JPH0461741B2 - - Google Patents

Info

Publication number
JPH0461741B2
JPH0461741B2 JP8366988A JP8366988A JPH0461741B2 JP H0461741 B2 JPH0461741 B2 JP H0461741B2 JP 8366988 A JP8366988 A JP 8366988A JP 8366988 A JP8366988 A JP 8366988A JP H0461741 B2 JPH0461741 B2 JP H0461741B2
Authority
JP
Japan
Prior art keywords
component
slab
molten metal
ladle
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8366988A
Other languages
Japanese (ja)
Other versions
JPH01258857A (en
Inventor
Masaaki Mori
Masaki Iwasaki
Mutsuto Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8366988A priority Critical patent/JPH01258857A/en
Publication of JPH01258857A publication Critical patent/JPH01258857A/en
Publication of JPH0461741B2 publication Critical patent/JPH0461741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/163Controlling or regulating processes or operations for cutting cast stock

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、溶融金属の連続鋳造において、異な
つた溶湯成分のレードルを継いで鋳造する場合の
成分外れ鋳片長さを決定する方法に関するもので
ある。 <従来の技術> 溶湯成分の異なつたレードルを継いで連続鋳造
を実施する場合、鋳片の品質保証及び連続歩留向
上の観点より、成分外れ鋳片長さを正確に把握
し、良鋳片から切断分離する鋳片長さを必要最小
限に抑えることが重要である。 <発明が解決しようとする課題> これに対し従来は、前述の成分範囲や操業条件
にかかわらず、レードル継ぎ目部において一律一
定長さの鋳片を良鋳片から切断分離するものが主
流であつた。この場合には実際の成分混合挙動に
適合しておらず、切断分離長の不足による良鋳片
での成分外れや切断分離長の超過による歩留りロ
スが生じると言う問題があつた。 このため特公昭61−16222号公報の提案におい
て、中間容器内溶湯重量及び鋳片引き抜き速度よ
り成分混合長を把握する方法が提案されている
が、これとて混合の影響代を予め定められた定数
で考慮するにとどまつており、さらには前後レー
ドル成分差については考慮しておらず、実際の成
分混合長を推定するモデルとしては精度的に十分
とは言えないという問題点があつた。 本発明は、溶湯の連続鋳造操業において成分の
異なるレードルを継いで鋳造する場合、鋳片の成
分混合挙動を精度良く把握し、成分外れ部位を良
鋳片より確実に切断分離することで、品質管理
上・操業管理上切断分離鋳片長さを必要最小限と
して歩留り向上を図る決定方法を提供することを
目的とする。 <課題を解決するための手段> 本発明は、中間容器に前チヤージの溶湯を残し
たまま、ひきつづき成分の異なる後チヤージの溶
湯を中間容器に供給して連続鋳造するに際し、中
間容器溶湯重量及び鋳片引き抜き速度を連続的に
測定してプロセスコンピユーターに入力し、該入
力とプロセスコンピユーターに予め与えられてい
る鋳片寸法とよりレードルから中間容器への注入
速度および中間容器からモールドへの注入速度を
連続的に算出し、前記測定値と算出値及び鋳片サ
イズと前後レードル成分値ならびに成分許容範囲
を計算機に入力し、該計算機にて成分混合モデル
に基いて成分混合シミユレーシヨンを行い、シミ
ユレーシヨン結果の鋳片成分値が前後チヤージの
溶湯成分範囲から外れる部位の長さを成分混合長
とすることを特徴とする連続鋳造における成分混
合長決定方法である。 本発明による成分混合長決定に用いる機器配置
の1例を第1図に示す。図において1はレード
ル、2は中間容器、3は中間容器重量測定装置、
4はモールド、5は鋳片引き抜きロール、6は引
き抜きロール用駆動モーター、7は鋳片引き抜き
モーター制御装置、8は鋳片切断装置、9は溶
湯、10は鋳片、11はプロセスコンピユーター
(以下プロコンと略する)、12はマイクロコンピ
ユーター(以下マイコンと略する)である。 本発明は、中間容器重量測定装置3及び鋳片引
き抜きモーター制御装置7の信号を逐次プロコン
11内でレードル1から中間容器2への注入速
度、中間容器2からモールド4への注入速度を連
続的に算出し、その結果と中間容器内溶湯重量、
鋳片引き抜き速度及び予め与えられているプロコ
ン11内の操業データ(鋳片サイズ、前後レード
ル内溶湯成分及びその成分許容範囲)をマイコン
12へ伝送し、マイコン12内で後述する成分混
合モデルに従つて成分混合シミユレーシヨンを実
施し、鋳片成分値が前後チヤージの溶湯成分範囲
から外れた部位の長さを成分混合長と決定する。
最終的にこの混合長を再度プロコン11を経由し
て鋳片切断装置8に伝送し、実際の成分混合長に
対し過不足無く成分外れ部を良鋳片から切断分離
するものである。 成分混合モデルとしては例えば第2図にすよう
に、中間容器2及びモールド4内を完全混合槽列
モデルで表現し、最終列槽からの流出溶湯成分
C4を鋳片成分とするモデル等が考えられる。 但し Gi:質量流量 (Kg/sec) Wi:槽内溶湯重量 (Kg) Ci:溶湯成分 (wt%)(i=1〜
4) しかして成分混合モデルの計算フローを第3図
により説明する。 前述した如くプロコン11より鋳造条件(鋳片
サイズ、前後レードルの溶湯成分及びその許容範
囲)、操業データ(中間容器内溶湯重量、鋳片引
き抜き速度とこれから算出されるレードル1から
中間容器2への及び中間容器2からモールド4へ
の注入速度)情報をもとにマイコン12で成分混
合シミユレーシヨンを行うが、先ず第一に次の(1)
式により成分範囲の無次元化を行う。 *=Cb−C*/Cb−Ca ………(1) 但し *:無次元化成分範囲 C*:成分範囲 C :成分値 添字 a:後レードル b:前レードル 次に無次元化成分範囲の最も厳しい混合ネツク
元素の判定を行う必要がある。前レードル成分範
囲については、(1)式において成分範囲C*に前レ
ードル成分範囲C* bを代入することで得られる前
レードル無次元化成分範囲* bの値が最も小さく
なる元素が混合ネツク元素となる。一方後レード
ル成分範囲についても同様にして後レードル無次
元化成分範囲* aを求め、* aの値が最も大きく
なる元素が混合ネツク元素となる。こうして得ら
れた混合ネツク元素の前後レードル無次元化成分
範囲* b* aをレードル交換部での成分範囲1
3,14とする。 次に初期条件設定を行うが、これは(1)式に従い
モールド4及び中間容器2内に残つている前レー
ドル溶湯無次元化成分をi=0とし、後レード
ル溶湯無次元化成分をi=1とする。さらに、
プロコン11より入力される初期中間容器2内残
湯量等の信号に従つて初期条件を設定する。 初期条件の設定が終了したら、一定時間経過後
の鋳造長さLを求める。次に中間容器2内のWi
iを中間容器2の容量の等しい3槽の直列完全
混合槽でモデル化し、前レードル成分から後レー
ドル成分へのステツプ的な成分変化に対応する中
間容器2出側での過渡応答を、次の(2),(3)式を用
いて逐次計算にて求める。 dwi/dt=Gi-1−Gi ………(2) dwiCi/dt=Gi-1 i-1−Gi i ………(3) 但し t:時間 (sec)i=1〜3 以上にて中間容器2内のWiiが求まつたので、
次のステツプでモールド4内のW44を完全混
合モデルとして(4)(5)(6)式にて求める。 W4=ρW∫H O h(T−2Ts)dh ………(4) Ts=K√′ ………(5) dW4C4/dt=G3 3−G4 4 ………(6) 但し ρ :溶湯密度(Kg/m3) w :鋳片幅 (m) h :モールド湯面からの深さ (m) H :浸漬ノズルからの溶湯噴流侵入深
さ (m) T :鋳片厚み (m) Ts:モールドシエル厚み (m) t′:注入後時間 (sec) これにてモールド4内の成分変化が計算でき
る。これら(2)、(3)、(4)、(6)式を連立前進差分法に
て微小時間(1秒)毎に解き 4* の条件成立で継ぎ目鋳片切断位置とする。 しかして前レードル溶湯に後レードル溶湯を混
合することで、徐々に成分が前レードル成分から
後レードル成分に変化して行く状態を前述の混合
モデルのシミユレーシヨンで正確に算出できるの
で、前レードル成分範囲から外れた鋳造部位から
後レードル成分範囲に入る鋳造部位までの鋳片長
を、マイコン12により成分混合長として決定す
るものである。そして決定された成分混合長をプ
ロコン11へ送信し、プロコン11から鋳片切断
装置8へ切断位置を指令し、成分混合長を正確に
切断除去する。 <実施例> 下記成分の中炭素鋼A(前レードル)と高炭素
鋼B(後レードル)を中間容器容量40Ton、T=
250mm、w=1200mmのモールドを用いて、鋳片引
き抜き速度を0.25〜1.0m/minの範囲で増減して
異鋼種連続鋳造を実施した。
<Industrial Field of Application> The present invention relates to a method for determining the length of a slab with different compositions when successively casting ladles of different molten metal compositions in continuous casting of molten metal. <Conventional technology> When continuous casting is performed using ladle with different molten metal composition, from the viewpoint of quality assurance of slabs and improvement of continuous yield, it is necessary to accurately grasp the length of slabs that are out of composition and to separate them from good slabs. It is important to keep the length of the slab to be cut and separated to the necessary minimum. <Problems to be Solved by the Invention> Conventionally, the mainstream method has been to uniformly cut and separate slabs of a certain length from good slabs at the ladle joint, regardless of the above-mentioned composition range or operating conditions. Ta. In this case, it does not match the actual component mixing behavior, and there is a problem that components may be removed in good slabs due to insufficient cutting separation length, or yield loss may occur due to excess cutting separation length. For this reason, Japanese Patent Publication No. 61-16222 proposes a method of determining the mixing length of the components from the weight of the molten metal in the intermediate vessel and the rate of slab withdrawal, but this method requires that the influence of mixing be determined in advance. The problem is that the model only takes constants into consideration, and does not take into account the difference between the front and rear ladle components, so it cannot be said to be accurate enough as a model for estimating the actual component mixing length. The present invention improves quality by accurately grasping the component mixing behavior of slabs and reliably cutting and separating areas where the components are out of proportion from good slabs when successively casting ladles with different compositions in continuous casting operations for molten metal. The purpose of this invention is to provide a method for determining the length of cut and separated slabs to improve yield by minimizing the length necessary for management and operational management. <Means for Solving the Problems> The present invention provides for continuous casting by continuously supplying post-charge molten metal with different composition to the intermediate container while leaving the pre-charge molten metal in the intermediate container. The slab drawing speed is continuously measured and input into the process computer, and based on this input and the slab dimensions given in advance to the process computer, the injection speed from the ladle to the intermediate vessel and the injection rate from the intermediate vessel to the mold are determined. The above measured values, calculated values, slab size, front and rear ladle component values, and component tolerance ranges are input into a computer, and the computer performs a component mixing simulation based on the component mixing model, and the simulation results are calculated. This is a method for determining a component mixing length in continuous casting, characterized in that the length of a portion where the slab component value deviates from the molten metal component range of front and rear charges is determined as the component mixing length. An example of the equipment arrangement used for component mixing length determination according to the present invention is shown in FIG. In the figure, 1 is a ladle, 2 is an intermediate container, 3 is an intermediate container weight measuring device,
4 is a mold, 5 is a slab drawing roll, 6 is a drive motor for the pulling roll, 7 is a slab pulling motor control device, 8 is a slab cutting device, 9 is a molten metal, 10 is a slab, 11 is a process computer (hereinafter referred to as 12 is a microcomputer (hereinafter abbreviated as microcomputer). In the present invention, the injection speed from the ladle 1 to the intermediate container 2 and the injection speed from the intermediate container 2 to the mold 4 are continuously controlled in the program controller 11 by sequentially transmitting signals from the intermediate container weight measuring device 3 and the slab drawing motor control device 7. Calculate the results and the weight of the molten metal in the intermediate container,
Slab drawing speed and pre-given operational data (slab size, molten metal composition in the front and rear ladles, and allowable range of the components) in the pro-computer 11 are transmitted to the microcomputer 12, and the microcomputer 12 processes the components according to the component mixing model described later. Then, a component mixing simulation is carried out, and the length of the part where the slab component value is out of the molten metal component range of front and rear charges is determined as the component mixing length.
Finally, this mixing length is again transmitted to the slab cutting device 8 via the processor 11, and the portions where the components are removed are cut and separated from the good slabs in an amount equal to or less than the actual component mixing length. As a component mixing model, for example, as shown in Figure 2, the interior of the intermediate container 2 and the mold 4 is represented by a complete mixing tank row model, and the molten metal components flowing out from the final row tank are
A model that uses C4 as the slab component can be considered. However, Gi: Mass flow rate (Kg/sec) Wi: Weight of molten metal in tank (Kg) Ci: Molten metal component (wt%) (i=1~
4) The calculation flow of the component mixture model will now be explained with reference to FIG. As mentioned above, the casting conditions (slab size, molten metal composition of the front and rear ladles, and their allowable ranges), operational data (molten metal weight in the intermediate vessel, slab withdrawal speed, and the calculated flow rate from the ladle 1 to the intermediate vessel 2) are determined by the process controller 11 as described above. and the injection speed from the intermediate container 2 to the mold 4), the microcomputer 12 performs a component mixing simulation based on the information, but first of all, the following (1)
The component range is made dimensionless using the formula. * =C b −C * /C b −C a ………(1) However, * : Nondimensional component range C * : Component range C: Component value Subscript a: Back ladle b: Front ladle Next, dimensionless It is necessary to judge the mixed neck element with the strictest component range. Regarding the front ladle component range, the element with the smallest value of the front ladle dimensionless component range * b obtained by substituting the front ladle component range C * b for the component range C * in equation (1) is the mixed network. Becomes an element. On the other hand, for the rear ladle component range, the rear ladle dimensionless component range * a is determined in the same way, and the element with the largest value of * a becomes the mixed neck element. The component range of the mixed neck element obtained in this way before and after the ladle dimensionless component range * b , * a is calculated as the component range 1 at the ladle exchange part.
3.14. Next, initial conditions are set, according to equation (1), where the dimensionless component of the molten metal in the front ladle remaining in the mold 4 and intermediate container 2 is set to i = 0, and the dimensionless component of the molten metal in the back ladle is set to i = 0. Set to 1. moreover,
Initial conditions are set according to signals such as the amount of hot water remaining in the initial intermediate container 2 inputted from the processor 11. After setting the initial conditions, the casting length L after a certain period of time is determined. Next, W i in the intermediate container 2,
C i is modeled using three complete mixing tanks in series with the same capacity of the intermediate container 2, and the transient response at the outlet side of the intermediate container 2 corresponding to a stepwise change in component from the front ladle component to the rear ladle component is expressed as follows. It is obtained by sequential calculation using equations (2) and (3). dw i /dt=G i-1 −G i ………(2) dw i C i /dt=G i-1 i-1 −G i i ………(3) where t: time (sec) i =1~3 Since W i and i in the intermediate container 2 have been found above,
In the next step, W 4 and 4 in the mold 4 are determined using equations (4), (5), and (6) as a complete mixture model. W 4 =ρW∫ H O h(T−2T s )dh ………(4) T s =K√′ ………(5) dW 4 C 4 /dt=G 3 3 −G 4 4 ……… (6) However, ρ: Molten metal density (Kg/ m3 ) w: Slab width (m) h: Depth from the mold surface (m) H: Penetration depth of the molten metal jet from the immersion nozzle (m) T: Slab thickness (m) Ts : Mold shell thickness (m) t': Time after injection (sec) From this, the change in the components inside the mold 4 can be calculated. These equations (2), (3), (4), and (6) are solved every minute time (1 second) using the simultaneous forward difference method, and the joint slab cutting position is determined when the condition 4 = * is satisfied. By mixing the molten metal from the front ladle and the molten metal from the rear ladle, it is possible to accurately calculate the state in which the components gradually change from the front ladle component to the rear ladle component using the simulation of the mixing model described above. The microcomputer 12 determines the length of the slab from the casting area outside the range to the casting area falling within the rear ladle component range as the component mixing length. The determined component mixing length is then transmitted to the processor 11, and the processor 11 instructs the cutting position to the slab cutting device 8 to accurately cut and remove the component mixture length. <Example> Medium carbon steel A (front ladle) and high carbon steel B (rear ladle) having the following components were placed in an intermediate container with a capacity of 40 tons, T=
Using a mold of 250 mm and w=1200 mm, continuous casting of different steel types was carried out by increasing and decreasing the slab drawing speed in the range of 0.25 to 1.0 m/min.

【表】 本例では炭素の成分混合が継ぎ目片での成分成
分外れの要因となつている。 鋳造パターンを第4b図に示すが、前レードル
終了時の40Tonから図中30で示す中間容器内溶
湯量を3Tonまで絞つた後に、後レードルの溶湯
を中間容器内に注入開始した場合の例であり、そ
の際図中31で示す鋳造速度は、1m/minから
0.25m/minまで落とし、後レードル溶湯注入開
始後15秒間に0.25m/minのピツチで上昇させ、
1.0m/minまで増速したものである。これらの鋳
造条件を前掲第1図の中間容器重量測定装置3、
鋳片引き抜きモーター制御装置7の信号として連
続的に入力し、マイコン12内で前記(1)〜(6)の計
算式及び第3図の計算フローに基づき、1秒間隔
で成分混合シミユレーシヨンを実施し、その結果
を第4a図に示す。図中13,14はそれぞれ
前、後レードル溶湯の炭素量合格範囲を示し、1
5は鋳片の板厚中心部における炭素シミユレーシ
ヨン値、16は鋳片表層部における炭素シミユレ
ーシヨン値を示すが、黒丸17及び白丸18で示
すそれぞれ板厚中心部及び表層部の実分析値と良
く一致している。このシミユレーシヨン結果をも
とに、前レードル成分外れ位置22、後レードル
成分外れ位置23間の鋳造長(図中19+20)を成
分混合長と決定し、鋳片切断装置8に指令して切
断分離させた。 第5図は、本発明による成分混合長決定法を鉄
鋼スラブ連続鋳造機に適用し、切断分離した鋳片
長と鋳片の成分分析により求まる前後レードル成
分範囲から外れた実成分混合長を比較した図の例
である。従来は一定鋳片長を切断分離していたた
め、切断部位は水平線として表現され、切断鋳片
長が不足し良鋳片の成分が外れる場合や、逆に切
断鋳片長が必要以上に長く鋳造歩留りを悪化させ
ている場合があつたことを示す。一方、本発明に
よる成分混合長決定法にて切断分離した場合は、
図中右上がりの実線で表され、明らかに実成分混
合長を下回ることなく、ほぼ等しい鋳片長で切断
できるようになつた。 <発明の効果> 以上の如く本発明によれば、異鋼種の連続鋳造
において、前後レードル成分不合格鋳片部位すな
わち成分混合長が正確に決定できるため、成分混
合鋳片における切断分離鋳片長が実成分混合長を
下回るあるいは上回ることなく、ほぼ等しい鋳片
長で切断できることとなつた。この結果、成分混
合鋳片に隣接する良鋳片における成分外れを皆無
になしうるとともに、良鋳片を余分に切断する恐
れも解消でき、鋳片歩留りおよび品質の向上にす
ぐれた効果を奏するものである。
[Table] In this example, the mixing of carbon components is the cause of the components coming off at the joint piece. The casting pattern is shown in Figure 4b, which is an example in which the amount of molten metal in the intermediate container, indicated by 30 in the figure, is reduced from 40 tons at the end of the front ladle to 3 tons, and then the molten metal in the rear ladle is started to be poured into the intermediate container. In this case, the casting speed indicated by 31 in the figure is from 1m/min.
The flow rate was lowered to 0.25m/min, and raised at a pitch of 0.25m/min for 15 seconds after the start of ladle injection of molten metal.
The speed has been increased to 1.0m/min. These casting conditions were determined using the intermediate container weight measuring device 3 shown in Fig. 1 above.
It is continuously input as a signal to the slab drawing motor control device 7, and component mixing simulation is performed at 1 second intervals in the microcomputer 12 based on the calculation formulas (1) to (6) above and the calculation flow shown in Fig. 3. The results are shown in Figure 4a. In the figure, 13 and 14 indicate the carbon content acceptance range of the front and rear ladle molten metal, respectively, and 1
5 indicates the carbon simulation value at the center of the thickness of the slab, and 16 indicates the carbon simulation value at the surface layer of the slab, which is in good agreement with the actual analysis values of the center of the thickness and the surface layer, respectively, shown by black circles 17 and white circles 18. We are doing so. Based on this simulation result, the casting length between the front ladle component disconnection position 22 and the rear ladle component disconnection position 23 (19+20 in the figure) is determined to be the component mixing length, and the slab cutting device 8 is instructed to cut and separate the slab. Ta. Figure 5 shows a comparison between the length of cut and separated slabs and the actual mixing length of components outside the front and rear ladle component range determined by component analysis of slabs, by applying the component mixing length determination method according to the present invention to a continuous steel slab casting machine. This is an example of a diagram. Conventionally, slabs were cut and separated at a constant length, so the cut area was expressed as a horizontal line, which could lead to cases where the length of the slab to be cut was insufficient and components of good slabs were removed, or conversely, the length of the slab to be cut was longer than necessary, worsening the casting yield. This indicates that there were cases where the On the other hand, when the component mixing length determination method according to the present invention is used for cutting and separation,
This is shown by the solid line rising to the right in the figure, and it is clear that the slab can now be cut at approximately the same length without falling short of the actual component mixing length. <Effects of the Invention> As described above, according to the present invention, in continuous casting of different steel types, the rejected slab part of the front and rear ladle components, that is, the component mixing length, can be accurately determined, so that the length of the cut and separated slab in the component mixed slab can be determined. It became possible to cut the slab to approximately the same length without being shorter than or exceeding the actual component mixing length. As a result, it is possible to completely eliminate component deviations in good slabs adjacent to component-mixed slabs, and also to eliminate the risk of unnecessary cutting of good slabs, which has an excellent effect on improving slab yield and quality. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による成分混合長決定に用いる
機器配置の一例を示す説明図、第2図は本発明に
おける成分混合シミユレーシヨンモデル化の一例
を示す説明図、第3図は成分混合モデル計算のフ
ロー図、第4a図は本発明実施例における成分混
合モデルによるシミユレーシヨン結果と実分析値
及び成分混合長の決定を示すグラフ、第4b図は
その鋳造条件を示すグラフ、第5図は本発明法と
従来法による成分混合長決定精度を比較したグラ
フである。 1…レードル、2…中間容器、3…中間容器重
量測定装置、4…モールド、5…鋳片引き抜きロ
ール、6…モーター、7…鋳片引き抜きモーター
制御装置、8…鋳片切断装置、9…溶湯、10…
鋳片、11…プロセスコンピユーター、12…マ
イクロコンピユーター、13…前レードル成分範
囲、14…後レードル成分範囲、15…鋳片中心
成分シミユレーシヨン結果、16…鋳片表層成分
シミユレーシヨン結果、17…鋳片中心分析値、
18…鋳片表層分析値、19…前レードル側成分
混合長、20…後レードル側成分混合長、21…
実継ぎ目相当位置、22…前レードル成分外れ位
置、23…後レードル成分外れ位置、30…中間
容器内溶湯、31…鋳造速度。
FIG. 1 is an explanatory diagram showing an example of the equipment arrangement used for component mixing length determination according to the present invention, FIG. 2 is an explanatory diagram showing an example of component mixing simulation modeling according to the present invention, and FIG. Figure 4a is a flowchart of model calculation. Figure 4a is a graph showing the simulation results, actual analysis values, and determination of component mixing length using the component mixing model in the embodiment of the present invention. Figure 4b is a graph showing the casting conditions. It is a graph comparing the component mixing length determination accuracy between the method of the present invention and the conventional method. DESCRIPTION OF SYMBOLS 1... Ladle, 2... Intermediate container, 3... Intermediate container weight measuring device, 4... Mold, 5... Slab drawing roll, 6... Motor, 7... Slab drawing motor control device, 8... Slab cutting device, 9... Molten metal, 10...
Slab, 11... Process computer, 12... Microcomputer, 13... Front ladle component range, 14... Rear ladle component range, 15... Slab center component simulation result, 16... Slab surface layer component simulation result, 17... Slab center analysis value,
18... Slab surface layer analysis value, 19... Front ladle side component mixing length, 20... Back ladle side component mixing length, 21...
Position corresponding to the actual seam, 22... Position where the front ladle component has come off, 23... Position where the rear ladle component has come off, 30... Molten metal in the intermediate container, 31... Casting speed.

Claims (1)

【特許請求の範囲】[Claims] 1 中間容器に前チヤージの溶湯を残したまま、
ひきつづき成分の異なる後チヤージの溶湯を中間
容器に供給して連続鋳造するに際し、中間容器内
溶湯重量及び鋳片引き抜き速度を連続的に測定し
てプロセスコンピユーターに入力し、該入力とプ
ロセスコンピユーターに予め与えられている鋳造
寸法とよりレードルから中間容器への注入速度お
よび中間容器からモールドへの注入速度を連続的
に算出し、前記測定値と算出値及び鋳片サイズと
前後レードル成分値ならびに成分許容範囲を計算
機に入力し、該計算機にて成分混合モデルに基い
て成分混合シミユレーシヨンを行い、シミユレー
シヨン結果の鋳片成分値が前後チヤージの溶湯成
分範囲から外れる部位の長さを成分混合長とする
ことを特徴とする連続鋳造における成分混合長決
定方法。
1 While leaving the molten metal from the previous charge in the intermediate container,
When the post-charge molten metal with different composition is continuously supplied to the intermediate container for continuous casting, the weight of the molten metal in the intermediate container and the slab withdrawal speed are continuously measured and input into the process computer, and the input and the process computer are pre-recorded. Continuously calculate the injection speed from the ladle to the intermediate container and from the intermediate container to the mold based on the given casting dimensions, and calculate the measured values, calculated values, slab size, front and rear ladle component values, and component tolerance. Input the range into a computer, perform a component mixing simulation on the computer based on the component mixing model, and use the length of the part where the slab component value of the simulation result deviates from the molten metal component range of front and rear charges as the component mixing length. A method for determining component mixing length in continuous casting, characterized by:
JP8366988A 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting Granted JPH01258857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8366988A JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8366988A JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Publications (2)

Publication Number Publication Date
JPH01258857A JPH01258857A (en) 1989-10-16
JPH0461741B2 true JPH0461741B2 (en) 1992-10-01

Family

ID=13808880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8366988A Granted JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Country Status (1)

Country Link
JP (1) JPH01258857A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4692045B2 (en) * 2005-03-31 2011-06-01 Jfeスチール株式会社 Thick steel plate manufacturing method
ES2445466B1 (en) * 2012-08-31 2014-09-30 Gerdau Investigacion Y Desarrollo Europa, S.A. OPTIMIZATION PROCEDURE FOR MIXING LEVER CUTTING LENGTH IN SEQUENTIAL COLORS OF STEELS OF DIFFERENT QUALITY.
KR101485913B1 (en) * 2013-12-23 2015-01-26 주식회사 포스코 Method for continuous casting of mixed grade
CN110744024B (en) * 2018-07-24 2021-06-15 宝山钢铁股份有限公司 Automatic re-inspection system and method for length of continuous casting billet
CN111531143A (en) * 2020-05-29 2020-08-14 山东莱钢永锋钢铁有限公司 Continuous casting machine system

Also Published As

Publication number Publication date
JPH01258857A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
CN113195746B (en) Method and device for estimating residual slag quantity in furnace
JPH0461741B2 (en)
GB1502186A (en) Method and device for controlling a casting machine
EP0052514B1 (en) A method and apparatus for controlling the centrifugal casting of a metal pipe
JP4549201B2 (en) Continuous casting method of different steel types
US4774999A (en) Process for automatic control of the startup of a continuous casting apparatus
US4036280A (en) Method of starting the casting of a strand in a continuous casting installation
JP3105119B2 (en) Ladle exchange method in continuous casting equipment
US5082044A (en) Method and apparatus for controlling the composition of a molten metal bath
KR100419886B1 (en) Prediction method of the steel component during mixed grade continuous casting
JPH09262653A (en) Method for estimating surface layer thickness of plural layer cast slab
JPH07314105A (en) Method for automatically charging mold powder at start of pouring molten steel and device thereof
KR950007169B1 (en) A component estimate method of different kind steel mixing slab
JPS589757A (en) Controlling method for charging of molten steel in continuous casting
JPS626747A (en) Method for cutting steel ingot
RU2204460C2 (en) Method for continuous casting of steel
JP3201930B2 (en) Casting condition control method in low pressure casting
KR102210201B1 (en) Method for continuous casting
JP2520191B2 (en) Blowing control method for oxygen steelmaking furnace
JP3145258B2 (en) Processing of molten steel
JPH021590B2 (en)
JP2002035910A (en) Method of completing pouring of residual molten steel in tundish in continuous casting
JPS61226157A (en) Method for continuous casting of molten metal
CN115673268A (en) Method for producing automobile outer plate by using head furnace
JPH06234052A (en) Auto-start controller for continuous casting equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees