JPH01258857A - Method for deciding length of component mixture in continuous casting - Google Patents

Method for deciding length of component mixture in continuous casting

Info

Publication number
JPH01258857A
JPH01258857A JP8366988A JP8366988A JPH01258857A JP H01258857 A JPH01258857 A JP H01258857A JP 8366988 A JP8366988 A JP 8366988A JP 8366988 A JP8366988 A JP 8366988A JP H01258857 A JPH01258857 A JP H01258857A
Authority
JP
Japan
Prior art keywords
component
length
molten metal
slab
cast slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8366988A
Other languages
Japanese (ja)
Other versions
JPH0461741B2 (en
Inventor
Masaaki Mori
正晃 森
Masaki Iwasaki
正樹 岩崎
Mutsuto Tanaka
睦人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8366988A priority Critical patent/JPH01258857A/en
Publication of JPH01258857A publication Critical patent/JPH01258857A/en
Publication of JPH0461741B2 publication Critical patent/JPH0461741B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/163Controlling or regulating processes or operations for cutting cast stock

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To grasp with a favourable accuracy the behavior of component mixture in a cast slab by simulating the components mixture based on molten metal wt. in an intermediate vessel, drawing speed of the cast slab and component values in ladles at previous and the successive heats, etc. CONSTITUTION:At the time of supplying the molten metal in the successive heat having different component into the intermediate vessel 2 remaining the molten metal in the previous heat, the signals of the intermediate vessel wt. measuring instrument 3 and the cast slab drawing control device 7 are transmitted with the lapse of time to a process computer 11 and pouring speed into the intermediate vessel 2 and pouring speed into a mold 4 from the intermediate vessel 2 are continuously calculated. These results, the molten metal wt. in the intermediate vessel, the cast slab drawing speed, and the pre-given data are transmitted into a microcomputer 12 and the simulation of the component mixture is executed in accordance with the component mixing model. The length at position, where the component values in the cast slab is out of the component ranges in the molten metals at the previous and the successive heats, is decided to the component mixing length. This mixing length is transmitted to cast slab cutting device 8. By this method, the part of out of the component can be cut and separated from the good cast slab at the right length.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、溶融金属の連続鋳造において、異なった溶湯
成分のレードルを継いで鋳造する場合の成分外れ鋳片長
さを決定する方法に関するものである。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to a method for determining the length of a cast slab that loses its composition when successively casting ladles of different molten metal compositions in continuous casting of molten metal. be.

〈従来の技術〉 溶湯成分の異なったし一ドルを継いで連続鋳造を実施す
る場合、鋳片の品質保証及び鋳造歩留向上の観点より、
成分外れ鋳片長さを正確に把握し、良鋳片から切断分離
する鋳片長さを必要最小限に抑えることが重要である。
<Conventional technology> When continuous casting is carried out with successive batches of different molten metal compositions, from the viewpoint of quality assurance of slabs and improvement of casting yield,
It is important to accurately determine the length of the slab that has lost its components and to minimize the length of the slab that is cut and separated from the good slab.

〈発明が解決しようとする課題〉 これに対し従来は、前述の成分範囲や操業条件にかかわ
らず、レ一ドル継ぎ口部において一律一定長さの鋳片を
良鋳片から切断分離するものが主流であった。この場合
には実際の成分混合挙動に適合しておらず、切断分離長
の不足による良鋳片での成分外れや切断分離長の超過に
よる歩留りロスが生じると言う問題があった。
<Problems to be Solved by the Invention> In contrast, conventional methods uniformly cut and separate slabs of a certain length from good slabs at the ladle joint, regardless of the above-mentioned composition range or operating conditions. It was mainstream. In this case, it does not match the actual component mixing behavior, and there is a problem that components are removed in good slabs due to insufficient cutting separation length, and yield loss occurs due to excess cutting separation length.

このため特公昭61−16222号公報の提案において
、中間容器内溶湯重量及び鋳片引き抜き速度より成分混
合長を把握する方法が提案されているが、これとて混合
の影響化を予め定められた定数で考慮するにとどまって
おり、さらには前後し一ドル成分差については考慮して
おらず、実際の成分混合長を推定するモデルとしては精
度的に十分とは言えないという問題点があった。
For this reason, Japanese Patent Publication No. 61-16222 proposes a method of grasping the mixing length of the components from the weight of the molten metal in the intermediate vessel and the rate of withdrawal of the slab, but this method requires that the influence of mixing is determined in advance. The problem was that it was only considered as a constant, and furthermore, it did not take into account the one-dollar component difference before and after, so it could not be said to be accurate enough as a model to estimate the actual component mixing length. .

本発明は、溶湯の連続鋳造操業において成分の異なるレ
ードルを継いで鋳造する場合、鋳片の成分混合挙動を精
度良く把握し、成分外れ部位を良鋳片より確実に切断分
離することで、品質管理上・操業管理上切断分離鋳片長
さを必要最小限として歩留り向上を図る決定方法を提供
することを00勺とする。
The present invention improves quality by accurately grasping the component mixing behavior of slabs and reliably cutting and separating areas where the components are out of proportion from good slabs when successively casting ladles with different compositions in continuous casting operations for molten metal. Our objective is to provide a method for determining the length of cut and separated slabs to improve yield by minimizing the length required for management and operational management.

く課題を解決するための手段〉 本発明は、中間容器に前チャージの溶湯を残したまま、
ひきつづき成分の異なる後チャージの溶湯を中間容器に
供給して連続鋳造するに際し、中間容器溶湯重量及び鋳
片引き抜き速度を連続的に測定してプロセスコンピュー
ターに入力し、該入力とプロセスコンピューターに予め
与えられている鋳片寸法とよりレードルから中間容器へ
の注入速度および中間容器からモールドへの注入速度を
連続的に算出し、前記測定値と算出値及び鋳片サイズと
前後し一ドル成分値ならびに成分許容範囲を計算機に入
力し、該計算機にて成分混合モデルに基いて成分混合シ
ミュレーションを行い、シミュレーション結果の鋳片成
分値が前後チャージの溶湯成分範囲から外れる部位の長
さを成分混合長とすることを特徴とする連続鋳造におけ
る成分混合長決定方法である。
Means for Solving the Problems〉 The present invention provides for the following:
When continuously casting post-charged molten metal with different compositions to the intermediate container, the weight of the molten metal in the intermediate container and the slab withdrawal speed are continuously measured and input into the process computer, and the input and the process computer are provided in advance. The injection speed from the ladle to the intermediate container and the injection speed from the intermediate container to the mold are continuously calculated based on the slab size and the injection speed from the intermediate container to the mold. Input the allowable range of components into a computer, perform a component mixing simulation based on the component mixing model using the computer, and calculate the length of the part where the slab component value in the simulation result deviates from the molten metal component range of the front and rear charges as the component mixing length. This is a method for determining a component mixing length in continuous casting, which is characterized by:

本発明による成分混合モデルに用いる機器配置の1例を
第1図に示す。図において1はし一ドル、2は中間容器
、3は中間容器重量測定装置、4はモールド、5は鋳片
引き抜きロール、6は引き抜きロール用駆動モーター、
7は鋳片引き抜きモーター制御装置、8は鋳片切断装置
、9は溶湯、 10は鋳片、11はプロセスコンピュー
ター(以下プロコンと略する)、12はマイクロコンピ
ュータ−(以下マイコンと略する)である。
An example of the equipment arrangement used in the component mixing model according to the present invention is shown in FIG. In the figure, 1 is a dollar, 2 is an intermediate container, 3 is an intermediate container weight measuring device, 4 is a mold, 5 is a slab drawing roll, 6 is a driving motor for the drawing roll,
7 is a slab drawing motor control device, 8 is a slab cutting device, 9 is a molten metal, 10 is a slab, 11 is a process computer (hereinafter abbreviated as a pro-computer), and 12 is a microcomputer (hereinafter abbreviated as a microcomputer). be.

本発明は、中間容器重量測定装置3及び鋳片引き抜きモ
ーター制御装置7の信号を逐次プロコン11内でレード
ル1から中間容器2への注入速度、中間容器2からモー
ルド4への注入速度を連続的に算出し、その結果と中間
容器内溶湯重量、鋳片引き抜き速度及び予め与えられて
いるプロコンll内の操業データ(鋳片サイズ、前後し
一ドル内溶湯成分及びその成分許容範囲)をマイコン1
2へ伝送し、マイコン12内で後述する成分混合モデル
に従って成分混合シミュレーションを実施し、鋳片成分
値が前後チャージの溶湯成分範囲から外れた部位の長さ
を成分混合長と決定する。最終的にこの混合長を再度プ
ロコン11を経由して鋳片切断装置8に伝送し、実際の
成分混合長に対し過不足無く成分外れ部を良鋳片から切
断分離するものである。
In the present invention, the injection speed from the ladle 1 to the intermediate container 2 and the injection speed from the intermediate container 2 to the mold 4 are continuously controlled in the program controller 11 by sequentially transmitting signals from the intermediate container weight measuring device 3 and the slab drawing motor control device 7. The microcomputer 1 calculates the results, the weight of the molten metal in the intermediate vessel, the slab withdrawal speed, and the operational data given in advance in the program controller (slab size, molten metal composition within one dollar before and after, and its component tolerance range).
2, a component mixing simulation is carried out in the microcomputer 12 according to a component mixing model to be described later, and the length of the portion where the slab component value is out of the molten metal component range of the front and rear charges is determined as the component mixing length. Finally, this mixing length is again transmitted to the slab cutting device 8 via the processor 11, and the portions where the components are removed are cut and separated from the good slabs in an amount equal to or less than the actual component mixing length.

成分混合モデルとしては例えば第2図に示すように、中
間容器2及びモールド4内を完全混合槽列モデルで表現
し、最終列槽からの流出溶湯成分C4を鋳片成分とする
モデル等が考えられる。
As a component mixing model, for example, as shown in Fig. 2, there is a model in which the interior of the intermediate vessel 2 and mold 4 is represented by a complete mixing tank row model, and the molten metal component C4 flowing out from the final row tank is the slab component. It will be done.

但し 0皿二質量流量 (kg/5ec)WI:槽内溶
湯重量 (kg) CI:溶湯成分   (胃tk)  (i−1〜4)し
かして成分混合モデルの計算フローを343図により説
明する。
However, 0 plate 2 mass flow rate (kg/5ec) WI: Weight of molten metal in tank (kg) CI: Molten metal component (stomach tk) (i-1 to 4) The calculation flow of the component mixing model will be explained with reference to Fig. 343.

前述した如くプロコン11より鋳造条件(鋳片サイズ、
前後レードルの溶湯成分及びその許容範囲)、操業デー
タ(中間容器内溶湯重量、鋳片引き抜き速度とこれから
算出されるし一ドル1から中間容器2への及び中間容器
2からモールド4への注入速度)情報をもとにマイコン
12で成分混合シミュレーションを行うが、先ず第一に
次の(1)式により成分範囲の無次元化を行う。
As mentioned above, the casting conditions (slab size,
molten metal composition in the front and rear ladles and its allowable range), operational data (molten metal weight in the intermediate vessel, slab withdrawal speed, and injection rate calculated from this from one dollar to the intermediate vessel 2 and from the intermediate vessel 2 to the mold 4) ) Based on the information, the microcomputer 12 performs a component mixing simulation, but first of all, the component range is made dimensionless using the following equation (1).

但し C′ :無次元化成分範囲 C“ :成分範囲 C:成分値 添字 a:後し一ドル b:前し一ドル 次に無次元化成分範囲の最も厳しい混合ネック元素の判
定を行う必要がある。前し一ドル成分範囲については、
(1)式において成分範囲C“に前レードル成分範囲C
″bを代入することで得られる前し一ドル無次元化成分
範囲C″bの値が最も小さくなる元素が混合ネック元素
となる。一方後し一ドル成分範囲についても同様にして
後し一ドル無次元゛化成分範囲C″、を求め、C″1の
値が最も大きくなる元素が混合ネック元素となる。こう
して得られた混合ネック元素の前後し一ドル無次元化成
分範囲C″bz C″1をレードル交換部での成分範囲
13.14とする。
However, C': Non-dimensional component range C": Component range C: Component value subscript a: Last dollar b: First dollar Next, it is necessary to judge the most severe mixing neck element in the dimensionless component range. There is.For the previous one dollar component range,
In formula (1), the component range C" is replaced by the component range C"
The element for which the value of the front dollar dimensionless component range C''b obtained by substituting ``b'' is the smallest becomes the mixing neck element. On the other hand, for the subsequent one-dollar component range, the subsequent one-dollar dimensionless component range C'' is obtained, and the element with the largest value of C''1 becomes the mixing neck element. The component range C″bz C″1 of the mixed neck element obtained in this manner is defined as the component range 13.14 at the ladle exchange section.

次に初期条件設定を行うが、これは(1)式に従いモー
ルド4及び中間容器2内に残っている前レードル溶湯無
次元化成分をC,xQとし、後し一ドル溶湯無次元化成
分をC,=1とする。ざらに、プロコン11より入力さ
れる初期中間容器2内残湯量等の信号に従って初期条件
を設定する。
Next, initial conditions are set. According to equation (1), the non-dimensional components of the previous ladle molten metal remaining in the mold 4 and the intermediate container 2 are set as C, xQ, and the non-dimensional components of the ladle molten metal are Let C,=1. Roughly speaking, initial conditions are set according to signals such as the amount of hot water remaining in the initial intermediate container 2 inputted from the processor 11.

初期条件の設定が終了したら、一定時間経過後の鋳造長
さしを求める。次に中間容器2内のW、、Cムを中間容
器2を容量の等しい3槽の直列完全混合槽でモデル化し
、前レードル成分から後し一ドル成分へのステップ的な
成分変化に対応する中間容器2出側での過渡応答を、次
の(2)  (3)式を用いて逐次計算にて求める。
Once the initial conditions have been set, the casting length after a certain period of time is determined. Next, the intermediate container 2 is modeled as three complete mixing tanks of equal capacity in series, and the stepwise change in composition from the front ladle component to the rear ladle component is handled. The transient response at the outlet side of the intermediate container 2 is calculated sequentially using the following equations (2) and (3).

但し  t:時間 (sec)  i = 1〜3以上
にて中間容器2内のW、、C,が求まったので、次のス
テップでモールド4内のw4.E。
However, t: time (sec) Since W,, C, in the intermediate container 2 have been determined at i = 1 to 3 or more, in the next step, w4. in the mold 4 is determined. E.

を完全混合モデルとして(4)  (5)  (6)式
にて求める。
is calculated using equations (4), (5), and (6) as a complete mixture model.

W4−ρW  j:h (T−2T、)dh   ・・
・・・・・・・・・・   (4)T、−にR制・・・
・・制・・町・・ (5)但し  ρ :溶湯密度(k
g/m’)W :鋳片幅         (爪)h 
:モールド湯面からの深さ  (1)H:浸漬ノズルか
らの溶湯噴流 侵入深さ         (■) T :鋳片厚み         (m)T、:モール
ドシェル厚み    (II)t′:法人後時間   
    (sec)これにてモールド4内の成分変化が
計算できる。
W4-ρW j:h (T-2T,)dh...
・・・・・・・・・・・・ (4) R system for T and -...
...System...Town... (5) However, ρ: Molten metal density (k
g/m') W: Slab width (jaw) h
: Depth from the mold surface (1) H: Penetration depth of the molten metal jet from the immersion nozzle (■) T: Slab thickness (m) T,: Mold shell thickness (II) t': Time after corporation
(sec) With this, the component change inside the mold 4 can be calculated.

これら(2) 、(3) 、(4) 、(6)式を連立
前進差分法にて微小時間(1秒)毎に解き C4−c’ の条件成立で継ぎ目鋳片切断位置とする。
These equations (2), (3), (4), and (6) are solved every minute time (1 second) using the simultaneous forward difference method, and the joint slab cutting position is determined when the condition C4-c' is satisfied.

しかして前し一ドル溶湯に後し一ドル溶湯を混合するこ
とで、徐々に成分が前レードル成分から後レードル成分
に変化して行く状態を前述の混合モデルのシミュレーシ
ョンで正確に算出できるので、前レードル成分範囲から
外れた鋳造部位から後レードル成分範囲に入る鋳造1位
までの鋳片長を、マイコン12により成分混合長として
決定するものである。そして決定された成分混合長をプ
ロコン11へ送信し、プロコン11から鋳片切断装置8
へ切断位置を指令し、成分混合長を正確に切断除去する
However, by mixing the 1 dollar molten metal in the front and the 1 dollar molten metal in the back, the state in which the components gradually change from the front ladle component to the rear ladle component can be accurately calculated using the mixing model simulation described above. The microcomputer 12 determines the length of the slab from the casting position outside the front ladle component range to the first casting position within the rear ladle component range as the component mixing length. Then, the determined component mixing length is sent to the pro-controller 11, and from the pro-controller 11 to the slab cutting device 8.
Command the cutting position to accurately cut and remove the component mixture length.

〈実施例〉 下記成分の中炭素鋼A(前し一ドル)と高炭素t14B
(後レードル)を中間容器容量40Ton、T =25
0ma+ w = 1200mmのモールドを用いて、
鋳片引き抜き速度を0.25〜1.0m/+Inの範囲
で増減して異鋼種連続鋳造を実施した。
<Example> Medium carbon steel A (previously 1 dollar) and high carbon t14B with the following components
(rear ladle) intermediate container capacity 40Ton, T = 25
Using a mold of 0ma + w = 1200mm,
Continuous casting of different steel types was carried out by increasing and decreasing the slab drawing speed in the range of 0.25 to 1.0 m/+In.

本例では炭素の成分混合が継ぎ口片での成分成分外れの
要因となっている。
In this example, the mixing of carbon components is the cause of the components coming off the splice piece.

鋳造パターンを第4b図に示すが、前レードル終了時の
407onから図中30で示す中間容器内溶湯量を3 
Tonまで絞った後に、後レードルの溶湯を中間容器内
に注入開始した場合の例であり、その際図中31で示す
鋳造速度は、1 m/lll1nから0.25m/rr
r i nまで落とし、後し一ドル溶湯注入開始後15
秒間に0.25m/ll1inのピッチで上昇させ、1
.On+/sinまで増速したものである。これらの鋳
造条件を前掲第1図の中間容器重量測定装置3、鋳片引
き抜きモーター制御装置7の信号として連続的に入力し
、マイコン12内で前記(1)〜(6)の計算式及び第
3図の計算フローに基づき、1秒間隔で成分混合シミュ
レーションを実施し、その結果を第4a図に示す。図中
13.14はそれぞれ前、後レードル溶湯の炭素量合格
範囲を示し、15は鋳片の板厚中心部における炭素シミ
ュレーション値、 16は鋳片表層部における炭素シミ
ユレーション値を示すが、黒丸17及び白丸18で示す
それぞれ板厚中心部及び表層部の実分析値と良く一致し
ている。このシミュレーション結果をもとに、前し一ド
ル成分外れ位置22、後し一ドル成分外れ位置23間の
鋳造長(図中19+20)を成分混合長と決定し、鋳片
切断装置8に指令して切断分離させた。
The casting pattern is shown in Fig. 4b, and the amount of molten metal in the intermediate container, indicated by 30 in the figure, is increased by 3 from 407 on at the end of the previous ladle.
This is an example in which the molten metal in the rear ladle is started to be poured into the intermediate container after the metal has been squeezed to 1000 ml. At this time, the casting speed indicated by 31 in the figure varies from 1 m/lll1n to 0.25 m/rr.
Drop to r i n, then 1 dollar after starting molten metal injection 15
Raised at a pitch of 0.25m/ll1in per second,
.. The speed is increased to On+/sin. These casting conditions are continuously input as signals to the intermediate container weight measuring device 3 and slab drawing motor control device 7 shown in FIG. Based on the calculation flow shown in FIG. 3, component mixing simulations were performed at 1 second intervals, and the results are shown in FIG. 4a. In the figure, 13 and 14 indicate the carbon content acceptance range of the front and rear ladle molten metal, respectively, 15 indicates the carbon simulation value at the center of the thickness of the slab, and 16 indicates the carbon simulation value at the surface layer of the slab. The results are in good agreement with the actual analysis values of the central part of the plate thickness and the surface layer, respectively, which are indicated by black circles 17 and white circles 18. Based on this simulation result, the casting length (19+20 in the figure) between the front one dollar component deviation position 22 and the rear one dollar component deviation position 23 is determined as the component mixing length, and a command is given to the slab cutting device 8. It was cut and separated.

第5図は、本発明による成分混合長決定法を鉄鋼スラブ
連続鋳造機に適用し、切断分離した鋳片長と鋳片の成分
分析により求まる前後レードル成分範囲から外れた実成
分混合長を比較した図の例である。従来は一定鋳片長を
切断分離していたため、切断部位は水平線として表現さ
れ、切断鋳片長が不足し良鋳片の成分が外れる場合や、
逆に切断鋳片長が必要以上に長く鋳造歩留りを悪化させ
ている場合があったことを示す。一方、本発明による成
分混合長決定法にて切断分離した場合は、図中右上がり
の実線で表され、明らかに実成分混合長を下回ることな
く、はぼ等しい鋳片長で切断できるようになった。
Figure 5 shows a comparison between the length of cut and separated slabs and the actual mixing length of components outside the front and rear ladle component range determined by component analysis of slabs, by applying the component mixing length determination method according to the present invention to a continuous steel slab casting machine. This is an example of a diagram. Conventionally, slabs were cut and separated at a constant length, so the cut area was expressed as a horizontal line, and there were cases where the cut slab length was insufficient and components of good slabs were removed,
On the contrary, it shows that there were cases where the length of the cut slab was longer than necessary, deteriorating the casting yield. On the other hand, when cutting and separation is performed using the component mixing length determination method according to the present invention, this is represented by a solid line rising to the right in the figure, and it is clear that the slab length can be cut at approximately the same length without falling short of the actual component mixing length. Ta.

〈発明の効果〉 以上の如く本発明によれば、異鋼種の連続鋳造において
、前後し一ドル成分不合格鋳片部位すなわち成分混合長
が正確に決定できるため、成分混合鋳片における切断分
離鋳片長が実成分混合長を下回るあるいは上回ることな
く、はぼ等しい鋳片長で切断できることとなった。この
結果、成分混合鋳片に隣接する良鋳片における成分外れ
を皆無になしうるとともに、良鋳片を余分に切断する恐
れも解消でき、鋳片歩留りおよび品質の向上にすぐれた
効果を奏するものである。
<Effects of the Invention> As described above, according to the present invention, in continuous casting of different steel types, it is possible to accurately determine the portion of a slab that fails the one-dollar component, that is, the component mixing length, so that cutting and separation of the component-mixed slab is possible. It became possible to cut slabs with approximately the same length without the slab length becoming less than or exceeding the actual component mixing length. As a result, it is possible to completely eliminate component deviations in good slabs adjacent to component-mixed slabs, and also to eliminate the risk of unnecessary cutting of good slabs, which has an excellent effect on improving slab yield and quality. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による成分混合鋳片定に用いる機器配置
の一例を示す説明図、第2図は本発明における成分混合
シミュレーションモデル化の一例を示す説明図、第3図
は成分混合モデル計算のフ第4b図ンη造条件を示すグ
ラフ、第5図は本発明法と従来法による成分混合晶決定
精度を比較したグラフである。 1・・・し−ドル、2・・・中間容器、3・・・中間容
器重量測定装置、4・・・モールド、5・・・鋳片引き
抜きロール、6・・・モーター、フ・・・鋳片引き抜き
モーター制御装置、8・・・鋳片切断装置、9・・・溶
湯、10・・・9片、11・・・プロセスコンピュータ
ー、12・・・マイクロコンピュータ−113・・・前
し一ドル成分範囲、14・・・後し一ドル成分範囲、1
5・・・鋳片中心成分シミュレーション結果、16・・
・鋳片表層成分シミュレーション結果、17・・・鋳片
中心分析値、18・・・鋳片表層分析値、19・・・前
レードル側成分混合長、20・・・後レードル側成分混
合長、21・・・実継ぎ目相当位置、22・・・前し一
ドル成分外れ位置、23・・・後し一ドル成分外れ位置
、30・・・中間容器内溶湯、31・・・鋳造速度 代理人 弁理士  秋 沢 政 光 他1名 汁3図 閂Σ丁/2    区面丁// (3−襲梼紫Cむと傘ド アt′5図 突八分シ昆合長
Fig. 1 is an explanatory diagram showing an example of the equipment arrangement used for component mixing slab determination according to the present invention, Fig. 2 is an explanatory diagram showing an example of component mixing simulation modeling in the present invention, and Fig. 3 is an explanatory diagram showing an example of component mixing simulation modeling according to the present invention. Figure 4b is a graph showing the formation conditions, and Figure 5 is a graph comparing the accuracy of component mixed crystal determination by the method of the present invention and the conventional method. DESCRIPTION OF SYMBOLS 1... Shi-dol, 2... Intermediate container, 3... Intermediate container weight measuring device, 4... Mold, 5... Slab drawing roll, 6... Motor, frame... Slab drawing motor control device, 8... Slab cutting device, 9... Molten metal, 10... 9 pieces, 11... Process computer, 12... Microcomputer-113... Preface 1 Dollar component range, 14...Following dollar component range, 1
5... Simulation results of central component of slab, 16...
- Slab surface layer component simulation results, 17... Slab center analysis value, 18... Slab surface layer analysis value, 19... Front ladle side component mixing length, 20... Back ladle side component mixing length, 21... Actual seam equivalent position, 22... Front one dollar component deviation position, 23... Back one dollar component deviation position, 30... Molten metal in intermediate container, 31... Casting speed agent Patent Attorney Aki Sawa Masa Hikaru and 1 other name Juru 3 Zutsu Σ ding / 2 Ku Men cho // (3-Attack purple C mut and umbrella door t' 5 Zutsu 8 minutes shi Kongocho

Claims (1)

【特許請求の範囲】[Claims] 中間容器に前チャージの溶湯を残したまま、ひきつづき
成分の異なる後チャージの溶湯を中間容器に供給して連
続鋳造するに際し、中間容器内溶湯重量及び鋳片引き抜
き速度を連続的に測定してプロセスコンピューターに入
力し、該入力とプロセスコンピューターに予め与えられ
ている鋳造寸法とよりレードルから中間容器への注入速
度および中間容器からモールドへの注入速度を連続的に
算出し、前記測定値と算出値及び鋳片サイズと前後レー
ドル成分値ならびに成分許容範囲を計算機に入力し、該
計算機にて成分混合モデルに基いて成分混合シミュレー
ションを行い、シミュレーション結果の鋳片成分値が前
後チャージの溶湯成分範囲から外れる部位の長さを成分
混合長とすることを特徴とする連続鋳造における成分混
合長決定方法。
When continuous casting is performed by continuously supplying the post-charge molten metal with different composition to the intermediate container while leaving the pre-charge molten metal in the intermediate container, the weight of the molten metal in the intermediate container and the slab withdrawal speed are continuously measured and the process is carried out. The injection speed from the ladle to the intermediate container and the injection speed from the intermediate container to the mold are continuously calculated based on the input and the casting dimensions given in advance to the process computer, and the measured values and the calculated values are Input the slab size, front and rear ladle component values, and component tolerance into a computer, and use the computer to perform a component mixing simulation based on the component mixing model. A method for determining a component mixing length in continuous casting, characterized in that the length of the part that comes off is taken as the component mixing length.
JP8366988A 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting Granted JPH01258857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8366988A JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8366988A JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Publications (2)

Publication Number Publication Date
JPH01258857A true JPH01258857A (en) 1989-10-16
JPH0461741B2 JPH0461741B2 (en) 1992-10-01

Family

ID=13808880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8366988A Granted JPH01258857A (en) 1988-04-05 1988-04-05 Method for deciding length of component mixture in continuous casting

Country Status (1)

Country Link
JP (1) JPH01258857A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281251A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for producing thick steel plate
ES2445466R1 (en) * 2012-08-31 2014-04-03 Gerdau Investigacion Y Desarrollo Europa, S.A. OPTIMIZATION PROCEDURE FOR MIXING LEVER CUTTING LENGTH IN SEQUENTIAL COLORS OF STEELS OF DIFFERENT QUALITY.
JP2017500206A (en) * 2013-12-23 2017-01-05 ポスコPosco Continuous casting method for different steel types
CN110744024A (en) * 2018-07-24 2020-02-04 宝山钢铁股份有限公司 Automatic re-inspection system and method for length of continuous casting billet
CN111531143A (en) * 2020-05-29 2020-08-14 山东莱钢永锋钢铁有限公司 Continuous casting machine system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281251A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for producing thick steel plate
ES2445466R1 (en) * 2012-08-31 2014-04-03 Gerdau Investigacion Y Desarrollo Europa, S.A. OPTIMIZATION PROCEDURE FOR MIXING LEVER CUTTING LENGTH IN SEQUENTIAL COLORS OF STEELS OF DIFFERENT QUALITY.
JP2017500206A (en) * 2013-12-23 2017-01-05 ポスコPosco Continuous casting method for different steel types
EP3088102B1 (en) 2013-12-23 2017-11-08 Posco Method for continuously casting different grades of steel
CN110744024A (en) * 2018-07-24 2020-02-04 宝山钢铁股份有限公司 Automatic re-inspection system and method for length of continuous casting billet
CN110744024B (en) * 2018-07-24 2021-06-15 宝山钢铁股份有限公司 Automatic re-inspection system and method for length of continuous casting billet
CN111531143A (en) * 2020-05-29 2020-08-14 山东莱钢永锋钢铁有限公司 Continuous casting machine system

Also Published As

Publication number Publication date
JPH0461741B2 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
CA2191242C (en) Quality prediction and quality control of continuously-cast steel
US7211127B2 (en) Model-based system for determining process parameters for the ladle refinement of steel
RU2492023C2 (en) Method and device for control over continuous cast billet solidification at continuous caster in starting casting process
JPH01258857A (en) Method for deciding length of component mixture in continuous casting
GB1502186A (en) Method and device for controlling a casting machine
EP0052514B1 (en) A method and apparatus for controlling the centrifugal casting of a metal pipe
CN106694863B (en) Molten steel pouring control method and device
CN209255784U (en) Submersed nozzle insertion depth measuring device
US5082044A (en) Method and apparatus for controlling the composition of a molten metal bath
JP3105119B2 (en) Ladle exchange method in continuous casting equipment
JPH09262653A (en) Method for estimating surface layer thickness of plural layer cast slab
JPH0426935B2 (en)
Raza et al. Effects of process related variations on defect formation in investment cast components
JPS589757A (en) Controlling method for charging of molten steel in continuous casting
KR950007169B1 (en) A component estimate method of different kind steel mixing slab
JP3201930B2 (en) Casting condition control method in low pressure casting
JPH0433756A (en) Method for continuously casting different steel kinds
RU2204460C2 (en) Method for continuous casting of steel
JPH0767605B2 (en) How to finish casting in continuous casting equipment
JP4265268B2 (en) Solidification analysis method for castings
JPH021590B2 (en)
JPH0871712A (en) Method for deciding mixing range of different kinds of steel in continuous casting
JP2001121242A (en) Optimizing means for casting plan utilizing cae
EP0050602A1 (en) Method of casting melts of materials, the course of solidification of which comprises an expansion followed by a contraction
RU2226006C2 (en) Trainer for operator of system controlling continuous casting of steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees