JPH0461353A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH0461353A JPH0461353A JP17222490A JP17222490A JPH0461353A JP H0461353 A JPH0461353 A JP H0461353A JP 17222490 A JP17222490 A JP 17222490A JP 17222490 A JP17222490 A JP 17222490A JP H0461353 A JPH0461353 A JP H0461353A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- layer
- semiconductor substrate
- metal layer
- resist layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 28
- 239000002184 metal Substances 0.000 claims abstract description 28
- 238000001312 dry etching Methods 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 7
- 238000001020 plasma etching Methods 0.000 description 8
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 6
- 241000132007 Bahia Species 0.000 description 1
- 229930194845 Bahia Natural products 0.000 description 1
- 235000017858 Laurus nobilis Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は半導体装置の製造方法に係り、特に超高周波用
の電界効果トランジスタ(以下FETと略称)およびF
ETを含むモノリシックマイクロ波IC(MMIC:
Nonolithic Microwave IC)の
半導体基板に対するバイアホールの形成方法を改良した
半導体装置の製造方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device, and in particular a field effect transistor (hereinafter abbreviated as FET) for ultra-high frequencies and an FET.
Monolithic microwave IC (MMIC:
The present invention relates to a method for manufacturing a semiconductor device, which is an improved method for forming via holes in a semiconductor substrate for nonolithic microwave ICs.
(従来の技v#)
高周波電力用FETにおいては、広帯域化、広利得化、
高周波化のために、ソースインダクタンスの低減を図る
ことが重要であり、これをパイ7ホール(貫通孔)を用
いてソース電極を直接に接地することにより実現してい
る。よって、表面電極に対して裏面金属層をカバーレー
ジ良く接続するにはパイ7ホールの形状が重要であり、
順テーパー形状が必要である。(Conventional technique v#) In high frequency power FETs, wide band, wide gain,
In order to increase the frequency, it is important to reduce the source inductance, and this is achieved by directly grounding the source electrode using a Pi7 hole (through hole). Therefore, the shape of the Pi7 hole is important to connect the back metal layer to the front electrode with good coverage.
A forward tapered shape is required.
また、FETでは素子の集積度を上げることも重要であ
り、パイ7ホールを形成するソース電極の面積を小さく
できればそれだけ素子設計の自由度を増すことができる
。Furthermore, in FETs, it is important to increase the degree of device integration, and the smaller the area of the source electrode that forms the pi-7 hole, the more freedom in device design can be increased.
しかし、順テーパー形状のパイ7ホールを形成する場合
等方的なドライエツチングが必要であり、その影響を受
けてソース電極側開孔径が大きくなって、ソース電極の
面積を小さくできない、よって、順テーパー形状のパイ
7ホールとソース電極の面積を小さくすることを両立さ
せる技術を確立する必要がある。However, isotropic dry etching is required to form a forward-tapered pie hole, and as a result of this, the opening diameter on the source electrode side increases, making it impossible to reduce the area of the source electrode. It is necessary to establish a technology that allows both the tapered Pi-7 hole and the reduction in the area of the source electrode to be achieved.
以下に、バイアホールを有するFETの従来方法による
製造工程につき、第2図(a)〜(c)に示す工程断面
図を用いて説明する。The manufacturing process of a conventional FET having a via hole will be described below with reference to process cross-sectional views shown in FIGS. 2(a) to 2(c).
まず、半導体基板1の表面に形成されたソース電極2に
位置合せして前記半導体基板1の裏面にフォトレジスト
層(以下レジスト層と略称)3のバターニングを行なう
(第2図(a))、次に、前記レジスト層3をマスクに
して表面のソース電極2まで等方的にリアクティブイオ
ンエツチング(以下RIEと略称)4を行なう(第2図
(b))、次に、前記レジスト層3を除去してバイアホ
ール5が完成する(第2図(C))、なお、この図にバ
イアホール部に関する寸法を併記したように、半導体基
板1の厚さが150.、レジスト層3の開孔径が60−
φの場合を例示すると、パイ7ホール5の裏面側開孔径
170.φ、ソース電極側の径100.φ程度に形成で
き、ソース電極の面積は位置合せ精度を考慮すると最低
150IaX 150μが必要となる。First, a photoresist layer (hereinafter referred to as resist layer) 3 is patterned on the back surface of the semiconductor substrate 1 in alignment with the source electrode 2 formed on the surface of the semiconductor substrate 1 (FIG. 2(a)). Next, using the resist layer 3 as a mask, reactive ion etching (hereinafter referred to as RIE) 4 is performed isotropically up to the source electrode 2 on the surface (FIG. 2(b)). 3 is removed to complete the via hole 5 (FIG. 2(C)).As shown in this figure, the dimensions of the via hole portion are also shown when the thickness of the semiconductor substrate 1 is 150 mm. , the opening diameter of the resist layer 3 is 60-
To illustrate the case of φ, the opening diameter on the back side of the pie 7 hole 5 is 170. φ, diameter on the source electrode side 100. It can be formed to approximately φ, and the area of the source electrode needs to be at least 150Ia×150μ when alignment accuracy is taken into consideration.
(発明が解決しようとする課!g)
上記従来の製造工程では、第2図(C)に例示するよう
に、バイアホールの裏面側の開孔径を基板厚と同等程度
以下にすることはできず、またソース電極側の径も裏面
側開孔径の273程度の大きさは避けられない、よって
、ソース電極の大きさは裏面側開孔径以下のサイズにす
ることはできず。(Problem to be solved by the invention!g) In the conventional manufacturing process described above, as illustrated in FIG. Moreover, the diameter on the source electrode side cannot be avoided to be about 273 times the diameter of the opening on the back side. Therefore, the size of the source electrode cannot be made smaller than the diameter of the opening on the back side.
ソース電極に関する素子設計の場合には半導体基板厚の
束縛を受ける。しかも基板厚が厚いため、バイアホール
を同じ大きさで再現性良く形成することができない。Element design regarding source electrodes is constrained by the thickness of the semiconductor substrate. Moreover, since the substrate is thick, it is not possible to form via holes of the same size with good reproducibility.
本発明は、上記欠点を除去するためになされたもので、
半導体基板厚に左右されずにソース電極の大きさを決定
でき、しかもその大きさに合せて順テーパー形状のバイ
アホールを再現性良く形成できるFETの製造方法を提
供することを目的とする。The present invention has been made to eliminate the above-mentioned drawbacks.
An object of the present invention is to provide a method for manufacturing an FET that can determine the size of a source electrode without being influenced by the thickness of a semiconductor substrate, and can form a via hole in a forward tapered shape with good reproducibility in accordance with the size.
(課題を解決するための手段)
本発明に係る半導体装置の製造方法は、半導体基板裏面
に金属層を被着し該基板の貫通孔形成予定領域を露呂さ
せる金属層パターンに形成する工程と、前記金属層パタ
ーンをマスクにして前記半導体基板に等方的にドライエ
ツチングを施し開孔を設ける工程と、前記半導体基板裏
面にレジスト層を被着し開孔内にレジストを充填する工
程と、前記金属層パターンをマスクにして半導体基板の
前記開孔内にレジスト層に対し半導体基板と垂直方向に
エツチングを施す工程と、前記レジスト層に対するエツ
チングにより前記半導体基板がサイドエツチングされた
部分に残されたレジスト層をマスクにして半導体基板に
等方的にドライエツチングを施し開孔を半導体基板の表
面電極に到達させる工程と、前記金属層およびレジスト
層を除去する工程を含むことを特徴とする。(Means for Solving the Problems) A method for manufacturing a semiconductor device according to the present invention includes the steps of depositing a metal layer on the back surface of a semiconductor substrate and forming a metal layer pattern that exposes a region of the substrate where a through hole is to be formed. a step of isotropically dry etching the semiconductor substrate using the metal layer pattern as a mask to form an opening; a step of depositing a resist layer on the back surface of the semiconductor substrate and filling the opening with the resist; etching the resist layer in the opening of the semiconductor substrate in a direction perpendicular to the semiconductor substrate using the metal layer pattern as a mask, and etching the resist layer so that the semiconductor substrate is left in the side-etched portion. The method is characterized in that it includes the steps of isotropically dry etching the semiconductor substrate using the resist layer as a mask to make openings reach the surface electrodes of the semiconductor substrate, and removing the metal layer and the resist layer.
(作 用)
本発明は、金属層マスクにて、半導体基板に対しその基
板厚の一例の半分の深さまで等方的にドライエツチング
を施した後、金属層マスクよりサイドエツチングされた
部分をレジスト層で埋めることにより、半分の基板厚に
なった半導体基板を金属層マスクと同じサイズのマスク
で等方的にドライエツチングを施すことができる。これ
により、バイアポールのソース電極側開孔径を半分の基
板厚の半導体基板をエツチングするのと同じ程度の大き
さに抑えることができ、しかも、順テーパー形状のパイ
7ホールを形成できる。そしてソース電極面積を従来製
造方法より大幅に縮小することができる。(Function) The present invention performs isotropic dry etching on a semiconductor substrate using a metal layer mask to a depth of half the thickness of the substrate, and then etches the side-etched portion using a resist layer mask. By filling the semiconductor substrate with the metal layer, dry etching can be performed isotropically on a semiconductor substrate whose thickness has been reduced to half using a mask of the same size as the metal layer mask. As a result, the diameter of the opening on the source electrode side of the via pole can be suppressed to the same size as etching a semiconductor substrate with half the thickness of the substrate, and moreover, it is possible to form a forward-tapered pie-7 hole. Furthermore, the area of the source electrode can be significantly reduced compared to conventional manufacturing methods.
(実施例) 以下1本発明の実施例につき図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.
第1図(a)〜(f)は半導体基板に砒化ガリウム(G
aAs)を用いたFETの製造方法を工程順に示すいず
れも断面図である。Figures 1 (a) to (f) show gallium arsenide (G) on a semiconductor substrate.
All of them are cross-sectional views showing a method for manufacturing an FET using aAs) in order of steps.
第1図(8)に示すように、GaAs半絶縁性基板11
の裏面にラッピング及び化学研磨を施して基板厚を15
04まで薄くした後、このGaAs基板裏面に金属層1
3のAu層を厚さ2000人蒸着し、バイアホール形成
予定領域にエツチングを施して開口部13aを設ける。As shown in FIG. 1 (8), a GaAs semi-insulating substrate 11
The back side of the board is lapped and chemically polished to reduce the substrate thickness to 15mm.
After thinning the GaAs substrate to 04, a metal layer 1 is formed on the back surface of the GaAs substrate
An Au layer of No. 3 was deposited to a thickness of 2,000 layers, and the area where the via hole was to be formed was etched to form an opening 13a.
次に、前記金属層13の開孔部13aを通して、 RI
E14により、GaAs基板11に等方的なエツチング
を施し、 80.深さのパイ7ホール15を形成する(
第1図(b))。Next, through the opening 13a of the metal layer 13, RI
Isotropically etching the GaAs substrate 11 using E14; 80. Form a depth of Pi 7 hole 15 (
Figure 1(b)).
次に、第1図(C)に示すように前記パイ7ホール15
が完全に埋まるようにレジスト層16を被覆する。ここ
で、レジスト層16の形成には、 LP−10(商品名
:ヘキスト社11)を使用し、その膜厚を30−に設定
した。Next, as shown in FIG. 1(C), the pie 7 hole 15
The resist layer 16 is coated so that the area is completely buried. Here, LP-10 (trade name: Hoechst Co., Ltd. 11) was used to form the resist layer 16, and its film thickness was set to 30-.
次に、レジスト層のみを選択的にエツチングできる条件
のRIE 17により前記レジスト層16にエツチング
を施し、前記金属層13が震出した後は、前記金属M1
3がマスクになって前記バイアホール15の中の前記レ
ジスト層16を重直にエツチングする(第1図(d))
。Next, the resist layer 16 is etched by RIE 17 under the conditions that only the resist layer can be selectively etched, and after the metal layer 13 is undulated, the metal M1 is etched.
3 serves as a mask to vertically etch the resist layer 16 in the via hole 15 (FIG. 1(d)).
.
ついで、さらに前記金属層13の関口部13aを通して
、RIE 14により、 GaAs基板11に等方的な
エツチングを施し、基板表面に形成されているソース電
極12に達する貫通孔のパイ7ホール25を形成する(
第1図(e))、ここで、バイアホール25は金属[1
3下の側壁に残した前記レジスト層16がマスクになっ
て先に形成したバイアホール15より大きくなることは
ない。Next, the GaAs substrate 11 is isotropically etched by RIE 14 through the gate part 13a of the metal layer 13 to form a Pi7 hole 25 which is a through hole reaching the source electrode 12 formed on the surface of the substrate. do(
FIG. 1(e)), where the via hole 25 is made of metal [1
The resist layer 16 left on the sidewalls under 3 serves as a mask so that the via hole 15 does not become larger than the previously formed via hole 15.
次に、前記金属層13およびレジスト層16を除去して
、第1図(f)のような順テーパー形状のパイ7ホール
Is、 25が完成する。Next, the metal layer 13 and the resist layer 16 are removed to complete a forward tapered pie hole Is, 25 as shown in FIG. 1(f).
以上述べたように本発明に係る半導体装置の製造方法に
よれば、基板厚の大きい半導体基板に対し金属層マスク
にて一例として基板の半分の深さまで等方的にドライエ
ツチングした後、金属層マスクよりサイドエツチングさ
れた部分をレジスト層で埋めることにより、半導体基板
厚を半分にして金属層マスクと同じサイズのマスクで等
方的にドライエツチングできる。As described above, according to the method for manufacturing a semiconductor device according to the present invention, a semiconductor substrate having a large substrate thickness is isotropically dry-etched using a metal layer mask to, for example, half the depth of the substrate, and then the metal layer is etched. By filling the side-etched portion of the mask with a resist layer, the thickness of the semiconductor substrate can be halved and dry etching can be performed isotropically using a mask of the same size as the metal layer mask.
本発明に係るバイアホールの形成方法によれば第1図(
f)に併記された寸法を、従来の第2図(c)に併記さ
−れた寸法と比較することにより明らかなように、ソー
ス電極側開孔径を半分の基板厚の半導体基板に対するエ
ツチングと同じ程度の大きさに抑えることができるので
、ソース電極面積は従来の製造方法より大幅に縮少でき
る。しかも、再現性良く順テーパー形状のバイアホール
を形成できるので、ソース電極に対して裏面金属層をカ
バーレージ良く接続することができる。According to the via hole forming method according to the present invention, FIG.
As is clear by comparing the dimensions shown in f) with the conventional dimensions shown in FIG. Since the size of the source electrode can be kept to the same level, the area of the source electrode can be significantly reduced compared to the conventional manufacturing method. Furthermore, since a forward tapered via hole can be formed with good reproducibility, the back metal layer can be connected to the source electrode with good coverage.
第1図(8)〜(f)は本発明にかかるFETの製造方
法を工程順に示すいずれも断面図、第2図(a)〜(e
)は従来のFETの製造方法を工程順に示すいずれも断
面図である。
11・・・半導体基板、 12・・・ソース電極、13
・・・金属層。
16・・・レジスト層、I5.25・・・バイアホール
。
14.17・・・RIE。
代理人 弁理士 大 胡 典 夫
17 : (Lジλ計層の)RIE
ll:牟善惨衣坂
13:食属眉
12: ソーλt、f&
131;芦icI都
14:RIE
15:バイア爪−)し
くキの2)
(vI>1)
1:牛J惇1−及
3: Lジス1層
ソースt&
4:
RIE
5: バイア爪−1し
第FIGS. 1(8) to (f) are cross-sectional views showing the FET manufacturing method according to the present invention in the order of steps, and FIGS. 2(a) to (e)
) are sectional views showing the conventional FET manufacturing method in the order of steps. 11... Semiconductor substrate, 12... Source electrode, 13
...Metal layer. 16...Resist layer, I5.25... Via hole. 14.17...RIE. Agent Patent Attorney Norifu Ogo 17: (L di λ meter layer) RIE ll: Muzen Miseizaka 13: Food eyebrows 12: So λt, f &131; Ashic I capital 14: RIE 15: Bia Tsume- ) Shikuki no 2) (vI>1) 1: Ushi J Jun 1- and 3: L-jis 1-layer sauce t & 4: RIE 5: Bahia nail-1
Claims (1)
予定領域を露出させる金属層パターンに形成する工程と
、前記金属層パターンをマスクにして前記半導体基板に
等方的にドライエッチングを施し開孔を設ける工程と、
前記半導体基板裏面にレジスト層を被着し開孔内にレジ
ストを充填する工程と、前記金属層パターンをマスクに
して半導体基板の前記開孔内にレジスト層に対し半導体
基板と垂直方向にエッチングを施す工程と、前記レジス
ト層に対するエッチングにより前記半導体基板がサイド
エッチングされた部分に残されたレジスト層をマスクに
して半導体基板に等方的にドライエッチングを施し開孔
を半導体基板の表面電極に到達させる工程と、前記金属
層およびレジスト層を除去する工程を含むことを特徴と
する半導体装置の製造方法。A step of depositing a metal layer on the back surface of the semiconductor substrate and forming a metal layer pattern to expose a region of the substrate where a through hole is to be formed, and isotropically dry etching the semiconductor substrate using the metal layer pattern as a mask. a step of providing an opening;
A step of depositing a resist layer on the back surface of the semiconductor substrate and filling the resist into the opening, and etching the resist layer in the opening of the semiconductor substrate in a direction perpendicular to the semiconductor substrate using the metal layer pattern as a mask. and isotropically dry etching the semiconductor substrate using the resist layer left on the side-etched portion of the semiconductor substrate as a mask to form openings that reach the surface electrodes of the semiconductor substrate. A method for manufacturing a semiconductor device, comprising the steps of removing the metal layer and the resist layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17222490A JPH0461353A (en) | 1990-06-29 | 1990-06-29 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17222490A JPH0461353A (en) | 1990-06-29 | 1990-06-29 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0461353A true JPH0461353A (en) | 1992-02-27 |
Family
ID=15937901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17222490A Pending JPH0461353A (en) | 1990-06-29 | 1990-06-29 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0461353A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06326064A (en) * | 1993-05-14 | 1994-11-25 | Nec Corp | Semiconductor device and its manufacture |
WO2010082248A1 (en) * | 2009-01-14 | 2010-07-22 | パナソニック株式会社 | Semiconductor device, electronic apparatus using same, and method for manufacturing semiconductor device |
-
1990
- 1990-06-29 JP JP17222490A patent/JPH0461353A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06326064A (en) * | 1993-05-14 | 1994-11-25 | Nec Corp | Semiconductor device and its manufacture |
WO2010082248A1 (en) * | 2009-01-14 | 2010-07-22 | パナソニック株式会社 | Semiconductor device, electronic apparatus using same, and method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5034347A (en) | Process for producing an integrated circuit device with substrate via hole and metallized backplane | |
JPH0821581B2 (en) | Method for manufacturing semiconductor device | |
JPH0778835A (en) | Manufacture of compound semiconductor device | |
JPH0461353A (en) | Manufacture of semiconductor device | |
JPH03194931A (en) | Manufacture of semiconductor device | |
JPH0472381B2 (en) | ||
JPS63276276A (en) | Manufacture of semiconductor device | |
JPH03102839A (en) | Semiconductor device | |
JPS62211962A (en) | Manufacture of high-frequency semiconductor device | |
JP2863216B2 (en) | Method for manufacturing semiconductor device | |
JPS6257263A (en) | Manufacture of josephson integrated circuit | |
JP2591480B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2643812B2 (en) | Method for forming gate electrode of field effect transistor | |
JPH079980B2 (en) | Method for manufacturing semiconductor device | |
JP2785334B2 (en) | Method for manufacturing semiconductor device | |
JPH05152341A (en) | Method of manufacturing semiconductor device | |
JP2904094B2 (en) | Method for manufacturing semiconductor device | |
JPS61222265A (en) | Manufacture of semiconductor device | |
JPH05275456A (en) | Semiconductor device and its manufacture | |
JPH07107906B2 (en) | Method for manufacturing semiconductor device | |
JP2550715B2 (en) | Semiconductor device | |
JP2890527B2 (en) | Method for manufacturing semiconductor device | |
JPS6279677A (en) | Manufacture of semiconductor device | |
JPH0831844A (en) | Fabrication of semiconductor device | |
JPH09223851A (en) | Semiconductor integrated circuit board and method for forming it |