実施例1と同じ条
件で試料を作製した。Example 8 A sample was produced under the same conditions as Example 1, except that quartz was used as the base material and stabilized zirconia added with Mg was provided as the intermediate layer.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは95に1液体窒素中でのJcは21X10’A
/cm2であった。When the superconducting properties of the obtained sample were evaluated using the four-terminal method, Tc was 95 to 1, and Jc in liquid nitrogen was 21X10'A.
/cm2.
比較例4
基材として石英を用い、中間層を設けないことを除いて
、実施例1と同じ条件で試料を作製した。Comparative Example 4 A sample was produced under the same conditions as Example 1, except that quartz was used as the base material and no intermediate layer was provided.
得られた試料の超電導特性を4端子法で評価したところ
、TcはIOKであった。Jcについては、比較例1と
同様の理由で、測定できなかった。When the superconducting properties of the obtained sample were evaluated using a four-probe method, Tc was found to be IOK. Regarding Jc, it could not be measured for the same reason as in Comparative Example 1.
実施例9
基材としてSiを用いたこと以外は、実施例1と同じ条
件で試料を作製した。Example 9 A sample was produced under the same conditions as Example 1 except that Si was used as the base material.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは96に1液体窒素中でのJcは23X10’
A/cm2であった。When the superconducting properties of the obtained sample were evaluated using the four-terminal method, Tc was 96 to 1, and Jc in liquid nitrogen was 23X10'.
It was A/cm2.
実施例10
基材としてSiを用い、Mgを添加した安定化ジルコニ
アを中間層として設けたこと以外は、実施例1と同じ条
件で試料を作製した。Example 10 A sample was produced under the same conditions as in Example 1, except that Si was used as the base material and stabilized zirconia added with Mg was provided as the intermediate layer.
得られた試料の超電導特性を4端子法で評価したところ
、Tcは96に1液体窒素中でのJcは22×104A
/Cm2であった。When the superconducting properties of the obtained sample were evaluated using the four-terminal method, Tc was 96 to 1, and Jc in liquid nitrogen was 22 x 104 A.
/Cm2.
比較例5
基材としてSiを用い、中間層を設けないことを除いて
、実施例1と同し条件で試料を作製した。Comparative Example 5 A sample was produced under the same conditions as in Example 1, except that Si was used as the base material and no intermediate layer was provided.
得られた試料の超電導特性を4端子法で評価したところ
、TOは12にであった。Jcについては、比較例1と
同様の理由で、測定できなかった。When the superconducting properties of the obtained sample were evaluated using a four-terminal method, the TO was 12. Regarding Jc, it could not be measured for the same reason as in Comparative Example 1.
[発明の効果]
以上のように、この発明によれば、耐熱性および可撓性
を有し、ビスマス系酸化物超電導物質に対して、熱膨張
係数が近くかつ反応性が小さい中間層が、Ca元素また
はMg元素を添加し安定化させた安定化ジルコニアによ
って与えられる。したがって、このような中間層を基材
上に設けた上で、ビスマス系酸化物超電導膜を形成すれ
ば、高温の熱処理プロセスを経ても、特性の優れた酸化
物超電導物質からなる膜を得ることができる。[Effects of the Invention] As described above, according to the present invention, the intermediate layer has heat resistance and flexibility, has a thermal expansion coefficient close to that of the bismuth-based oxide superconducting material, and has low reactivity. It is provided by stabilized zirconia stabilized by adding Ca element or Mg element. Therefore, if a bismuth-based oxide superconducting film is formed after providing such an intermediate layer on a base material, a film made of an oxide superconducting material with excellent properties can be obtained even after undergoing a high-temperature heat treatment process. I can do it.
また、この発明によれば、中間層の存在により、基材と
酸化物超電導膜との間での拡散反応を防止したり、この
ような拡散反応による悪影響を防止したりすることがで
きるので、基材として用いることができる材料の選択の
幅を広げることができる。したがって、基材を構成する
材料として、セラミックスだけでなく、金属を適用する
ことが可能になる。Further, according to the present invention, the presence of the intermediate layer can prevent a diffusion reaction between the base material and the oxide superconducting film, and can prevent adverse effects caused by such a diffusion reaction. The range of selection of materials that can be used as a base material can be expanded. Therefore, it becomes possible to apply not only ceramics but also metals as the material constituting the base material.
特許出願人 住友電気工業株式会社 (ほか2名)Patent applicant: Sumitomo Electric Industries, Ltd. (2 others)
Claims (1)
膜を形成した、酸化物超電導構造体において、 前記基材と前記超電導膜との間に、Ca元素またはMg
元素を添加し安定化させた安定化ジルコニアからなる中
間層を設けたことを特徴とする、酸化物超電導構造体。[Claims] In an oxide superconducting structure in which a Bi-Sr-Ca-Cu-O based oxide superconducting film is formed on a base material, between the base material and the superconducting film, Ca element or Mg
An oxide superconducting structure characterized by having an intermediate layer made of stabilized zirconia stabilized by adding elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173364A JPH0462722A (en) | 1990-06-29 | 1990-06-29 | Oxide superconducting structure body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173364A JPH0462722A (en) | 1990-06-29 | 1990-06-29 | Oxide superconducting structure body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0462722A true JPH0462722A (en) | 1992-02-27 |
Family
ID=15959032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2173364A Pending JPH0462722A (en) | 1990-06-29 | 1990-06-29 | Oxide superconducting structure body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0462722A (en) |
-
1990
- 1990-06-29 JP JP2173364A patent/JPH0462722A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1326976C (en) | Superconducting member | |
JPH03150218A (en) | Production of superconductive thin film | |
Migliuolo et al. | Single target sputtering of superconducting YBa2Cu3O7− δ thin films on Si (100) | |
EP0407458B1 (en) | Superconducting thin film fabrication | |
EP0446789B1 (en) | Method of preparing oxide superconducting film | |
JP2003529201A (en) | Long superconducting structure and its manufacturing method | |
JPH0462722A (en) | Oxide superconducting structure body | |
JPS63261770A (en) | Manufacture of superconducting device | |
JP2814563B2 (en) | Manufacturing method of oxide superconducting film | |
JPH01208327A (en) | Production of thin film of superconductor | |
JP3061634B2 (en) | Oxide superconducting tape conductor | |
JP2702711B2 (en) | Manufacturing method of thin film superconductor | |
Lorentz et al. | Oriented high‐temperature superconducting Bi‐Sr‐Ca‐Cu‐O thin films prepared by ion beam deposition | |
JPH0297421A (en) | Production of high temperature superconducting thin film | |
JPH02217306A (en) | Production of oxide superconductor | |
JPH0446098A (en) | Superconducting member | |
JPH0462721A (en) | Ceramic superconducting wire | |
Yao | Mechanical Deformation and Grain Texture of Sr-122 Tapes | |
JP2501609B2 (en) | Method for producing complex oxide superconducting thin film | |
JPH01125878A (en) | Thin film multilayer superconductor | |
JPH0292809A (en) | Production of thin film of oxide superconductor | |
JP2577056B2 (en) | Preparation method of composite oxide superconducting thin film | |
JP2847769B2 (en) | Method for producing Bi-based superconductor thin film | |
JPH02244777A (en) | Superconducting film substrate | |
JPH01220872A (en) | Oxide base superconductive material |