JPH0462108A - Preparation of fiber-reinforced thermoplastic resin pellet - Google Patents

Preparation of fiber-reinforced thermoplastic resin pellet

Info

Publication number
JPH0462108A
JPH0462108A JP16873090A JP16873090A JPH0462108A JP H0462108 A JPH0462108 A JP H0462108A JP 16873090 A JP16873090 A JP 16873090A JP 16873090 A JP16873090 A JP 16873090A JP H0462108 A JPH0462108 A JP H0462108A
Authority
JP
Japan
Prior art keywords
fiber
fibers
thermoplastic resin
reinforced thermoplastic
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16873090A
Other languages
Japanese (ja)
Other versions
JP2906595B2 (en
Inventor
Takeshi Toida
土井田 武
Toshiaki Kitahora
北洞 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16873090A priority Critical patent/JP2906595B2/en
Publication of JPH0462108A publication Critical patent/JPH0462108A/en
Application granted granted Critical
Publication of JP2906595B2 publication Critical patent/JP2906595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

PURPOSE:To prepare efficiently a fiber-reinforced thermoplastic resin pellet by a method wherein a reinforcing fiber and a thermoplastic fiber are combined; a composite fiber with a specified combining ratio is heated in the fiber direction to melt the thermoplastic fiber; the composite is cut at a specified length by applying a pressure by using a fitting roll. CONSTITUTION:A composite fiber wherein 25-70wt.% reinforcing fiber are incorporated and a combining ratio of the reinforcing fiber and a thermoplastic fiber is at least 10% is continuously heated in the fiber direction by means of radiation heating and convection heating to melt the thermoplastic fiber. A rod-like fiber-reinforced thermoplastic resin obtd. by applying continuously a pressure by using a male and a female fitting roll is cut into a length of 3-60mm to prepare a fiber-reinforced thermoplastic resin pellet. If the combining ratio is lower than 10%, a good pellet is hardly prepd. with respect to impregnating characteristics. In addition, if the content of the reinforcing fiber is less than 25wt.%, such physical properties as impact resistance and wear resistance decrease and if the content is more than 70wt.%, impregnation of the reinforcing fiber with a matrix resin is not enough and it is impossible to obtain a molded item with good mechanical characteristics.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、射出成形および押出成形等に用いることがで
きる繊維強化熱可塑性樹脂ペレットおよびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to fiber-reinforced thermoplastic resin pellets that can be used for injection molding, extrusion molding, etc., and a method for producing the same.

(従来の技術) 繊維強化エンジニア・リングプラスチック(以下エンプ
ラと略す)等の繊維強化熱可塑性樹脂コンポジットは、
射出成形を中心に着実に市場が成長しており、今やきわ
めて重要な工業用材料になってきている。これらのエン
プラにおけるペレットの作製方法は一般的には例えば繊
維を強化材とする場合では混練り機を用いて溶融させた
マ) IJフックス樹脂中補強繊維となる繊維を3−鶴
程にカットし混合した後押出しだし、冷却・固化後2〜
3mn程の長さのペレットにするという方法により製造
が行われている。また、特公昭83−37694明細書
で述べられているように溶融させた熱可塑性樹脂浴中を
開繊させた補強繊維を通過させ補強繊維間に熱可塑性樹
脂を含浸させた後約10mmの長さに切断することによ
り長繊維強化ペレットを得る方法が開発されている。ま
た、補強繊維間に熱可塑性樹脂の微粒子を充填させた後
、該繊維を加熱し熱可塑性樹脂の微粒子を加熱溶融させ
、その後雄雌のかん合ロールを用いて補強繊維間に熱可
塑性樹脂を含浸させる方法も開発されている。これらの
方法により作製されたチップを用いた射出成形品は成形
品中での補強繊維の長さが従来より長くなり成形品物性
が向上してはいるものの、より効率的な製造方法の発明
が望まれている。
(Conventional technology) Fiber-reinforced thermoplastic resin composites such as fiber-reinforced engineering plastics (hereinafter abbreviated as engineering plastics) are
The market has been steadily growing, centering on injection molding, and it has now become an extremely important industrial material. In general, the method for making pellets for these engineering plastics is to melt them using a kneader when using fibers as a reinforcing material, and cut the fibers that will become the reinforcing fibers into IJ Fuchs resin into 3-inch pieces. After mixing, extrusion, cooling and solidification 2~
It is manufactured by a method of forming pellets with a length of about 3 mm. In addition, as described in Japanese Patent Publication No. 83-37694, the reinforcing fibers that have been opened are passed through a melted thermoplastic resin bath to impregnate the reinforcing fibers with the thermoplastic resin, and then the length of the fibers is about 10 mm. A method has been developed to obtain long fiber-reinforced pellets by cutting the pellets into long fibers. In addition, after filling the reinforcing fibers with thermoplastic resin fine particles, the fibers are heated to melt the thermoplastic resin fine particles, and then male and female interlocking rolls are used to fill the thermoplastic resin between the reinforcing fibers. Impregnation methods have also been developed. Injection molded products using chips produced by these methods have longer reinforcing fibers in the molded product than before, and although the physical properties of the molded product have improved, it is still difficult to invent more efficient manufacturing methods. desired.

(発明が解決しようとする課題) 前述のような従来のコンパウンディング法により作製さ
れた射出成形用ペレットを用いて作製した射出成形品中
においてはガラス繊維等の補強繊維の長さが数百−以下
となってしまうため繊維の補強効果が低下し耐衝撃性や
耐疲労性等の物性が不十分であった。また、熱可塑性樹
脂の溶融洛中にて含浸させる方法、補強繊維中に熱可塑
性樹脂の微粒子を充填させた後加熱溶融させ長繊維強化
熱可塑性樹脂を得る方法ではペレット中の繊維の樹脂に
よる濡れが良好でない、製造速度に限界がある等の問題
が依然として残されている。そこで本発明はかかる問題
を解決しより含浸性が良好でかつより効率のよい繊維強
化熱可塑性樹脂ペレットを製造する方法に関するもので
ある。
(Problems to be Solved by the Invention) In injection molded products produced using injection molding pellets produced by the conventional compounding method as described above, reinforcing fibers such as glass fibers have a length of several hundreds. As a result, the reinforcing effect of the fibers decreased and physical properties such as impact resistance and fatigue resistance were insufficient. In addition, in the method of impregnating thermoplastic resin in molten resin, and in the method of filling fine particles of thermoplastic resin into reinforcing fibers and then heating and melting them to obtain a long fiber reinforced thermoplastic resin, the fibers in the pellets are not wetted by the resin. Problems such as poor quality and limited manufacturing speed still remain. Therefore, the present invention relates to a method for solving such problems and producing fiber-reinforced thermoplastic resin pellets with better impregnation properties and higher efficiency.

(課題を解決するための手段および作用)本発明は上述
のような課題を解決するためのものであり、25〜70
wt%の補強繊維を含み該補強繊維と熱可塑性繊維とを
混繊させてなる混繊率が少なくとも10%である複合繊
維を用いて該複合繊維に繊維方向に輻射加熱及び対流加
熱のとちらかもしくはそれらの併用により連続的に熱を
加えることにより熱可塑性繊維を溶融させた後、該複合
繊維に雄雌の一対もしくは複数対のかん合ロールを用い
圧力を連続的に付与することにより得られるロッド状繊
維強化熱可塑性樹脂を3〜601嘗の長さに切断してな
る繊維強化熱可塑性樹脂ペレットおよびその製造方法を
提供するものである。
(Means and effects for solving the problems) The present invention is intended to solve the problems as described above.
Using a conjugate fiber containing % wt% of reinforcing fibers and having a blending ratio of at least 10%, the conjugate fibers are subjected to radiation heating and convection heating in the fiber direction. After melting the thermoplastic fiber by continuously applying heat or a combination thereof, the composite fiber is obtained by continuously applying pressure to the composite fiber using one or more pairs of male and female interlocking rolls. The present invention provides a fiber-reinforced thermoplastic resin pellet obtained by cutting a rod-shaped fiber-reinforced thermoplastic resin into lengths of 3 to 601 mm, and a method for producing the same.

即ち補強繊維と熱可塑性繊維とを公知の方法で混繊して
複合繊維を得る。例えば、両連続繊維を引き揃えて静電
気的に開繊させつつ両車繊維状態で混繊する方法または
、両連続繊維を引き揃えて空気の乱流中を通過させ混繊
する方法等により混線率が少なくとも109Aの複合繊
維を得る。
That is, reinforcing fibers and thermoplastic fibers are mixed by a known method to obtain composite fibers. For example, the method of pulling bicontinuous fibers together and electrostatically opening them and mixing them in the state of both fibers, or the method of pulling bicontinuous fibers together and passing them through a turbulent flow of air to mix them, can increase the cross-mixing rate. A conjugate fiber having a diameter of at least 109A is obtained.

ここでの混繊率とは次式により示されるものである。The fiber mixing ratio here is expressed by the following formula.

ここでNは補強繊維の総本数を示し、NcXは補強繊維
がいくつかの群(グループ)に分割されているときのそ
のグループの個数を示し、Xは群のなかにおける特定な
1個の群内のフィラメント数を示している。上記の式に
おいて100X(N−X)/N−1は、混繊状態を意味
し、Xが小さいほど混繊状態が良好である。また、Nc
X/N/Xは重みである。混繊率が10%より低い値で
は後のペレット化の工程において含浸性等においてよい
ペレットを作製することが難しく好ましくない。また、
補強繊維の含有率を25wt%から70wt%としてい
るのは補強繊維の含有率が25wt%より少ないと耐衝
撃性や耐疲労性等の物性が相対的に低くなり、また、7
0wt%より多い場合では補強繊維のマ) IJフック
ス脂にょる含浸がト分でなく良好な機械特性を有する成
形品を得ることができず本発明の効果が十分に発揮され
ないため好ましくない。また、ここで、複合繊維を使用
する理由は、補強繊維の含有率を高くすることができる
からである。
Here, N indicates the total number of reinforcing fibers, NcX indicates the number of groups when the reinforcing fibers are divided into several groups, and X indicates one specific group within the group. It shows the number of filaments within. In the above formula, 100X(N-X)/N-1 means a mixed fiber state, and the smaller X is, the better the mixed fiber state is. Also, Nc
X/N/X is the weight. If the fiber blend ratio is lower than 10%, it is difficult to produce pellets with good impregnation properties in the subsequent pelletizing step, which is not preferred. Also,
The reason why the reinforcing fiber content is set from 25 wt% to 70 wt% is because if the reinforcing fiber content is less than 25 wt%, physical properties such as impact resistance and fatigue resistance will be relatively low.
If the amount is more than 0 wt%, the reinforcing fibers will not be impregnated with the IJ Fuchs fat and a molded article with good mechanical properties cannot be obtained, so the effects of the present invention will not be fully exhibited, which is not preferable. Moreover, the reason why composite fibers are used here is that the content of reinforcing fibers can be increased.

次いで該複合繊維を熱可塑性繊維の融点以上の温度で輻
射および強制対流のどちらかもしくは両加熱方法を併用
することにより連続的に加熱し熱可塑性繊維を溶融させ
る。輻射による加熱方法としては遠赤外線、近赤外線の
どちらかもしくは両方の照射を利用することができ、な
かでも遠赤外線、近赤外線の両輻射加熱を併用するのが
好ましく、その場合最初遠赤外線にて熱可塑性樹脂繊維
を半溶融させた後更に近赤外線により完全溶融させるこ
とにより熱可塑性樹脂を熱劣化させることなく溶融させ
る。また、強制対流加熱の方法としては空気もしくは窒
素の気体を加熱噴射する方法を利用することができる。
Next, the composite fiber is continuously heated at a temperature equal to or higher than the melting point of the thermoplastic fiber by using either radiation or forced convection or a combination of both heating methods to melt the thermoplastic fiber. As a heating method using radiation, far-infrared rays, near-infrared rays, or both irradiation can be used. It is especially preferable to use both far-infrared rays and near-infrared radiant heating in combination. In that case, far-infrared rays are first used. After semi-melting the thermoplastic resin fibers, the thermoplastic resin is completely melted using near infrared rays, thereby melting the thermoplastic resin without thermally deteriorating it. Further, as a method of forced convection heating, a method of heating and injecting air or nitrogen gas can be used.

この様な加熱した気体を該複合繊維に噴射することは加
熱され難い空気を加熱する上において効率のよい方法で
ある。また熱可塑性樹脂の酸化劣化を防ぐためには不活
性ガスである窒素を用いることが望ましい。
Injecting such heated gas to the composite fiber is an efficient method for heating air that is difficult to heat. Further, in order to prevent oxidative deterioration of the thermoplastic resin, it is desirable to use nitrogen, which is an inert gas.

このようにして熱可塑性繊維を溶融させた複合繊維に雄
雌の一対もしくは複数対のかん合ロールを用いて圧力を
連続的に付与することによりロッド状繊維強化熱可塑性
樹脂を作製するがかん合ロールは金属製、セラミック製
が使用可能であり、金属製がより好ましい。圧力付与に
用いる雄雌かん合ロールの溝幅は以下のようなものを用
いる。
A rod-shaped fiber-reinforced thermoplastic resin is produced by continuously applying pressure to the composite fiber obtained by melting the thermoplastic fibers using a pair or multiple pairs of male and female mating rolls. The roll can be made of metal or ceramic, and metal is more preferable. The groove width of the male and female mating rolls used for applying pressure is as follows.

b□=aXb□−1 b、、: b、、の後に続(ロールの溝幅a:満溝幅り
係数 0.5≦a≦1.Ob、の溝幅=3〜5龍 n=2〜10 即ち雄雌かん合ロールは二対もしくはそれ以上通常は1
0対まで用いることができるが多数対用いる場合では溝
幅をすべて同じもしくは徐々に狭くしてもよい。徐々に
溝幅を狭(する場合においては、溝幅を徐々に狭くする
ことにより溶融複合繊維中のボイドが除去され、よりロ
ッド状繊維強化熱可塑性樹脂の成形性がよくなり、ひい
ては含浸性がよく成形性のよいペレットを作製すること
ができる。ペレットの幅は2〜101@より好ましくは
2〜5.Ouである。10s1以上では射出成形時にペ
レットの食い込み性が悪く好ましくない。
b = a ~10 That is, two or more pairs of male and female mating rolls, usually one
Although up to 0 pairs can be used, if a large number of pairs are used, the groove widths may all be the same or may be gradually narrowed. Gradually narrowing the groove width (in cases where the groove width is gradually narrowed, voids in the molten composite fibers are removed, the moldability of the rod-shaped fiber-reinforced thermoplastic resin is improved, and the impregnability is improved). Pellets with good moldability can be produced.The width of the pellets is 2 to 101@, more preferably 2 to 5.0.If the width is 10s1 or more, the pellets will not easily dig into the mold during injection molding.

また、幅が2.0.−以下の場合ではペレットが射出成
形時に破損し補強繊維の損傷も大きくなり好ましくない
。複合繊維に加える金属製かん合ロールによる圧力の線
圧は5 X 10−’kg/ ell m den 〜
1 、5 X 10−3kg/cs ・denであるこ
とが好ましい。線圧が5 X 10−41<g/ c璽
・den以下ではボイドがペレット中に多く発生するた
め好ましくなくまた、線圧が1.5X10−3kg/c
m・den以上ではペレット中において補強繊維の破損
が発生するため好ましくない。
Also, the width is 2.0. - In the following cases, the pellets will be damaged during injection molding and the reinforcing fibers will be seriously damaged, which is not preferable. The linear pressure applied to the composite fibers by the metal interlocking rolls is 5 x 10-'kg/ell m den ~
It is preferable that it is 1,5 x 10-3 kg/cs/den. If the linear pressure is less than 5 x 10-41 < g/c, it is undesirable because many voids will occur in the pellet, and if the linear pressure is 1.5 x 10-3 kg/c, it is not preferable.
m·den or more is not preferable because the reinforcing fibers in the pellet will break.

ロールの表面湿度は5〜220℃であることが好ましい
。ロールの表面温度か5℃より低温であると溶融した複
合繊維の溶融熱可塑性樹脂が急冷され固化が急速に始ま
ってしまうためペレットへの賦形性およびボイドの除去
が困難となり好ましくない。また、220℃より高温の
場合では溶融した複合繊維がロールに巻き付きまた、樹
脂の熱劣化が生じる等の問題が生じ良好なペレットが得
られない。しかも、ペレット作製上の操業性もよくない
ため好ましくない。また、雄雌かん合ロールの配置は雌
ロールのみが下側にあってもよいしまた、雌ロールと雄
ロールとが交互に下側に位置していてもよい。
It is preferable that the surface humidity of the roll is 5 to 220°C. If the surface temperature of the roll is lower than 5° C., the molten thermoplastic resin of the molten composite fiber will be rapidly cooled and solidification will begin rapidly, making it difficult to shape into pellets and to remove voids, which is not preferable. Furthermore, if the temperature is higher than 220° C., problems such as the molten composite fibers winding around the roll and thermal deterioration of the resin occur, making it impossible to obtain good pellets. Furthermore, the operability in pellet production is also poor, which is not preferable. In addition, with respect to the arrangement of the male and female mating rolls, only the female roll may be located on the lower side, or the female rolls and male rolls may be located alternately on the lower side.

以上のようにして得られたロッド状繊維強化熱可塑性樹
脂をペレタイザーにより3〜6011の長さにカットし
ペレットを得る。ペレットの長さは射出成形品中での補
強繊維の長さを長くし機械物性を高めるために311以
上である必要があり、また、成形時におけるペレットの
スクリューへの供給性の点からは、60m5以下である
ことが必要である。
The rod-shaped fiber-reinforced thermoplastic resin obtained as described above is cut into lengths of 3 to 6011 mm using a pelletizer to obtain pellets. The length of the pellet needs to be 311 or more in order to increase the length of the reinforcing fiber in the injection molded product and improve the mechanical properties.In addition, from the point of view of feeding the pellet to the screw during molding, It must be 60m5 or less.

尚、本発明で用いることができる補強繊維はガラス繊維
、カーボン繊維そしてアラミド繊維等の連続繊維がある
がこれらの繊維に限定されるものではない。
The reinforcing fibers that can be used in the present invention include continuous fibers such as glass fibers, carbon fibers, and aramid fibers, but are not limited to these fibers.

また、本発明で用いることができる熱可塑性繊維は、た
とえばポリプロピレン、ナイロン6、ナイロン66、ポ
リブチレンテレフタレート、ポリエチレンテレフタレー
ト、ポリフェニレンサルファイド、ポリカーボネート、
ポリエーテルエーテルケトン等があるが、これらの熱可
塑性繊維に限定されるものではない。
Further, thermoplastic fibers that can be used in the present invention include, for example, polypropylene, nylon 6, nylon 66, polybutylene terephthalate, polyethylene terephthalate, polyphenylene sulfide, polycarbonate,
Examples include polyetheretherketone, but are not limited to these thermoplastic fibers.

(実施例) 以下に本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

下記特性のEガラス繊維およびナイロン6繊維を用いて
繊維強化熱可塑性樹脂ペレットを得るための複合繊維を
作製した。
Composite fibers for obtaining fiber-reinforced thermoplastic resin pellets were produced using E-glass fibers and nylon 6 fibers having the following characteristics.

Eガラス繊維 合計繊度:67.5テツクス(JIS R3420)フ
ィラメント数:400本 (同 t )ナイロン6繊維 合計繊度:150デニール (JIS L 1013)
フィラメント数=30本  (同 上 )これらガラス
繊維およびナイロン6繊維を用いた基本的な複合繊維の
作製方法は、ナイロン6繊維をEガラス繊維にたいして
+0.3%のオーバーフィード状態で供給しラスラン法
(加工速度:100 m/5in)により複合繊維を得
た。さらに繊維強化熱可塑性樹脂ペレットの基本的な作
製方法は該複合繊維15本を15m/鳳1nの速度で連
続的に加熱空気中で230℃まで昇温し引き続き遠赤外
ヒーター、近赤外ヒーターの両ヒーターを設置した加熱
帯に加熱窒素ガス1.5Nm/h流しながら該複合繊維
を300℃まで昇温しナイロン6繊維を溶融させた後ス
テンレススチール製、直径100 、、の6対の雄雌か
ん合ロール(溝幅: 4.5゜4.0 、3.5 、3
.0 、3.0 、3.0 m−の順で徐々に幅を狭く
したロール使用)により圧力を付与することにより幅が
31謙厚みが約1 mmのロッドを成形し、該ロッドを
10.、の長さにカットして繊維強化熱可塑性樹脂ペレ
ットを得た。
E Glass fiber total fineness: 67.5 tex (JIS R3420) Number of filaments: 400 (same t) Nylon 6 fiber total fineness: 150 denier (JIS L 1013)
Number of filaments = 30 (same as above) The basic method for producing composite fibers using these glass fibers and nylon 6 fibers is to feed the nylon 6 fibers to the E glass fibers in an overfeed state of +0.3% and use the rath run method. (Processing speed: 100 m/5 inch) to obtain composite fibers. Furthermore, the basic method for producing fiber-reinforced thermoplastic resin pellets is to heat the 15 composite fibers continuously to 230°C in heated air at a speed of 15m/1n, then use a far-infrared heater and a near-infrared heater. The composite fibers were heated to 300°C while flowing heated nitrogen gas at 1.5 Nm/h in a heating zone equipped with both heaters to melt the nylon 6 fibers. Female mating roll (groove width: 4.5゜4.0, 3.5, 3
.. A rod with a width of 3 mm and a thickness of about 1 mm was formed by applying pressure using rolls whose widths were gradually narrowed in the order of 0, 3.0, and 3.0 m. , to obtain fiber-reinforced thermoplastic resin pellets.

上記のようにして得たペレットを射出成形機により成形
した後成形品の機械特性を調べた。成形機および成形条
件は以下のよにして行った。
The pellets obtained as described above were molded using an injection molding machine, and the mechanical properties of the molded product were examined. The molding machine and molding conditions were as follows.

射出成形機:東芝機械株製 l5−100 EN射出成
形条件 成形温度=285℃ 射出速度:4m/Nn 金型温度二80℃ 尚、以下に述べる繊維強化熱可塑性樹脂口・ソド状物の
評価はボイド率を以下のように算出し評価を行った。
Injection molding machine: Toshiba Machine Co., Ltd. l5-100 EN injection molding conditions Molding temperature = 285°C Injection speed: 4 m/Nn Mold temperature 280°C The evaluation of the fiber-reinforced thermoplastic resin opening/socket article described below is as follows: The void ratio was calculated and evaluated as follows.

Td;繊維強化熱可塑製樹脂口・ソト状物の理論密度 にd:実際の密度 また、射出成形品のの評価は曲げ試験(ASTMD79
0に準拠)、引っ張り試験(ASTII! D 738
に準拠)、アイゾツト衝撃試験(ASTM 025Bに
準拠)により行った。
Td: Theoretical density of fiber-reinforced thermoplastic resin mouth/socket material d: Actual density In addition, the evaluation of injection molded products is based on the bending test (ASTMD79).
0), tensile test (ASTII! D 738)
(based on ASTM 025B) and Izod impact test (based on ASTM 025B).

(実施例1〜3) 上記複合繊維の作製においてガラス繊維含有率が30(
実施例1)、50(実施例2)、60wt%(実施例3
)の複合繊維を作製し繊維強化熱可塑性樹脂ロッド状物
を得た後、上記ペレ、ノド作製方法によりペレットを作
製し射出成形を行った。
(Examples 1 to 3) In the production of the above composite fiber, the glass fiber content was 30 (
Example 1), 50 (Example 2), 60 wt% (Example 3)
) was produced to obtain a fiber-reinforced thermoplastic resin rod-shaped article, and then pellets were produced by the above pellet and throat production method and injection molded.

表1に得られたロッド状物および射出成形品の機械特性
を掲げた。
Table 1 lists the mechanical properties of the rod-shaped article and injection molded article obtained.

(比較例1〜2) 上記複合繊維の作製においてガラス繊維含有率が10(
比較例1 ) 、75vt%(比較例2)の複合繊維を
作製し実施例1〜3と同条件にてペレットを作製し射出
成形を行った。表1に得られた成形品の機械特性を掲げ
た。実施例1〜3との比較より比較例1においては成形
品の機械特性がよくなく実用に値しない。また、比較例
2ではガラス繊維の含有量に相当するだけの機械特性が
得られていない。
(Comparative Examples 1 and 2) In the production of the above composite fiber, the glass fiber content was 10 (
Comparative Example 1) Composite fibers of 75 vt% (Comparative Example 2) were produced, and pellets were produced and injection molded under the same conditions as Examples 1 to 3. Table 1 lists the mechanical properties of the molded product obtained. Comparison with Examples 1 to 3 shows that in Comparative Example 1, the mechanical properties of the molded product are poor and are not of practical use. Furthermore, in Comparative Example 2, mechanical properties equivalent to the glass fiber content were not obtained.

(比較例3) ナイロン6を加熱溶融させた槽を設けその中へ実施例2
と同条件のガラス繊維を浸漬した後ダイにより樹脂の付
着量を50wt%にコントロールした。このようにして
得られたロッド状物を10Witにカットした後実施例
2と同条件にて射出成形を行い成形品の機械特性を調べ
た。この機械特性を表1に掲げた。表1より比較例3に
おいては実施例2に比してボイドが多いことに加えて射
出成形品の機械特性が低いことが分かる。
(Comparative Example 3) A tank in which nylon 6 was heated and melted was provided, and Example 2 was poured into the tank.
After glass fibers were immersed under the same conditions as above, the amount of resin attached was controlled to 50 wt% using a die. The rod-shaped product thus obtained was cut into pieces of 10 Wit, and then injection molded under the same conditions as in Example 2, and the mechanical properties of the molded product were examined. The mechanical properties are listed in Table 1. From Table 1, it can be seen that in Comparative Example 3, there are more voids than in Example 2, and the mechanical properties of the injection molded product are lower.

(比較例4〜5) 実施例2と同じ複合繊維を用いて繊維強化熱可塑性樹脂
ロッド状物作製時の成形ロールによる圧力を3 X 1
0−’kg/ cs−den  (比較例4)、2、 
OX 10−3kg/cm・den  (比較例5)の
線圧にて作製を行った。2.OXIO−3kg/cm・
denにて作製を行ったロッドおよび射出成形品の機械
特性を表1に掲げた。また、3 x t o −4kg
/ C箇・denでは評価に値するロッドを得ることは
できなかった。実施例2との比較から分かるように成形
時の線圧が2. OX 10−3kg/cm・denに
おいては線圧が高すぎるためペレット作製時においてガ
ラス繊維の損傷が生じ、機械特性が良好な成形品を得る
ことはできなかった。また、3 X 10−’kg/ 
cs・den以上においては樹脂ガラス繊維中への含浸
性が悪く評価に値するロッドおよびペレットを得ること
は不可能であることが分かる。
(Comparative Examples 4 to 5) Using the same composite fiber as in Example 2, the pressure applied by the forming roll when producing a fiber-reinforced thermoplastic resin rod was 3×1.
0-'kg/cs-den (Comparative Example 4), 2,
The fabrication was performed under a linear pressure of OX 10-3 kg/cm·den (Comparative Example 5). 2. OXIO-3kg/cm・
Table 1 lists the mechanical properties of the rods and injection molded products manufactured at den. Also, 3 x to -4kg
/ It was not possible to obtain a rod worthy of evaluation in C/den. As can be seen from the comparison with Example 2, the linear pressure during molding was 2. At OX 10-3 kg/cm·den, the linear pressure was too high, causing damage to the glass fibers during pellet production, making it impossible to obtain a molded product with good mechanical properties. Also, 3 X 10-'kg/
It can be seen that at cs·den or higher, impregnation into resin glass fibers is poor and it is impossible to obtain rods and pellets worthy of evaluation.

(比較例6〜7) 実施例2と同じ複合繊維を用いて繊維強化熱可塑性樹脂
ロッド状物作製時のロールの湿度を0℃(比較例8)、
240℃(比較例7)にて作製を行った。240℃にお
いては溶融複合繊維がロールに巻き付き評価に値するロ
ッドを得ることはできなかった。また、0℃時に得られ
たロッドおよびペレットの射出成形品の機械特性を表1
に掲げた。0℃ではペレット中のボイドも多く射出成形
品物性も実施例2と比較し良好でないことが分かる。
(Comparative Examples 6 to 7) The humidity of the roll when producing a fiber-reinforced thermoplastic resin rod-shaped article using the same composite fiber as in Example 2 was 0°C (Comparative Example 8);
Production was performed at 240°C (Comparative Example 7). At 240° C., the molten conjugate fibers were wrapped around the rolls, making it impossible to obtain a rod worthy of evaluation. In addition, Table 1 shows the mechanical properties of injection molded rods and pellets obtained at 0°C.
It was listed on. It can be seen that at 0°C, there were many voids in the pellets and the physical properties of the injection molded product were not as good as in Example 2.

(比較例8) 実施例2と同じ構成の複合繊維を用いて混繊率5%の複
合繊維を作製し繊維強化熱可塑性樹脂ロッド状物および
そのペレットを作製し射出成形を行った。ロッド状物の
機械特性および射出成形品の機械特性を表1に掲げた。
(Comparative Example 8) Using conjugate fibers having the same structure as in Example 2, conjugate fibers with a mixed fiber ratio of 5% were produced, and fiber-reinforced thermoplastic resin rods and pellets thereof were produced and injection molded. Table 1 lists the mechanical properties of the rod-shaped product and the mechanical properties of the injection molded product.

実施例2に比してボイドが多く射出成形品の機械特性も
よくないことが分かる。
It can be seen that there are more voids than in Example 2 and the mechanical properties of the injection molded product are also poor.

(本発明の効果) 前述の実施例および比較例の結果より本発明による繊維
強化熱可塑性樹脂ペレットの製造方法により得られたペ
レットを用いることにより機械特性に優れた射出成形品
を得ることができた。
(Effects of the present invention) From the results of the aforementioned Examples and Comparative Examples, injection molded products with excellent mechanical properties can be obtained by using pellets obtained by the method for producing fiber-reinforced thermoplastic resin pellets according to the present invention. Ta.

(効果) 前述のごとき方法により作製されたペレットを用いるこ
とにより成形品中の補強繊維の長さが長く機械物性に優
れた成形品を得ることができる。
(Effects) By using the pellets produced by the method described above, a molded product with long reinforcing fibers and excellent mechanical properties can be obtained.

また、本発明によるペレットは一般的な射出成形をはじ
めとして、押しだし圧縮成形等の他の方法にも適用する
ことが可能である。
Furthermore, the pellets according to the present invention can be applied to other methods such as general injection molding as well as extrusion compression molding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一定の断面形状を有する熱可塑性コン
ポジット材料を製造する装置の全体図で、図における ■:混繊糸 ■:供給ロール ■:第1加熱ゾーン ■:第2加熱ゾーン ■:熱可塑性繊維成分が溶融している糸条■、■′、■
、■′:雄雌かん合ロール■:引取り用ベルト ■:糸条の冷却部 [相]二目的物(一定断面を有する熱可塑性コンポジッ
ト材料) 第2図は第1図の■、■で示される雄雌かん合ロール部
分の正面図及び側面図である。
Figure 1 is an overall view of an apparatus for manufacturing a thermoplastic composite material having a constant cross-sectional shape according to the present invention. In the figure, ■: Mixed yarn ■: Supply roll ■: First heating zone ■: Second heating zone ■ : Yarns with melted thermoplastic fiber components ■, ■′, ■
, ■': Male and female interlocking roll ■: Taking-off belt ■: Yarn cooling section [phase] Dual-purpose object (thermoplastic composite material with a constant cross section) FIG. 3 is a front view and a side view of the male and female mating roll portions shown.

Claims (1)

【特許請求の範囲】[Claims] (1)25〜70wt%の補強繊維を含み該補強繊維と
熱可塑性繊維とを混繊させてなる混繊率が少なくとも1
0%である複合繊維を用いて該複合繊維に繊維方向に輻
射加熱及び対流加熱の一方もしくは併用により連続的に
熱を加えることにより熱可塑性繊維を溶融させた後該複
合繊維に雄雌の一対もしくは複数対のかん合ロールを用
い圧力を連続的に付与することにより得られるロッド状
繊維強化熱可塑性樹脂を3〜60mmの長さに切断して
なる繊維強化熱可塑性樹脂ペレットの製造方法。
(1) Containing 25 to 70 wt% of reinforcing fibers and mixing the reinforcing fibers with thermoplastic fibers, the blending ratio is at least 1.
After melting the thermoplastic fiber by continuously applying heat to the composite fiber in the fiber direction by one or both of radiant heating and convection heating, a pair of male and female fibers are added to the composite fiber. Alternatively, a method for producing fiber-reinforced thermoplastic resin pellets by cutting a rod-shaped fiber-reinforced thermoplastic resin obtained by continuously applying pressure using a plurality of pairs of interlocking rolls into lengths of 3 to 60 mm.
JP16873090A 1990-06-27 1990-06-27 Method for producing fiber-reinforced thermoplastic resin pellets Expired - Fee Related JP2906595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16873090A JP2906595B2 (en) 1990-06-27 1990-06-27 Method for producing fiber-reinforced thermoplastic resin pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16873090A JP2906595B2 (en) 1990-06-27 1990-06-27 Method for producing fiber-reinforced thermoplastic resin pellets

Publications (2)

Publication Number Publication Date
JPH0462108A true JPH0462108A (en) 1992-02-27
JP2906595B2 JP2906595B2 (en) 1999-06-21

Family

ID=15873358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16873090A Expired - Fee Related JP2906595B2 (en) 1990-06-27 1990-06-27 Method for producing fiber-reinforced thermoplastic resin pellets

Country Status (1)

Country Link
JP (1) JP2906595B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
JP2006341473A (en) * 2005-06-08 2006-12-21 Owens Corning Seizo Kk Method and apparatus for producing long fiber-reinforced thermoplastic resin molding material
JP2013091714A (en) * 2011-10-26 2013-05-16 Hyogo Prefecture Fiber-reinforced composite forming material
JP2021510126A (en) * 2018-11-22 2021-04-15 グンス ソン Manufacturing method of natural fiber composite material for injection molding using a reduction nozzle heating jig

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182761A (en) * 1992-12-15 1994-07-05 Toyobo Co Ltd Fiber-reinforced resin pellet and molded product thereof
JP2006341473A (en) * 2005-06-08 2006-12-21 Owens Corning Seizo Kk Method and apparatus for producing long fiber-reinforced thermoplastic resin molding material
JP4703275B2 (en) * 2005-06-08 2011-06-15 オーウェンスコーニング製造株式会社 Method for producing long fiber reinforced polyamide resin molding material
JP2013091714A (en) * 2011-10-26 2013-05-16 Hyogo Prefecture Fiber-reinforced composite forming material
JP2021510126A (en) * 2018-11-22 2021-04-15 グンス ソン Manufacturing method of natural fiber composite material for injection molding using a reduction nozzle heating jig

Also Published As

Publication number Publication date
JP2906595B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
EP0040967A2 (en) Fiber-reinforced mouldable sheet and process for preparation thereof
EP0875351A1 (en) Fibre-reinforced moulded articles
JPS6337694B2 (en)
JPH04502132A (en) Molded articles made of injection or extruded plastic waste
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
EP0150931A2 (en) Reinforced composite structures
US6548167B1 (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JPH02151407A (en) Extruding and impregnating device
JPH0462108A (en) Preparation of fiber-reinforced thermoplastic resin pellet
EP0170245B1 (en) Pellets of fibre-reinforced compositions and methods for producing such pellets
JP2829323B2 (en) Equipment for manufacturing fiber-reinforced resin molding materials
EP0102711A2 (en) Process for producing fibre-reinforced polymer compositions
JP3234877B2 (en) Method for producing fiber reinforced resin pellets
JPH0365311A (en) Carbon fiber chop
JP2952977B2 (en) Molding method of fiber reinforced resin
JPH04163002A (en) Manufacture of composite fiber reinforced thermoplastic resin pellet
JP2009221427A (en) Method for manufacturing glass fiber-reinforced resin pellet
JPH05162124A (en) Long fiber-reinforced thermoplastic resin pellet
JP2745685B2 (en) Thermoplastic resin pellet mixture and molded article using the same
EP1498245A1 (en) Spheroidally shaped fibre reinforced thermoplastic pellets
JPH03230943A (en) Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
JPH0439334A (en) Production of thermoplastic polyester resin composition reinforced with long fiber
JP3437651B2 (en) Method for producing pellet-shaped long fiber reinforced resin structure
KR100937231B1 (en) Manufacturing method of Fiber Reinforced Plastic forming goods

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees