JP2009221427A - Method for manufacturing glass fiber-reinforced resin pellet - Google Patents

Method for manufacturing glass fiber-reinforced resin pellet Download PDF

Info

Publication number
JP2009221427A
JP2009221427A JP2008070072A JP2008070072A JP2009221427A JP 2009221427 A JP2009221427 A JP 2009221427A JP 2008070072 A JP2008070072 A JP 2008070072A JP 2008070072 A JP2008070072 A JP 2008070072A JP 2009221427 A JP2009221427 A JP 2009221427A
Authority
JP
Japan
Prior art keywords
glass fiber
thermoplastic resin
resin
pellet
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070072A
Other languages
Japanese (ja)
Other versions
JP5088188B2 (en
Inventor
Reika Sato
令佳 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP2008070072A priority Critical patent/JP5088188B2/en
Publication of JP2009221427A publication Critical patent/JP2009221427A/en
Application granted granted Critical
Publication of JP5088188B2 publication Critical patent/JP5088188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a glass fiber-reinforced resin pellet with which molding defectives on injection molding are controlled even in the case of using a high melting point resin such as a liquid crystalline polymer as a thermoplastic resin, and the molded product after injection molding retains glass fibers of a long length. <P>SOLUTION: This method for manufacturing the glass fiber-reinforced resin pellet comprises: a pultrusion step of pultruding a glass fiber bundle obtained by bundling a plurality of glass fibers with a sizing agent with a thermally melted thermoplastic resin through a through-hole formed in a die; a first pelletizing step of pelletizing the resin-impregnated glass fiber bundle obtained in the pultrusion step by cutting; and a second pelletizing step of kneading the pellet obtained in the first pelletizing step together with the thermally melted thermoplastic resin and pelletizing the kneaded matter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガラス繊維強化樹脂ペレットの製造方法に関する。   The present invention relates to a method for producing glass fiber reinforced resin pellets.

ガラス繊維強化樹脂ペレットの製造方法の1つとして、例えば、紡糸したガラス繊維にサイズ剤を付与し集束したストランド、又は、当該ストランドを合糸したロービングをガラス繊維束とし、このガラス繊維束を1〜20mm程度に切断したチョップドストランドを、熱可塑性樹脂と混練した後、ペレット化する方法が知られている。   As one of the methods for producing glass fiber reinforced resin pellets, for example, a strand obtained by adding a sizing agent to a spun glass fiber, or a roving obtained by combining the strands is used as a glass fiber bundle. A method is known in which chopped strands cut to about 20 mm are kneaded with a thermoplastic resin and then pelletized.

また、他の方法として、例えば、上記のガラス繊維束に、熱可塑性樹脂を含浸させた後、切断し、ガラス繊維強化樹脂ペレットを得る方法が知られている。   As another method, for example, a method of impregnating the above glass fiber bundle with a thermoplastic resin and then cutting it to obtain glass fiber reinforced resin pellets is known.

上述の方法によって得られたガラス繊維強化樹脂ペレットは、射出成形することで、成形品として加工される。当該成形品の機械強度を高めるために、各種検討が行われている。   The glass fiber reinforced resin pellet obtained by the above-mentioned method is processed as a molded product by injection molding. Various studies have been conducted to increase the mechanical strength of the molded product.

例えば、特許文献1には、高い機械強度を有するガラス繊維強化樹脂を得るために、ガラス繊維に対するシランカップリング剤の付着量(A)とポリシロキサンの付着量(B)の比A/Bを1〜20としたサイズ剤を使用する手法が提案されている。   For example, in Patent Document 1, in order to obtain a glass fiber reinforced resin having high mechanical strength, the ratio A / B of the adhesion amount (A) of the silane coupling agent to the glass fiber and the adhesion amount (B) of the polysiloxane is set. A technique using a sizing agent of 1 to 20 has been proposed.

また、例えば、特許文献2には、繊維長が3〜100mmであり且つペレット長よりも長い強化長繊維とそれよりも短い強化短繊維との混合体と、直径:1mm以下の熱可塑性樹脂粉末又は/及び繊維長:3〜25mmの熱可塑性樹脂繊維とを含む原料を、加熱して樹脂成分を溶融状態にした後、押出機に投入し、そのダイより押出して直径:2〜10mmのストランドとし、これを長さ5〜25mmに切断してペレット化することで、ペレット中にペレット長よりも長い強化繊維を含有させ、補強効果を高める方法が開示されている。
特開2003−238213号公報 特開平6−254847号公報
Further, for example, in Patent Document 2, a mixture of a reinforced long fiber having a fiber length of 3 to 100 mm and longer than the pellet length and a reinforced short fiber shorter than that, and a thermoplastic resin powder having a diameter of 1 mm or less. Or / and fiber length: a raw material containing thermoplastic resin fibers having a length of 3 to 25 mm is heated to make the resin component into a molten state, and then charged into an extruder, extruded from the die and a strand having a diameter of 2 to 10 mm. And, this is cut into a length of 5 to 25 mm to be pelletized, so that a reinforcing fiber longer than the pellet length is contained in the pellet to enhance the reinforcing effect.
JP 2003-238213 A JP-A-6-254847

しかしながら、上述のような従来の方法では、熱可塑性樹脂として液晶ポリマーなどの融点の高い樹脂を用いる場合には、後述のような不具合があった。   However, in the conventional methods as described above, when a resin having a high melting point such as a liquid crystal polymer is used as the thermoplastic resin, there are problems as described below.

すなわち、液晶ポリマーなどの融点の高い樹脂を用いたガラス繊維強化樹脂ペレットは、射出成形して成形品を得る際に、高温で成形する必要がある。そのため、成形時にガラス繊維同士を集束させるためのサイズ剤成分が分解しガスが発生し、フクレなどの成形不良の原因となるなどの問題があった。   That is, a glass fiber reinforced resin pellet using a resin having a high melting point such as a liquid crystal polymer needs to be molded at a high temperature when it is injection molded to obtain a molded product. For this reason, there has been a problem that the sizing agent component for converging the glass fibers at the time of molding is decomposed and gas is generated, which causes molding defects such as swelling.

したがって、熱可塑性樹脂として液晶ポリマーなどの融点の高い樹脂を用いる場合には、サイズ剤の量を減らす必要がある。   Therefore, when a resin having a high melting point such as a liquid crystal polymer is used as the thermoplastic resin, it is necessary to reduce the amount of the sizing agent.

しかしながら、チョップドストランドを用いる方法において、紡糸したガラス繊維に付与するサイズ剤の量を減らした場合、チョップストランドの製造工程において、ストランドに毛羽が発生したり、ストランドの切断不良によりチップドストランドを得ることが困難になったりするという問題があった。   However, in the method using chopped strands, if the amount of sizing agent applied to the spun glass fiber is reduced, fluffing occurs in the strands in the chop strand manufacturing process, or chipped strands are obtained due to defective strand cutting. There was a problem that it became difficult.

一方、ガラス繊維束に熱可塑性樹脂を含浸させた後、切断する方法においては、ガラス繊維束に強く損傷を与えるような加工工程がほとんどないことから、紡糸したガラス繊維に付与するサイズ剤の量を減らすことが可能である。しかしながら、液晶ポリマーなどの融点の高い樹脂は、通常、ガラス繊維に対する含浸性が悪いことから、このような樹脂を使用した場合、ガラス繊維強化樹脂ペレットを安定して作製できなかったり、射出成形による成形品の作製が困難になったりする問題があった。   On the other hand, since the glass fiber bundle is impregnated with a thermoplastic resin and then cut, there is almost no processing step that strongly damages the glass fiber bundle, so the amount of sizing agent applied to the spun glass fiber Can be reduced. However, a resin having a high melting point such as a liquid crystal polymer usually has a poor impregnation property with respect to glass fibers. Therefore, when such a resin is used, glass fiber reinforced resin pellets cannot be stably produced, or by injection molding. There was a problem that it was difficult to produce a molded product.

そこで、本発明は、熱可塑性樹脂として液晶ポリマーなどの融点の高い樹脂を用いる場合でも、射出成形時の成形不良を抑制可能なガラス繊維強化樹脂ペレットの製造方法を提供することを目的とする。本発明はまた、当該製造方法によって、製造したガラス繊維強化樹脂ペレットを用いた、成形品の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing glass fiber reinforced resin pellets capable of suppressing molding defects during injection molding even when a resin having a high melting point such as a liquid crystal polymer is used as the thermoplastic resin. Another object of the present invention is to provide a method for producing a molded product using the glass fiber reinforced resin pellets produced by the production method.

本発明は、ガラス繊維束を熱溶融した熱可塑性樹脂とともに、貫通孔が形成されたダイスの当該貫通孔に通して引き抜く引き抜き工程と、引き抜き工程で得られる樹脂含浸ガラス繊維束を切断してペレット化する第1ペレット化工程と、第1ペレット化工程で得られたペレットを加熱混練し、上記熱可塑性樹脂を熱溶融した後ペレット化する第2ペレット化工程、とを含むガラス繊維強化樹脂ペレットの製造方法を提供する。   The present invention includes a thermoplastic resin obtained by thermally melting a glass fiber bundle, a drawing process of drawing through the through hole of a die having a through hole, and a resin impregnated glass fiber bundle obtained by the drawing process by cutting the pellet. Glass fiber reinforced resin pellets comprising: a first pelletizing step to be converted; and a second pelletizing step in which the pellets obtained in the first pelletizing step are heat-kneaded and the thermoplastic resin is thermally melted to be pelletized. A manufacturing method is provided.

すなわち、本発明は、紡糸したガラス繊維にサイズ剤を付与し集束したストランドや、このストランドを複数本合糸したロービング等のガラス繊維束に、熱可塑性樹脂を含浸させた後、切断して得られた第1のペレットを得る第1ペレット化工程と、この第1のペレットの熱可塑性樹脂を熱溶融し、混練した後、再度ペレット化する第2のペレット化工程を有することを特徴とする。本発明のガラス繊維強化樹脂ペレットの製造方法においては、ペレット化のための切断工程を、熱可塑性樹脂を含浸させた後に行うため、紡糸したガラス繊維に付与するサイズ剤の量を減らすことが可能である。したがって、熱可塑性樹脂として液晶ポリマーなどの融点の高い樹脂を用いた場合でも、サイズ剤成分の分解ガスに起因するフクレなどの射出成形時の成形不良を抑制できる。また、サイズ剤成分の分解ガスに起因する成形品の強度低下をも抑制できる。また、溶融ガラス繊維束に熱可塑性樹脂を含浸させペレットを得た後、このペレットを再度混練することにより、液晶ポリマーなどの融点の高い樹脂を用いた場合でも、ガラス繊維の破砕を抑えながら樹脂を十分に含浸することができる。したがって、成形品の強度を向上することができる。さらに、本発明の製造方法で製造したガラス繊維強化樹脂ペレットを用いれば、射出成形後の成形品中の繊維長を長く保つことができるため、成形品の強度を高めることができる。   That is, the present invention is obtained by impregnating a thermoplastic resin into a bundle of glass fibers such as a strand obtained by adding a sizing agent to a spun glass fiber and bundling, or a roving obtained by combining a plurality of strands. A first pelletizing step for obtaining the first pellets obtained, and a second pelletizing step for heat-melting and kneading the thermoplastic resin of the first pellets and then pelletizing again. . In the method for producing glass fiber reinforced resin pellets of the present invention, since the cutting step for pelletization is performed after impregnating the thermoplastic resin, the amount of sizing agent applied to the spun glass fibers can be reduced. It is. Therefore, even when a resin having a high melting point such as a liquid crystal polymer is used as the thermoplastic resin, molding defects such as blistering caused by decomposition gas of the sizing agent component can be suppressed. Moreover, the strength reduction of the molded product resulting from the decomposition gas of the sizing agent component can be suppressed. Also, by impregnating a molten glass fiber bundle with a thermoplastic resin to obtain pellets, the pellets are kneaded again, and even when a resin having a high melting point such as a liquid crystal polymer is used, the resin is suppressed while preventing glass fibers from being crushed. Can be sufficiently impregnated. Therefore, the strength of the molded product can be improved. Furthermore, if the glass fiber reinforced resin pellets manufactured by the manufacturing method of the present invention are used, the fiber length in the molded product after injection molding can be kept long, so that the strength of the molded product can be increased.

本発明のガラス繊維強化樹脂ペレットの製造方法においては、第1ペレット化工程での熱可塑性樹脂を第1の熱可塑性樹脂とし、第2ペレット化工程において上記第1のペレットを第2の熱可塑性樹脂とともに加熱混練し、第1の熱可塑性樹脂と第2の熱可塑性樹脂を熱溶融することが好ましい。このようにすることにより、第1ペレット工程や第2ペレット化工程でのガラス繊維束と熱可塑性樹脂との含有比を適切に設定することができ、成形品の強度をさらに向上することができる。
なお、本発明のガラス繊維強化樹脂ペレットの製造方法においては、上記第1の熱可塑性樹脂と第2の熱可塑性樹脂は同一の樹脂組成であることが好ましい。
In the method for producing glass fiber reinforced resin pellets of the present invention, the thermoplastic resin in the first pelletizing step is the first thermoplastic resin, and the first pellet is the second thermoplastic resin in the second pelletizing step. It is preferable that the first thermoplastic resin and the second thermoplastic resin are melted by heat kneading together with the resin. By doing in this way, the content ratio of the glass fiber bundle and thermoplastic resin in a 1st pellet process or a 2nd pelletization process can be set appropriately, and the intensity | strength of a molded article can further be improved. .
In addition, in the manufacturing method of the glass fiber reinforced resin pellet of this invention, it is preferable that the said 1st thermoplastic resin and 2nd thermoplastic resin are the same resin compositions.

本発明の製造方法に用いられる熱可塑性樹脂は、液晶ポリエステル樹脂などの溶融温度が200℃以上の熱可塑性樹脂であってもよい。なお、本発明における溶融温度とは樹脂組成物を昇温させて示差走査熱量計等の熱分析により吸熱温度を測定した時の吸熱ピーク温度をいう。   The thermoplastic resin used in the production method of the present invention may be a thermoplastic resin having a melting temperature of 200 ° C. or higher, such as a liquid crystal polyester resin. The melting temperature in the present invention means an endothermic peak temperature when the temperature of the resin composition is raised and the endothermic temperature is measured by thermal analysis such as a differential scanning calorimeter.

本発明によれば、このような溶融温度を有する熱可塑性樹脂を使用した場合でも、サイズ剤成分の分解ガスに起因するフクレなどの射出成形時の成形不良を抑制できる。また、サイズ剤成分の分解ガスに起因する成形品の強度低下をも抑制できる、熱可塑性樹脂を十分に含浸することができる等の効果も奏する。射出成形後の成形品中の繊維長を長く保つことができるため、成形品の強度を高めることができる。   According to the present invention, even when a thermoplastic resin having such a melting temperature is used, defective molding at the time of injection molding such as swelling caused by the decomposition gas of the sizing agent component can be suppressed. In addition, it is possible to suppress the reduction in strength of the molded product due to the decomposition gas of the sizing agent component and to sufficiently impregnate the thermoplastic resin. Since the fiber length in the molded product after injection molding can be kept long, the strength of the molded product can be increased.

さらに、本発明の製造方法に用いられるガラス繊維束は、400℃に加熱した場合における強熱減量Waが、0.10[重量%]以下であるものが好ましく、625℃に加熱した場合における強熱減量Wbが0.10[重量%]以下であるものがさらに好ましい。なお、本発明において、ガラス繊維束の強熱減量Wa,Wbは、下記式(1)又は(2)により算出する。
Wa=((M1−M2)/M1)×100[%] …(1)
Wb=((M1−M3)/M1)×100[%] …(2)
ただし、
M1:約5g近傍のガラス繊維束を105±5℃で6時間乾燥し絶乾させた後、デシケータに入れて室温まで放冷した乾燥後のガラス繊維束の質量(g)
M2:上記乾燥後のガラス繊維束を400±20℃に保った加熱炉で15分間加熱し、その後加熱炉から取り出し、デシケータに入れて放冷した加熱後のガラス繊維束の質量(g)
M3:上記乾燥後のガラス繊維束を625±20℃に保った加熱炉で15分間加熱し、その後加熱炉から取り出し、デシケータに入れて放冷した加熱後のガラス繊維束の質量(g)
Further, the glass fiber bundle used in the production method of the present invention preferably has a loss on ignition Wa of 0.10 [wt%] or less when heated to 400 ° C, and is strong when heated to 625 ° C. The heat loss Wb is more preferably 0.10 [wt%] or less. In the present invention, the loss on ignition Wa, Wb of the glass fiber bundle is calculated by the following formula (1) or (2).
Wa = ((M1-M2) / M1) × 100 [%] (1)
Wb = ((M1-M3) / M1) × 100 [%] (2)
However,
M1: A glass fiber bundle in the vicinity of about 5 g was dried at 105 ± 5 ° C. for 6 hours and completely dried, then placed in a desiccator and allowed to cool to room temperature.
M2: The mass (g) of the heated glass fiber bundle heated in the heating furnace maintained at 400 ± 20 ° C. for 15 minutes, then removed from the heating furnace, and allowed to cool in a desiccator.
M3: The mass (g) of the heated glass fiber bundle heated in the heating furnace maintained at 625 ± 20 ° C. for 15 minutes, then removed from the heating furnace, and allowed to cool in a desiccator.

このようなガラス繊維束、すなわち分解ガスの原因となるサイズ剤成分の少ないガラス繊維束を使用することで、分解ガスに起因するフクレなどの射出成形時の成形不良、及び、成形品の強度低下を更に抑制することができる。   By using such a glass fiber bundle, that is, a glass fiber bundle with a small amount of sizing agent that causes decomposition gas, molding defects such as blistering caused by decomposition gas, and strength reduction of the molded product are reduced. Can be further suppressed.

本発明は、上述の製造方法によって得ることのできるガラス繊維強化樹脂ペレットを射出成形する、成形品の製造方法に関する。   The present invention relates to a method for manufacturing a molded article, in which glass fiber reinforced resin pellets obtainable by the above-described manufacturing method are injection-molded.

上述の製造方法で得られる、ガラス繊維強化樹脂ペレットを射出成形すれば、サイズ剤成分の分解ガスに起因する射出成形時の成形不良、及び、サイズ剤成分の分解ガスに起因する成形品の強度低下を抑制することができる。さらに、このような、ガラス繊維強化樹脂ペレットを射出成形した成形品は、成形品中のガラス繊維長が長く、高い強度を有する。   If glass fiber reinforced resin pellets obtained by the above-mentioned production method are injection-molded, molding defects caused by the decomposition gas of the sizing component and the strength of the molded product due to the decomposition gas of the sizing component The decrease can be suppressed. Furthermore, such a molded product obtained by injection molding of glass fiber reinforced resin pellets has a long glass fiber length and a high strength.

本発明によれば、熱可塑性樹脂として液晶ポリマーなどの溶融温度の高い樹脂を用いる場合でも、射出成形時の成形不良を抑制でき、且つ、射出成形後の成形品中に含まれるガラス繊維の繊維長の長いガラス繊維強化樹脂ペレットの製造方法を提供することができる。また、当該製造方法によって、製造したガラス繊維強化樹脂ペレットを用いた、成形品の製造方法を提供することができる。   According to the present invention, even when a resin having a high melting temperature, such as a liquid crystal polymer, is used as the thermoplastic resin, molding defects during injection molding can be suppressed, and the glass fiber fibers contained in the molded product after injection molding A method for producing a long glass fiber reinforced resin pellet can be provided. Moreover, the manufacturing method can provide the manufacturing method of a molded article using the manufactured glass fiber reinforced resin pellet.

以下、必要に応じて図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一要素には同一部号を付すこととし、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as necessary. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

ガラス繊維強化樹脂ペレットの製造方法の好適な実施形態としては、サイズ剤が付着したガラス繊維を複数本束ねてガラス繊維束とし、当該ガラス繊維束を熱溶融した第1の熱可塑性樹脂とともに、貫通孔が形成されたダイスの当該貫通孔に通して引き抜く引き抜き工程と、引き抜き工程で得られる樹脂含浸ガラス繊維束を切断してペレット化する第1ペレット化工程と、第1ペレット化工程で得られるペレットを、熱溶融した第2の熱可塑性樹脂とともに混練した後、ペレット化する第2ペレット化工程とを備える方法が挙げられる。なお、成形品の強度の向上などのため、上記第1の熱可塑性樹脂と上記第2の熱可塑性樹脂は同一の樹脂組成であることが好ましい。また第2ペレット工程において、第2の熱可塑性樹脂を追加せず、第1のペレットを加熱し、第1の熱可塑性樹脂を溶融し混練してもよい。   As a preferred embodiment of the method for producing glass fiber reinforced resin pellets, a plurality of glass fibers to which a sizing agent is attached are bundled into a glass fiber bundle, and the glass fiber bundle is penetrated together with a first thermoplastic resin that is heat-melted. Obtained by a drawing step of drawing through the through hole of the die formed with holes, a first pelletizing step of cutting and pelletizing the resin-impregnated glass fiber bundle obtained in the drawing step, and a first pelletizing step And a second pelletizing step in which the pellets are kneaded with the second thermoplastic resin that has been melted and then pelletized. In order to improve the strength of the molded product, the first thermoplastic resin and the second thermoplastic resin are preferably the same resin composition. In the second pellet step, the first thermoplastic resin may be heated to melt and knead the first thermoplastic resin without adding the second thermoplastic resin.

第1ペレット化工程で用いるガラス繊維束は、例えば、以下の工程により製造できる。   The glass fiber bundle used in the first pelletizing step can be manufactured by the following steps, for example.

まず、ガラス繊維の原料ガラスを溶融し、ブッシングから溶融した原料ガラスを引き出すことにより、ガラス繊維を製造する。その後、当該ガラス繊維にシランカップリング剤、潤滑剤、被膜形成剤などを含むサイズ剤の塗布液を付与し、ガラス繊維50〜8000本を一束として集束させ、その後巻き取り、乾燥してストランドの巻体を製造する。そして、当該ストランド2〜50本を更に合糸することで、ガラス繊維1000〜30000本が束ねられたガラス繊維束を得る。なお、場合によっては、当該ストランドを合糸することなくそのままガラス繊維束として用いてもよい。   First, glass fiber is manufactured by melting glass fiber raw glass and drawing the molten raw glass from the bushing. Thereafter, a coating solution of a sizing agent containing a silane coupling agent, a lubricant, a film forming agent and the like is applied to the glass fiber, and 50 to 8000 glass fibers are bundled as a bundle, and then wound and dried to form a strand. To manufacture a roll. And the glass fiber bundle in which 1000-30000 glass fibers were bundled is obtained by further combining the 2-50 strands. In some cases, the strand may be used as it is as a glass fiber bundle without being combined.

ガラス繊維の原料ガラスの種類としては、Eガラス、Sガラス、低誘電ガラス、Cガラス等が挙げられる。繊維化が容易であるという点からは、Eガラスを用いることが好ましい。また繊維径は3〜17μmが好ましい。   Examples of the glass fiber raw glass include E glass, S glass, low dielectric glass, and C glass. From the viewpoint of easy fiberization, it is preferable to use E glass. The fiber diameter is preferably 3 to 17 μm.

シランカップリング剤は、ガラス繊維と、ガラス繊維に含浸させる熱可塑性樹脂との間の界面密着性向上のために用いられるものであり、通常、酢酸、蟻酸、乳酸等の有機酸や、水などに溶解して用いられる。シランカップリング剤としては、公知のものが使用でき、例えば、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−(メタクリロイルオキシプロピル)トリメトキシシラン等の不飽和二重結合を有するシランカップリング剤;β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン等のエポキシ基を有するシランカップリング剤;γ−メルカプトプロピルトリメトキシシラン等のメルカプト基を有するシランカップリング剤;γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミノ基を有するシランカップリング剤が例示できる。   Silane coupling agents are used to improve the interfacial adhesion between glass fibers and thermoplastic resins impregnated into glass fibers. Usually, organic acids such as acetic acid, formic acid and lactic acid, water, etc. Used by dissolving in As the silane coupling agent, known ones can be used, for example, a silane coupling agent having an unsaturated double bond such as vinyltriethoxysilane, vinyltrimethoxysilane, γ- (methacryloyloxypropyl) trimethoxysilane; Silane coupling agents having an epoxy group such as β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropylmethyldiethoxysilane; γ-mercaptopropyltrimethoxy Silane coupling agents having a mercapto group such as silane; γ-aminopropyltriethoxysilane, N-β- (aminoethyl) γ-aminopropyltrimethoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ -Aminopropyltri Silane coupling agent having an amino group such as Tokishishiran can be exemplified.

潤滑剤は、ガラス繊維同士の摩擦による磨耗などを抑制するために用いられるものである。潤滑剤としては、例えば、テトラエチレンペンタミンとステアリン酸の縮合物が用いられる。   The lubricant is used for suppressing wear caused by friction between glass fibers. As the lubricant, for example, a condensate of tetraethylenepentamine and stearic acid is used.

被膜形成剤は、ガラス繊維を集束し表面を保護するために用いられるものである。被膜形成剤としては、ガラス繊維の集束を行える造膜性のものであれば公知のものが用いられる。公知の被膜形成剤としては、例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂及び酢酸ビニル樹脂が挙げられる。なお、場合によってはサイズ剤には被膜形成剤を含まないこともある。   The film forming agent is used for bundling glass fibers and protecting the surface. As the film forming agent, any known film forming agent can be used as long as it is capable of forming glass fibers. Examples of known film forming agents include urethane resins, acrylic resins, epoxy resins, and vinyl acetate resins. In some cases, the sizing agent may not contain a film forming agent.

ガラス繊維に付着しているサイズ剤の量は、上述の式(1)及び/又は(2)により算出される400℃及び/又は625℃における強熱減量Wa、Wbの値に影響する。したがって、強熱減量の値を考慮してサイズ剤の付着量を調整することが好ましい。   The amount of the sizing agent adhering to the glass fiber affects the values of ignition losses Wa and Wb at 400 ° C. and / or 625 ° C. calculated by the above formula (1) and / or (2). Therefore, it is preferable to adjust the adhesion amount of the sizing agent in consideration of the ignition loss value.

ガラス繊維束は、400℃における強熱減量値Waが、0.10[重量%]以下であることが好ましい。このようなガラス繊維束は、分解ガスの原因となるサイズ剤成分の含有量が少ないことから、分解ガスに起因するフクレなどの射出成形時の成形不良、及び、成形品の強度低下を更に抑制することができる。   The glass fiber bundle preferably has an ignition loss value Wa at 400 ° C. of 0.10 [% by weight] or less. Such a glass fiber bundle has a small content of the sizing agent component that causes decomposition gas, and thus further suppresses molding defects such as blistering caused by decomposition gas and reduction in strength of the molded product. can do.

また、ガラス繊維束は、625℃における強熱減量値Wbが、0.10[重量%]以下であることが更に好ましい。このようなガラス繊維束を用いた場合、ガラス繊維と、熱可塑性樹脂との界面接着性がさらに向上する。そのため、成形品の強度の向上を図ることができる。   Further, the glass fiber bundle preferably has an ignition loss value Wb at 625 ° C. of 0.10 [% by weight] or less. When such a glass fiber bundle is used, the interfacial adhesion between the glass fiber and the thermoplastic resin is further improved. Therefore, the strength of the molded product can be improved.

図1は、引き抜き工程及び第1ペレット化工程に用いられる製造装置100の概略図である。   FIG. 1 is a schematic view of a manufacturing apparatus 100 used in the drawing process and the first pelletizing process.

製造装置100は、熱溶融した熱可塑性樹脂10aを収容した熱可塑性樹脂槽34と、ガラス繊維束21を熱溶融した熱可塑性樹脂10aとともに通過させる貫通孔31が形成されたダイス30と、熱可塑性樹脂が含浸したガラス繊維束をダイス30から引き抜くプーラー40とを備えており、これらは、本発明における引き抜き工程に用いられる。   The manufacturing apparatus 100 includes a thermoplastic resin tank 34 in which a hot-melt thermoplastic resin 10a is accommodated, a die 30 in which a through hole 31 through which the glass fiber bundle 21 is passed together with the hot-melt thermoplastic resin 10a, and a thermoplastic resin. A puller 40 for pulling out the glass fiber bundle impregnated with the resin from the die 30 is provided, and these are used in the drawing step in the present invention.

なお、ダイス30の上流側には、ダイス30に導入すべきガラス繊維束21が巻きつけられた巻糸体22が配置されている。ダイス30の下流側に位置するプーラー40は、熱可塑性樹脂が含浸したガラス繊維束を、回転するローラで上下から挟み込むいわゆるキャタピラ方式のプーラーである。   A wound body 22 around which a glass fiber bundle 21 to be introduced into the die 30 is wound is disposed on the upstream side of the die 30. The puller 40 located on the downstream side of the die 30 is a so-called caterpillar puller in which a glass fiber bundle impregnated with a thermoplastic resin is sandwiched from above and below by a rotating roller.

引き抜き工程では、まず、プーラー40を回転駆動させ、巻糸体22からガラス繊維束21を引き出す。   In the drawing process, first, the puller 40 is driven to rotate, and the glass fiber bundle 21 is pulled out from the wound body 22.

そして、引き出されたガラス繊維束21をダイス30の貫通孔31に導入するとともに、ポンプ等を使って、熱溶融させた熱可塑性樹脂10aを貫通孔31に導く。ダイス30中ではガラス繊維束21の周囲及び内部に熱溶融した熱可塑性樹脂10aが含浸し、プーラー40の回転駆動により、貫通孔31の出口側断面形状に対応した形状に成型されながら、熱可塑性樹脂が含浸したガラス繊維束がダイス30から引き抜かれる。   Then, the drawn glass fiber bundle 21 is introduced into the through hole 31 of the die 30 and the thermoplastic resin 10a that has been thermally melted is guided to the through hole 31 using a pump or the like. In the die 30, the melted thermoplastic resin 10 a is impregnated around and inside the glass fiber bundle 21, and the thermoplastic resin is molded into a shape corresponding to the outlet side cross-sectional shape of the through-hole 31 by the rotational drive of the puller 40. The glass fiber bundle impregnated with the resin is pulled out from the die 30.

引抜き速度は5〜30m/分程度が好ましい。これ以上に速度を上げると樹脂の含浸性の低下や、後に続く切断工程における切断不良などの不具合が生じる傾向がある。なお、引抜きの際にガラス繊維束に撚りをかけてもよい。   The drawing speed is preferably about 5 to 30 m / min. Increasing the speed further tends to cause problems such as a decrease in resin impregnation property and a cutting failure in a subsequent cutting step. The glass fiber bundle may be twisted during drawing.

図1では巻糸体22を1つ用いたが、巻糸体22を複数用いて、複数のガラス繊維束21をダイス30に導入してもよい。また、ダイス30とプーラー40の間に、熱溶融した熱可塑性樹脂10aの固化を促進するための冷却手段を設置してもよい。これは、例えば水などの液体を触れさせることで行っても良いし、空冷により行っても良い。更に、ダイス30とプーラー40との間に、熱可塑性樹脂が付着したガラス繊維束21の断面形状を整える成型手段を設置してもよい。   Although one wound body 22 is used in FIG. 1, a plurality of glass fiber bundles 21 may be introduced into the die 30 using a plurality of wound bodies 22. Further, a cooling means for promoting solidification of the hot-melted thermoplastic resin 10a may be installed between the die 30 and the puller 40. This may be performed by touching a liquid such as water or by air cooling. Further, a molding means for adjusting the cross-sectional shape of the glass fiber bundle 21 to which the thermoplastic resin is attached may be installed between the die 30 and the puller 40.

また、熱可塑性樹脂を溶融させる温度は、通常、熱可塑性樹脂が溶融する温度以上で、且つ、熱可塑性樹脂が分解や変質がしない程度の温度未満で行われる。   The temperature at which the thermoplastic resin is melted is usually higher than the temperature at which the thermoplastic resin melts and below the temperature at which the thermoplastic resin is not decomposed or altered.

熱可塑性樹脂に特に制限はないが、溶融温度が200℃以上の熱可塑性樹脂が好ましい。このような樹脂を用いた場合に、特に本発明の効果が顕著に発揮される。   Although there is no restriction | limiting in particular in a thermoplastic resin, The thermoplastic resin whose melting temperature is 200 degreeC or more is preferable. When such a resin is used, the effect of the present invention is particularly remarkable.

溶融温度が200℃以上の熱可塑性樹脂としては、例えば、液晶ポリエステル樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PES(ポリエーテルサルフォン)樹脂が挙げられる。   Examples of the thermoplastic resin having a melting temperature of 200 ° C. or higher include liquid crystal polyester resin, PEEK (polyether ether ketone) resin, and PES (polyether sulfone) resin.

含浸させる熱可塑性樹脂の量は、ガラス繊維束100質量部に対して、熱可塑性樹脂が20〜300質量部となることが好ましく、30〜200質量部となることがより好ましい。ガラス繊維束100質量部に対する、熱可塑性樹脂の量が20質量部より少ないと、第2ペレット化工程での混練によりガラス繊維の繊維長が短くなり成形品の強度が低下する傾向にあり、300質量部より多いと、成形品中のガラス繊維の割合が少なくなることで成形品の強度が低下する傾向にある。   The amount of the thermoplastic resin to be impregnated is preferably 20 to 300 parts by mass, more preferably 30 to 200 parts by mass with respect to 100 parts by mass of the glass fiber bundle. When the amount of the thermoplastic resin is less than 20 parts by mass with respect to 100 parts by mass of the glass fiber bundle, the fiber length of the glass fiber is shortened by kneading in the second pelletizing step, and the strength of the molded product tends to be reduced. When the amount is more than part by mass, the strength of the molded product tends to decrease due to a decrease in the proportion of glass fibers in the molded product.

製造装置100は、ブレードをモータMの駆動力で回転させて、熱可塑性樹脂が含浸したガラス繊維束を切断し、ガラス繊維樹脂強化ペレット200とする切断機50も備えており、これは、第1ペレット化工程に適用される。切断機50は、熱可塑性樹脂が含浸したガラス繊維束を切断できるものであれば、特に制限はなく、公知の装置が用いられる。   The manufacturing apparatus 100 also includes a cutting machine 50 that rotates the blade with the driving force of the motor M to cut the glass fiber bundle impregnated with the thermoplastic resin to obtain the glass fiber resin reinforced pellet 200. Applies to one pelletization process. The cutting machine 50 is not particularly limited as long as it can cut the glass fiber bundle impregnated with the thermoplastic resin, and a known device is used.

第1ペレット化工程では、熱可塑性樹脂が含浸し、切断に適した状態に樹脂が固化したガラス繊維束を切断機50により切断し、ガラス繊維強化樹脂ペレット200を得る。ここでカッターの回転速度とライン速度を調節することにより、ペレット長を調節することができる。ペレット長は2〜50mm、より好ましくは5〜20mmである。2mmよりも短く切断すると、射出成形後の成形品中のガラス繊維の繊維長が短くなるために、ガラス繊維強化樹脂成形品の強度が低下する傾向がある。また、50mmよりも長く切断すると、第1ペレット化の次に行われる第2ペレット化工程において、詰まりなどが生じ、作業性が低下する傾向にある。   In the first pelletizing step, the glass fiber bundle impregnated with the thermoplastic resin and solidified into a state suitable for cutting is cut by the cutting machine 50 to obtain the glass fiber reinforced resin pellet 200. Here, the pellet length can be adjusted by adjusting the rotational speed and line speed of the cutter. The pellet length is 2 to 50 mm, more preferably 5 to 20 mm. When cut shorter than 2 mm, the fiber length of the glass fiber in the molded product after injection molding is shortened, so that the strength of the glass fiber reinforced resin molded product tends to decrease. Moreover, when it cut | disconnects longer than 50 mm, in the 2nd pelletization process performed after the 1st pelletization, clogging etc. will arise and there exists a tendency for workability | operativity to fall.

図2は、第1ペレット化工程で得られるペレット200の斜視図である。図3(a)は第1ペレット化工程で得られるペレット200の正面図、(b)は同側面図である。   FIG. 2 is a perspective view of the pellet 200 obtained in the first pelletizing step. FIG. 3A is a front view of the pellet 200 obtained in the first pelletizing step, and FIG. 3B is a side view thereof.

図2及び図3に示すように、ペレット200は、熱可塑性樹脂10中に、ガラス繊維束21に含まれるガラス繊維20を複数一方向に配列させたものである。また、図3(b)から明らかなようにこのガラス繊維20の端面は、熱可塑性樹脂で覆われていない。なお、図3(b)では一方の側面(端面)のみを示しているが、他方の側面(端面)にもガラス繊維20が到達しており、端面は熱可塑性樹脂で覆われていない。   As shown in FIGS. 2 and 3, the pellet 200 is obtained by arranging a plurality of glass fibers 20 included in the glass fiber bundle 21 in one direction in the thermoplastic resin 10. Further, as apparent from FIG. 3B, the end face of the glass fiber 20 is not covered with the thermoplastic resin. 3B shows only one side surface (end surface), the glass fiber 20 has reached the other side surface (end surface), and the end surface is not covered with the thermoplastic resin.

図4は、第2ペレット化工程に用いられる製造装置500の概略図である。製造装置500は、ペレット200及び熱可塑性樹脂300を混練する二軸押出機64と、ペレット200及び熱可塑性樹脂300の混練物を冷却する冷却手段66と、冷却し混練物を切断する切断手段68とを備えている。   FIG. 4 is a schematic view of a manufacturing apparatus 500 used in the second pelletizing step. The manufacturing apparatus 500 includes a twin-screw extruder 64 for kneading the pellet 200 and the thermoplastic resin 300, a cooling means 66 for cooling the kneaded product of the pellet 200 and the thermoplastic resin 300, and a cutting means 68 for cooling and cutting the kneaded product. And.

第2ペレット化工程では、第1ペレット化工程により製造したペレット200と、熱可塑性樹脂300を二軸押出機64に投入し混練する。なお、熱可塑性樹脂300を投入せずペレット200のみを二軸押出機64に投入し混練してもよい。   In the second pelletizing step, the pellet 200 manufactured in the first pelletizing step and the thermoplastic resin 300 are charged into the twin screw extruder 64 and kneaded. Note that only the pellet 200 may be charged into the twin screw extruder 64 and kneaded without adding the thermoplastic resin 300.

第1のペレットを用いて第2ペレット化工程を行うことによって、二軸押出機64によるガラス繊維20の破砕を抑えながら、ガラス繊維束への樹脂の含浸性を高めることができ、ガラス繊維強化樹脂成形品を製造した場合により高い強度を得ることが可能となる。   By performing the second pelletizing step using the first pellet, the impregnation property of the resin into the glass fiber bundle can be enhanced while suppressing the crushing of the glass fiber 20 by the twin screw extruder 64, and the glass fiber is reinforced. When a resin molded product is manufactured, higher strength can be obtained.

ペレット200と、熱可塑性樹脂300を投入する場合は、これらの使用割合は、ペレット200の100質量部に対して熱可塑性樹脂300は、10〜200質量部を用いることが好ましい。また、最終的に得られるペレット400の組成は、ガラス繊維束100質量部に対し、熱可塑性樹脂が50〜300質量部になることが好ましい。
なお、第2ペレット化工程において、熱可塑性樹脂300を投入することなく、ペレット200のみを混練する場合は、ペレット200は、ガラス繊維束100質量部に対し、熱可塑性樹脂が50〜300質量部であることが好ましい。
When the pellet 200 and the thermoplastic resin 300 are added, it is preferable to use 10 to 200 parts by mass of the thermoplastic resin 300 with respect to 100 parts by mass of the pellet 200. Moreover, it is preferable that the composition of the pellet 400 finally obtained becomes 50-300 mass parts of thermoplastic resins with respect to 100 mass parts of glass fiber bundles.
In the second pelletizing step, when only the pellet 200 is kneaded without introducing the thermoplastic resin 300, the pellet 200 is 50 to 300 parts by mass of the thermoplastic resin with respect to 100 parts by mass of the glass fiber bundle. It is preferable that

混練後、二軸押出機64から押出された混練物を、冷却手段66により冷却する。冷却されて切断に適した状態に樹脂が固化したガラス繊維束を切断手段68により切断し、ガラス繊維強化樹脂ペレット400を得る。ここでカッターの回転速度とライン速度を調節することにより、ペレット長を調節することができる。ペレット長は0.5〜15mm、より好ましくは1〜5mm、更に好ましくは2〜4mmである。0.5mmよりも短く切断すると、射出成形後の成形品中のガラス繊維の繊維長が短くなるために、ガラス繊維強化樹脂成形品の強度が低下する傾向がある。また、10mmよりも長く切断すると、射出成形によって成形品を製造する際に、詰まりなどが生じ、作業性が低下する傾向にある。   After kneading, the kneaded product extruded from the twin screw extruder 64 is cooled by the cooling means 66. The glass fiber bundle in which the resin is solidified in a state suitable for cutting after being cooled is cut by the cutting means 68 to obtain a glass fiber reinforced resin pellet 400. Here, the pellet length can be adjusted by adjusting the rotational speed and line speed of the cutter. The pellet length is 0.5 to 15 mm, more preferably 1 to 5 mm, and still more preferably 2 to 4 mm. When cut shorter than 0.5 mm, the fiber length of the glass fiber in the molded product after injection molding is shortened, so that the strength of the glass fiber reinforced resin molded product tends to decrease. Moreover, when it cut | disconnects longer than 10 mm, when manufacturing a molded article by injection molding, clogging etc. will arise and there exists a tendency for workability | operativity to fall.

図4においては、混練に二軸押出機を用いているが、ペレット200と、熱可塑性樹脂の混練ができるものであれば、公知の装置が使用できる。また、図4においては、水などの液体を触れさせる冷却槽を冷却手段として用いているが、冷却は空冷により行ってもよい。また、切断手段68は、樹脂が固化したガラス繊維束を切断できるものであれば、特に制限はなく、公知の装置が用いられる。   In FIG. 4, a twin screw extruder is used for kneading, but any known apparatus can be used as long as the pellet 200 and the thermoplastic resin can be kneaded. Moreover, in FIG. 4, although the cooling tank which touches liquids, such as water, is used as a cooling means, you may perform cooling by air cooling. The cutting means 68 is not particularly limited as long as it can cut the glass fiber bundle in which the resin is solidified, and a known device is used.

このように、第1ペレット化工程でのガラス繊維束21と熱可塑性樹脂10aの質量比、及び第2ペレット化工程でのペレット200と熱可塑性樹脂300の質量比は、それぞれの工程の作業性と、ガラス繊維強化樹脂ペレット400でのガラス繊維束と熱可塑性樹脂の質量比を考慮し、それぞれの工程での最適な質量比を設定すればよい。   Thus, the mass ratio of the glass fiber bundle 21 and the thermoplastic resin 10a in the first pelletizing step and the mass ratio of the pellet 200 and the thermoplastic resin 300 in the second pelletizing step are the workability of each step. In consideration of the mass ratio of the glass fiber bundle and the thermoplastic resin in the glass fiber reinforced resin pellet 400, an optimal mass ratio in each step may be set.

図5は、成形品を製造するための射出成形機600の概略図である。   FIG. 5 is a schematic view of an injection molding machine 600 for producing a molded product.

射出成形機600は、樹脂ペレットの投入口であるホッパー60と、シリンダー70と、ヒーター75と、スクリュー80とを備えている。シリンダー70の出口には金型90が設置されている。   The injection molding machine 600 includes a hopper 60 that is an inlet for resin pellets, a cylinder 70, a heater 75, and a screw 80. A mold 90 is installed at the outlet of the cylinder 70.

成形品は、ガラス繊維強化樹脂ペレット600をホッパー60に投入し、射出成形することによって製造することができる。この際必要であれば熱可塑性樹脂のペレットを更に投入してもよい。   The molded product can be manufactured by putting the glass fiber reinforced resin pellet 600 into the hopper 60 and performing injection molding. At this time, if necessary, thermoplastic resin pellets may be further added.

成形品は、ガラス繊維強化樹脂ペレット400を射出成形機300のホッパー60に投入し、シリンダー70をヒーター75で加熱することで、ガラス繊維強化樹脂ペレット400中の熱可塑性樹脂を溶融させ、シリンダー70内のスクリュー80で、溶融した樹脂とガラスを混ぜながらシリンダー70の先端に送る。加熱温度は熱可塑性樹脂の溶融温度の10〜30℃程度高い温度に設定すればよい。   As the molded product, the glass fiber reinforced resin pellet 400 is put into the hopper 60 of the injection molding machine 300 and the cylinder 70 is heated by the heater 75 to melt the thermoplastic resin in the glass fiber reinforced resin pellet 400. The melted resin and glass are mixed with the inner screw 80 and sent to the tip of the cylinder 70. The heating temperature may be set to a temperature that is about 10 to 30 ° C. higher than the melting temperature of the thermoplastic resin.

続いて、上記溶融したガラス繊維強化樹脂に圧力をかけて金型90に打ち込む。その後に、金型90内で樹脂を冷却して結晶化させ、ガラス繊維強化樹脂成形品を取り出す。以上の工程により、ガラス繊維強化樹脂成形品を製造することができる。   Subsequently, pressure is applied to the molten glass fiber reinforced resin and the mold 90 is driven. Thereafter, the resin is cooled and crystallized in the mold 90, and the glass fiber reinforced resin molded product is taken out. Through the above steps, a glass fiber reinforced resin molded product can be produced.

以下、好適な実施例について更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, preferred examples will be described in more detail, but the present invention is not limited to these examples.

(実施例1)
[ガラス繊維束の作製]
シランカップリング剤(γ−アミノプロピルトリエトキシシラン)0.5質量%、pH調整剤(酢酸)0.2質量%、潤滑剤(テトラエチレンペンタミンとステアリン酸の縮合物)0.03質量%を含むサイズ剤水系液を調整した。調整したサイズ剤水系液を、ガラス繊維(直径11μmのEガラスフィラメント)に塗布し、当該ガラス繊維を1500本束ねてガラスストランドとした。さらに、120℃8時間乾燥後、当該ガラスストランドを10本合糸しガラス繊維束を作製した。
Example 1
[Production of glass fiber bundle]
Silane coupling agent (γ-aminopropyltriethoxysilane) 0.5% by mass, pH adjusting agent (acetic acid) 0.2% by mass, lubricant (condensate of tetraethylenepentamine and stearic acid) 0.03% by mass A sizing aqueous solution containing was prepared. The adjusted sizing aqueous solution was applied to glass fibers (E glass filaments having a diameter of 11 μm), and 1500 glass fibers were bundled to form glass strands. Furthermore, after drying at 120 ° C. for 8 hours, ten glass strands were combined to prepare a glass fiber bundle.

上述の方法により作製したガラスストランドについて、400℃における強熱減量値Wa及び625℃における強熱減量値Wbを測定したところ、Wa=0.06[重量%]、Wb=0.08[重量%]であった。結果を表1に示す。   About the glass strand produced by the above-mentioned method, when the ignition loss value Wa in 400 degreeC and the ignition loss value Wb in 625 degreeC were measured, Wa = 0.06 [weight%], Wb = 0.08 [weight%]. ]Met. The results are shown in Table 1.

[成形品の作製]
長繊維熱可塑性樹脂ペレット製造装置を用いて、上述の方法により作製したガラス繊維束を引抜き速度15m/分で、当該ガラス繊維束60質量部に、液晶ポリエステル樹脂(エコノール系液晶ポリエステル:溶融温度330℃)40質量部を、350℃で含浸させた後、ペレタイザーにより切断し、長さ12mmのペレットを得た。さらに、当該ペレット50質量部と、上記液晶ポリエステル樹脂と同一の樹脂組成の液晶ポリエステル樹脂50質量部を、押出し機により350℃で混練した後、ペレタイザーにより切断し、長さ3mmのペレットを得た。このペレットを350℃で射出成形することによって、ガラス繊維強化熱可塑性樹脂成形品を作製した。なお、この場合、得られた成形品100質量部に対して、成形品中のガラス繊維束は30質量部、成形品中の液晶ポリエステル樹脂は70質量部となる。
[Production of molded products]
A glass fiber bundle produced by the above-mentioned method using a long fiber thermoplastic resin pellet production apparatus was drawn at a rate of 15 m / min, and a liquid crystal polyester resin (econol-based liquid crystal polyester: melting temperature 330) was added to 60 parts by mass of the glass fiber bundle. C.) 40 parts by mass were impregnated at 350.degree. C. and then cut with a pelletizer to obtain a pellet having a length of 12 mm. Further, 50 parts by mass of the pellets and 50 parts by mass of a liquid crystal polyester resin having the same resin composition as the liquid crystal polyester resin were kneaded at 350 ° C. by an extruder, and then cut by a pelletizer to obtain a pellet having a length of 3 mm. . The pellet was injection molded at 350 ° C. to produce a glass fiber reinforced thermoplastic resin molded product. In this case, with respect to 100 parts by mass of the obtained molded product, the glass fiber bundle in the molded product is 30 parts by mass, and the liquid crystal polyester resin in the molded product is 70 parts by mass.

(比較例1)
[ガラス繊維束の作製]
シランカップリング剤(γ−アミノプロピルトリエトキシシラン)0.5質量%、酢酸0.2質量%、潤滑剤(テトラエチレンペンタミンとステアリン酸の縮合物)0.03質量%、被膜形成剤(ウレタン樹脂(日本エヌエスシー社製RC30K:固形分55%))1.0質量%を含むサイズ剤水系液を調整した。調整したサイズ剤水系液を、ガラス繊維(直径11μmのEガラスフィラメント)に塗布し、当該ガラス繊維を1500本束ねてガラスストランドとした。さらに、120℃8時間乾燥後、当該ガラスストランドを10本合糸しガラス繊維束を作製した。
(Comparative Example 1)
[Production of glass fiber bundle]
Silane coupling agent (γ-aminopropyltriethoxysilane) 0.5% by mass, acetic acid 0.2% by mass, lubricant (condensate of tetraethylenepentamine and stearic acid) 0.03% by mass, film forming agent ( A sizing aqueous solution containing 1.0% by mass of urethane resin (RC30K manufactured by NSC Japan, solid content: 55%) was prepared. The adjusted sizing aqueous solution was applied to glass fibers (E glass filaments having a diameter of 11 μm), and 1500 glass fibers were bundled to form glass strands. Furthermore, after drying at 120 ° C. for 8 hours, ten glass strands were combined to prepare a glass fiber bundle.

上述の方法により作製したガラスストランドについて、400℃における強熱減量値Wa及び625℃における強熱減量値Wbを測定したところ、Wa=0.20[重量%]、Wb=0.25[重量%]であった。結果を表1に示す。   About the glass strand produced by the above-mentioned method, when the ignition loss value Wa in 400 degreeC and the ignition loss value Wb in 625 degreeC were measured, Wa = 0.20 [weight%], Wb = 0.25 [weight%]. ]Met. The results are shown in Table 1.

[成形品の作製]
上述の方法により得られたガラス繊維束を切断し、長さ3mmのチョップドストランドを作製した。そして、得られたチョップドストランド30質量部に、液晶ポリエステル樹脂(エコノール系液晶ポリエステル:溶融温度330℃)70質量部を、押出し機により350℃で混練した後、ペレタイザーにより切断し、長さ3mmのペレットを得た。このペレットを350℃で射出成形することによって、ガラス繊維強化熱可塑性樹脂成形品を得た。
[Production of molded products]
The glass fiber bundle obtained by the above-described method was cut to produce a chopped strand having a length of 3 mm. And after knead | mixing 70 mass parts of liquid crystalline polyester resin (Econol type | system | group liquid crystalline polyester: melting temperature 330 degreeC) at 350 degreeC with an extruder at 30 mass parts of the obtained chopped strand, it cut | disconnects with a pelletizer, and length 3mm Pellets were obtained. The pellets were injection molded at 350 ° C. to obtain a glass fiber reinforced thermoplastic resin molded product.

(比較例2)
[ガラス繊維束の作製]
実施例1と同様の方法によりガラス繊維束を作製した。Wa及びWbの結果は実施例1と同様であった。結果を表1に示す。
(Comparative Example 2)
[Production of glass fiber bundle]
A glass fiber bundle was produced in the same manner as in Example 1. The results of Wa and Wb were the same as in Example 1. The results are shown in Table 1.

[成形品の作製]
得られたガラス繊維束を切断し、長さ3mmのチョップドストランドを作製した。得られたチョップストランドは、毛羽が多発していた。また、得られたチョップドストランド30質量部に、液晶ポリエステル樹脂(エコノール系液晶ポリエステル:溶融温度330℃)70質量部を、押出し機により350℃で混練したところ、チョップドストランドが綿状になってしまい混練不良となり、ペレットを作製できなかった。
[Production of molded products]
The obtained glass fiber bundle was cut to produce a chopped strand having a length of 3 mm. The obtained chop strand was frequently fuzzy. In addition, when 30 parts by mass of the chopped strands were kneaded with 70 parts by mass of a liquid crystalline polyester resin (Econol-based liquid crystalline polyester: melting temperature 330 ° C.) at 350 ° C. by an extruder, the chopped strands became cottony. The kneading was poor and pellets could not be produced.

(比較例3)
[ガラス繊維束の作製]
実施例1と同様の方法によりガラス繊維束を作製した。Wa及びWbの結果は実施例1と同様であった。結果を表1に示す。
(Comparative Example 3)
[Production of glass fiber bundle]
A glass fiber bundle was produced in the same manner as in Example 1. The results of Wa and Wb were the same as in Example 1. The results are shown in Table 1.

[成形品の作製]
長繊維熱可塑性樹脂ペレット製造装置を用いて、上述の方法により作製したガラス繊維束60質量部に、液晶ポリエステル樹脂(エコノール系液晶ポリエステル:溶融温度330℃)40質量部を、350℃で含浸させた後、ペレタイザーにより切断し、長さ3mmのペレットを得た。さらに、当該ペレット50質量部と、液晶ポリエステル樹脂50質量部を、射出成形機を用い350℃で混練すると共に射出成形し、ガラス繊維強化熱可塑性樹脂成形品を作製した。得られた成形品は、ガラス繊維の分散不良が多発し、成形不良となった。
[Production of molded products]
Using a long fiber thermoplastic resin pellet manufacturing apparatus, 60 parts by mass of a glass fiber bundle produced by the above-described method is impregnated with 40 parts by mass of a liquid crystal polyester resin (Econol type liquid crystal polyester: melting temperature 330 ° C.) at 350 ° C. After that, the pellet was cut by a pelletizer to obtain a pellet having a length of 3 mm. Further, 50 parts by mass of the pellets and 50 parts by mass of the liquid crystalline polyester resin were kneaded at 350 ° C. using an injection molding machine and injection molded to produce a glass fiber reinforced thermoplastic resin molded product. In the obtained molded product, defective glass fiber dispersion occurred frequently, resulting in defective molding.

(比較例4)
[ガラス繊維束の作製]
実施例1と同様の方法によりガラス繊維束を作製した。Wa及びWbの結果は実施例1と同様であった。結果を表1に示す。
(Comparative Example 4)
[Production of glass fiber bundle]
A glass fiber bundle was produced in the same manner as in Example 1. The results of Wa and Wb were the same as in Example 1. The results are shown in Table 1.

[成形品の作製]
得られたガラス繊維束を切断し、長さ0.1mmのカットファイバーを作製した。得られたカットファイバー30質量部に、液晶ポリエステル樹脂(エコノール系液晶ポリエステル:溶融温度330℃)70質量部を、押出し機により350℃で混練した後、ペレタイザーにより切断し、長さ3mmのペレットを得た。このペレットを350℃で射出成形することによって、後述する引張強度評価の試験片用のガラス繊維強化熱可塑性樹脂成形品を得た。
[Production of molded products]
The obtained glass fiber bundle was cut to produce a cut fiber having a length of 0.1 mm. 70 parts by mass of liquid crystal polyester resin (Econol-based liquid crystal polyester: melting temperature 330 ° C.) is kneaded at 350 ° C. by an extruder and then cut by a pelletizer to 30 parts by mass of the cut fiber, and pellets having a length of 3 mm are obtained. Obtained. This pellet was injection molded at 350 ° C. to obtain a glass fiber reinforced thermoplastic resin molded product for a test piece for tensile strength evaluation described later.

(プロセス適合性の評価)
[成形品の作製について]
実施例1、比較例1〜4について、成形品の作製が可能であったかどうかの評価を行った。成形品の作製が可能であったものを「可」とし、困難であったものを「不可」とした。結果を表1に示す。
(Evaluation of process suitability)
[Production of molded products]
About Example 1 and Comparative Examples 1-4, it was evaluated whether the manufacture of the molded product was possible. The case where the molded product could be produced was set as “OK”, and the case where it was difficult was set as “NO”. The results are shown in Table 1.

(成形品の評価)
成形品を作製可能であった実施例1、比較例1及び比較例4について成形品の評価を行った。
(Evaluation of molded products)
The molded product was evaluated for Example 1, Comparative Example 1 and Comparative Example 4 in which the molded product could be produced.

[引張強度]
ASTM規格 ASTM D−638「プラスチックの引張特性の標準試験方法」に準拠し、引張強度を測定した。測定結果を表1に示す。
[Tensile strength]
The tensile strength was measured according to ASTM standard ASTM D-638 “Standard Test Method for Tensile Properties of Plastics”. The measurement results are shown in Table 1.

[フクレ]
引張強度の評価に用いた試験片を、熱風乾燥機で300℃、10分間加熱した後、冷却して、フクレの数(個/試験片の表面積10cm)を目視で確認した。なお、フクレとは試験片表面に膨らみが生じている部分を示す。結果を表1に示す。
[Fukure]
The test piece used for the evaluation of the tensile strength was heated at 300 ° C. for 10 minutes with a hot air drier, then cooled, and the number of blisters (pieces / surface area of the test piece 10 cm 2 ) was visually confirmed. In addition, a swelling shows the part which the swelling has produced on the test piece surface. The results are shown in Table 1.

[溶融温度の測定]
示差走査熱量計を用いて、熱可塑性液晶ポリマー成形体を20℃/分の速度で昇温して完全に溶融させた後、溶融物を50℃/分の速度で室温まで急冷し、再び20℃/分の速度で昇温した時に現れる吸熱ピーク温度を測定し、溶融温度とした。
[Measurement of melting temperature]
Using a differential scanning calorimeter, the thermoplastic liquid crystal polymer molded body was heated at a rate of 20 ° C./min to be completely melted, and then the melt was rapidly cooled to room temperature at a rate of 50 ° C./min. The endothermic peak temperature that appears when the temperature was raised at a rate of ° C./min was measured and taken as the melting temperature.

[成形品中のガラス繊維の繊維長]
成形品を625℃で125分間加熱することで熱可塑性樹脂成分を分解し、残存したガラス繊維を折れないようにクロロホルム中に分散させた。次いで、分散したガラス繊維をプレパラートに乗せ、LUZEX−FS(株式会社ニレコ)を用いて、ガラス繊維の長さを測定し、成形品中のガラス繊維の繊維長とした。結果を表1に示す。
[Fiber length of glass fiber in molded product]
The molded product was heated at 625 ° C. for 125 minutes to decompose the thermoplastic resin component, and the remaining glass fibers were dispersed in chloroform so as not to break. Subsequently, the dispersed glass fiber was placed on a preparation, and the length of the glass fiber was measured using LUZEX-FS (Nireco Co., Ltd.) to obtain the fiber length of the glass fiber in the molded product. The results are shown in Table 1.

Figure 2009221427
Figure 2009221427

以上に示すように、実施例1は、フクレもなく射出成形可能であった。また、実施例1は、射出成形後の成形品中に含まれるガラス繊維の繊維長も、比較例1及び4より長いものであった。   As described above, Example 1 was injection-moldable without blistering. In Example 1, the fiber length of the glass fiber contained in the molded product after injection molding was also longer than those in Comparative Examples 1 and 4.

引き抜き工程及び第1ペレット化工程に用いられる製造装置100の概略図である。It is the schematic of the manufacturing apparatus 100 used for a drawing process and a 1st pelletization process. 第1ペレット化工程で得られるペレット200の斜視図である。It is a perspective view of the pellet 200 obtained at a 1st pelletization process. (a)第1ペレット化工程で得られるペレット200の正面図、(b)同側面図である。(A) The front view of the pellet 200 obtained at a 1st pelletization process, (b) It is the same side view. 第2ペレット化工程に用いられる製造装置500の概略図である。It is the schematic of the manufacturing apparatus 500 used for a 2nd pelletization process. 成形品を製造するための射出成形機600の概略図である。It is the schematic of the injection molding machine 600 for manufacturing a molded article.

符号の説明Explanation of symbols

10…熱可塑性樹脂、10a…熱溶融した熱可塑性樹脂、20…ガラス繊維、21…ガラス繊維束、22…巻糸体、30…ダイス、31…貫通孔、40…プーラー、60…ホッパー、64…二軸押出機、66…冷却手段、68…切断手段、70…シリンダー、75…ヒーター、80…スクリュー、90…金型、100…引き抜き工程及び第1ペレット化工程に用いられる製造装置、200…ペレット、400…ガラス繊維強化樹脂ペレット、500…第2ペレット化工程に用いられる製造装置、600…射出成形機。
DESCRIPTION OF SYMBOLS 10 ... Thermoplastic resin, 10a ... Hot melted thermoplastic resin, 20 ... Glass fiber, 21 ... Glass fiber bundle, 22 ... Winding thread body, 30 ... Dies, 31 ... Through-hole, 40 ... Puller, 60 ... Hopper, 64 DESCRIPTION OF SYMBOLS ... Twin screw extruder, 66 ... Cooling means, 68 ... Cutting means, 70 ... Cylinder, 75 ... Heater, 80 ... Screw, 90 ... Mold, 100 ... Manufacturing apparatus used for drawing process and first pelletizing process, 200 ... pellets, 400 ... glass fiber reinforced resin pellets, 500 ... manufacturing apparatus used in the second pelletizing step, 600 ... injection molding machine.

Claims (7)

ガラス繊維束を熱溶融した熱可塑性樹脂とともに貫通孔が形成されたダイスの当該貫通孔に通して引き抜く引き抜き工程と、
前記引き抜き工程で得られる樹脂含浸ガラス繊維束を切断してペレット化する第1ペレット化工程と、
前記第1ペレット化工程で得られたペレットを加熱混練し、前記熱可塑性樹脂を熱溶融した後、ペレット化する第2ペレット化工程と、
を含むガラス繊維強化樹脂ペレットの製造方法。
A drawing step of drawing the glass fiber bundle through the through-hole of the die in which the through-hole is formed together with the thermoplastic resin obtained by hot melting,
A first pelletizing step of cutting and pelletizing the resin-impregnated glass fiber bundle obtained in the drawing step;
A second pelletizing step in which the pellets obtained in the first pelletizing step are heat-kneaded, the thermoplastic resin is thermally melted, and then pelletized;
A method for producing glass fiber reinforced resin pellets comprising
ガラス繊維束を熱溶融した第1の熱可塑性樹脂とともに貫通孔が形成されたダイスの当該貫通孔に通して引き抜く引き抜き工程と、
前記引き抜き工程で得られる樹脂含浸ガラス繊維束を切断してペレット化する第1ペレット化工程と、
前記第1ペレット化工程で得られたペレットを第2の熱可塑性樹脂とともに加熱混練し、前記第1の熱可塑性樹脂と前記第2の熱可塑性樹脂を熱溶融した後、ペレット化する第2ペレット化工程と、
を含むガラス繊維強化樹脂ペレットの製造方法。
A drawing step of drawing the glass fiber bundle through the through-hole of the die in which the through-hole is formed together with the first thermoplastic resin obtained by thermally melting the glass fiber bundle;
A first pelletizing step of cutting and pelletizing the resin-impregnated glass fiber bundle obtained in the drawing step;
The pellet obtained in the first pelletizing step is heat-kneaded together with the second thermoplastic resin, and the first thermoplastic resin and the second thermoplastic resin are thermally melted and then pelletized. Conversion process,
A method for producing glass fiber reinforced resin pellets comprising
前記熱可塑性樹脂は溶融温度が200℃以上の熱可塑性樹脂である、請求項1に記載のガラス繊維強化樹脂ペレットの製造方法。   The said thermoplastic resin is a manufacturing method of the glass fiber reinforced resin pellet of Claim 1 which is a thermoplastic resin whose melting temperature is 200 degreeC or more. 前記第1の熱可塑性樹脂及び/又は前記第2の熱可塑性樹脂は、溶融温度が200℃以上の熱可塑性樹脂である、請求項2に記載のガラス繊維強化樹脂ペレットの製造方法。   The manufacturing method of the glass fiber reinforced resin pellet of Claim 2 whose said 1st thermoplastic resin and / or said 2nd thermoplastic resin are thermoplastic resins whose melting temperature is 200 degreeC or more. 溶融温度が200℃以上の前記熱可塑性樹脂は液晶ポリエステル樹脂である、請求項3又は4に記載のガラス繊維強化樹脂ペレットの製造方法。   The said thermoplastic resin whose melting temperature is 200 degreeC or more is a manufacturing method of the glass fiber reinforced resin pellet of Claim 3 or 4 which is liquid crystal polyester resin. 前記ガラス繊維束は、400℃に加熱した場合における強熱減量が0.10重量%以下である、請求項1〜5のいずれか一項に記載のガラス繊維強化樹脂ペレットの製造方法。   The said glass fiber bundle is a manufacturing method of the glass fiber reinforced resin pellet as described in any one of Claims 1-5 whose ignition loss when heated at 400 degreeC is 0.10 weight% or less. 請求項1〜6のいずれか一項に記載の製造方法によりガラス繊維強化樹脂ペレットを作製する工程と、
当該ガラス繊維強化樹脂ペレットを射出成形する工程と、
を含む成形品の製造方法。

A step of producing glass fiber reinforced resin pellets by the production method according to any one of claims 1 to 6,
A step of injection molding the glass fiber reinforced resin pellet;
A method for producing a molded article comprising:

JP2008070072A 2008-03-18 2008-03-18 Manufacturing method of glass fiber reinforced resin pellet Active JP5088188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070072A JP5088188B2 (en) 2008-03-18 2008-03-18 Manufacturing method of glass fiber reinforced resin pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070072A JP5088188B2 (en) 2008-03-18 2008-03-18 Manufacturing method of glass fiber reinforced resin pellet

Publications (2)

Publication Number Publication Date
JP2009221427A true JP2009221427A (en) 2009-10-01
JP5088188B2 JP5088188B2 (en) 2012-12-05

Family

ID=41238532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070072A Active JP5088188B2 (en) 2008-03-18 2008-03-18 Manufacturing method of glass fiber reinforced resin pellet

Country Status (1)

Country Link
JP (1) JP5088188B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539741A3 (en) * 2018-03-15 2019-11-20 Ricoh Company, Ltd. Resin particles, production method thereof, and application thereof for production of a three-dimensional object
WO2021029110A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Liquid-crystal polyester resin composition and molded object
JP2021028384A (en) * 2019-08-09 2021-02-25 住友化学株式会社 Liquid crystal polyester resin molded article, liquid crystal polyester resin pellet and production method of liquid crystal polyester resin pellet
CN114206579A (en) * 2019-08-09 2022-03-18 住友化学株式会社 Injection molded article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291214A (en) * 2003-07-30 2006-10-26 Mitsubishi Plastics Ind Ltd Injection-molded article, process for producing the same, and pellet used for injection molded article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291214A (en) * 2003-07-30 2006-10-26 Mitsubishi Plastics Ind Ltd Injection-molded article, process for producing the same, and pellet used for injection molded article

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3539741A3 (en) * 2018-03-15 2019-11-20 Ricoh Company, Ltd. Resin particles, production method thereof, and application thereof for production of a three-dimensional object
US11242436B2 (en) 2018-03-15 2022-02-08 Ricoh Company, Ltd. Resin particles, production method thereof, and application thereof for production of three-dimensional object
WO2021029110A1 (en) * 2019-08-09 2021-02-18 住友化学株式会社 Liquid-crystal polyester resin composition and molded object
JP2021028384A (en) * 2019-08-09 2021-02-25 住友化学株式会社 Liquid crystal polyester resin molded article, liquid crystal polyester resin pellet and production method of liquid crystal polyester resin pellet
CN114207026A (en) * 2019-08-09 2022-03-18 住友化学株式会社 Liquid crystal polyester resin molded article
CN114206995A (en) * 2019-08-09 2022-03-18 住友化学株式会社 Liquid crystal polyester resin composition and molded article
CN114206579A (en) * 2019-08-09 2022-03-18 住友化学株式会社 Injection molded article
EP4011949A4 (en) * 2019-08-09 2023-07-19 Sumitomo Chemical Company Limited Liquid crystal polyester resin molded body
CN114207026B (en) * 2019-08-09 2023-10-27 住友化学株式会社 Liquid crystal polyester resin molded body

Also Published As

Publication number Publication date
JP5088188B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP7156766B2 (en) Fiber-reinforced molding compound and method of forming and using same
JP2569380B2 (en) Fiber reinforced molded product
JP2009138143A (en) Method for recycling fiber-reinforced plastic
JP5088188B2 (en) Manufacturing method of glass fiber reinforced resin pellet
US6548167B1 (en) Continuous-strand pellets and method and device for preparing continuous-strand pellets
JP2010000654A (en) Method and equipment for manufacturing fiber-reinforced resin pellet
EP3195995B1 (en) Production method for fiber-reinforced thermoplastic resin composite material
CN113601808B (en) Preparation method of fiber-reinforced polyester composite material
JP3402935B2 (en) Phenolic resin composition for commutator molding of motor and method for pelletizing phenolic resin composition for commutator molding of motor
KR102309200B1 (en) Cleaning agent and cleaning method for molding machine cleaning
JP6353691B2 (en) Glass wool composite thermoplastic resin composition, method for producing the same, and molded product.
JP5161731B2 (en) Aliphatic polyester resin pellets and molded articles obtained by molding them
JPH04197726A (en) Manufacture of long fiber reinforced composite material
JP2952977B2 (en) Molding method of fiber reinforced resin
WO2012137575A1 (en) Device for producing pellet, and method for producing pellet
JP3256269B2 (en) Fiber chop manufacturing method
AU2019205991B1 (en) The twin-screw extrusion of long carbon fibre reinforced polylactic acid filaments for 3D printing
CN108727689A (en) A kind of production system and preparation method of long glass fiber-reinforced polypropylene materials
JP3437651B2 (en) Method for producing pellet-shaped long fiber reinforced resin structure
JP2688845B2 (en) Method and apparatus for producing glass fiber-containing resin composition
JP2000210933A (en) Resin-coated fiber bundle and its manufacture
JPH06254850A (en) Manufacture of filament reinforced synthetic resin strand
Jafrey Daniel James et al. Manufacturing Issues and Process Parameters of Composite Filament for Additive Manufacturing Process
JPS5920339A (en) Production of master pellet of glass fiber-reinforced polyester resin
JPH03230943A (en) Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250