JPH0461307A - Magnetic alloy film - Google Patents
Magnetic alloy filmInfo
- Publication number
- JPH0461307A JPH0461307A JP17302190A JP17302190A JPH0461307A JP H0461307 A JPH0461307 A JP H0461307A JP 17302190 A JP17302190 A JP 17302190A JP 17302190 A JP17302190 A JP 17302190A JP H0461307 A JPH0461307 A JP H0461307A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- magnetic alloy
- alloy film
- plane
- fe4n
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001004 magnetic alloy Inorganic materials 0.000 title claims abstract description 27
- 229910000727 Fe4N Inorganic materials 0.000 claims abstract description 16
- 239000013078 crystal Substances 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 9
- 239000000956 alloy Substances 0.000 claims abstract description 9
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 14
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 7
- 229910052742 iron Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 150000002739 metals Chemical class 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 230000004907 flux Effects 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229910001199 N alloy Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 229910000979 O alloy Inorganic materials 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910001337 iron nitride Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910000702 sendust Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、特に高密度磁気記録に適する磁気ヘッド等の
磁気デバイス用磁性合金膜に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetic alloy film for a magnetic device such as a magnetic head, which is particularly suitable for high-density magnetic recording.
(従来の技術)
近年、磁気記録の高密度化や広帯域化の必要性が高まり
、磁気記録媒体に高い抗磁力を有する磁性材料を使用し
て記録トラック幅を狭くすることにより、高密度磁気記
録再生を実現している。そして、この高い抗磁力をもつ
磁気記録媒体に記録再生するするための磁気ヘッド材料
として、飽和磁束密度Bsの高い磁性合金が必要とされ
ており、センダスト合金や非晶質合金等をコアの一部ま
たは全部に使用した磁気ヘッドが提案されている。(Prior art) In recent years, the need for higher density and wider band magnetic recording has increased, and high-density magnetic recording has been achieved by narrowing the recording track width by using magnetic materials with high coercive force in magnetic recording media. Achieving regeneration. Magnetic alloys with high saturation magnetic flux density Bs are required as magnetic head materials for recording and reproducing on magnetic recording media with high coercive force. A magnetic head that uses part or all of the magnetic head has been proposed.
然しながら、磁気記録媒体の高抗磁力化が一段と進み、
磁気記録媒体の抗磁力が20000 e以上になるとセ
ンダスト合金や非晶質合金を使用した磁気ヘッドでは良
好な磁気記録再生が困難になる。However, as the coercive force of magnetic recording media continues to increase,
When the coercive force of the magnetic recording medium exceeds 20,000 e, it becomes difficult to perform good magnetic recording and reproduction with a magnetic head using Sendust alloy or an amorphous alloy.
又、磁気記録媒体の長手方向ではなく、厚さ方向に磁化
して記録する垂直磁化記録方式も提案されているが、こ
の垂直磁化記録を良好に行うには、磁気ヘッドの主磁極
の先端部の厚さを0.5μm以下にする必要があり、比
較的抗磁力の低い磁気記録媒体に記録するにも、高い飽
和磁束密度を持つ磁気ヘッド用磁性合金が必要になる。Also, a perpendicular magnetization recording method has been proposed in which the magnetic recording medium is magnetized in the thickness direction rather than in the longitudinal direction. The thickness of the magnetic head must be 0.5 μm or less, and a magnetic alloy for a magnetic head with a high saturation magnetic flux density is required even for recording on a magnetic recording medium with a relatively low coercive force.
そして、センダスト合金や非晶質合金よりも飽和磁束密
度Bsの高い磁気ヘッド用合金として、窒化鉄、Fe−
5i系合金等の鉄を主成分とした磁性合金が知られてい
る。Iron nitride, Fe-
Magnetic alloys containing iron as a main component, such as 5i-based alloys, are known.
(発明が解決しようとする課題)
ところが、従来より知られている、高飽和磁束密度を存
する磁性合金は、保磁力Hcが大きく、そのままでは磁
気ヘッドの材料としては不十分であるので、センダスト
合金やパーマロイ等の保磁力の小さい磁性材料を層間膜
として使用した多層構造の磁気ヘッドが提案されている
。(Problem to be Solved by the Invention) However, conventionally known magnetic alloys with high saturation magnetic flux density have a large coercive force Hc and are insufficient as materials for magnetic heads as they are. A magnetic head with a multilayer structure using a magnetic material with a low coercive force such as Permalloy or Permalloy as an interlayer film has been proposed.
然しながら、多層構造にするには]、数やコストがかか
り、信頼性を保つのも難しいというRiJ題点があった
。特に、数μm以上の膜厚にする為には場合によっては
10(1層以上の多層構造にする必要があり、使用範囲
も限られていた。However, creating a multilayer structure requires a large number and cost, and it is difficult to maintain reliability, which is a problem with RiJ. In particular, in order to obtain a film thickness of several μm or more, it is necessary to have a multilayer structure of 10 (one or more layers) in some cases, and the range of use is also limited.
この問題点を解決するために、本発明人等はFe−N−
0合金によって、単層で高BS・低Hcの磁性合金が得
られることを提案したが、熱安定性の面から、ガラスモ
ールド工程には適さないという問題があった。In order to solve this problem, the present inventors have developed Fe-N-
It was proposed that a magnetic alloy with high BS and low Hc could be obtained in a single layer using the 0 alloy, but there was a problem that it was not suitable for the glass molding process from the viewpoint of thermal stability.
そこで本発明は多層構造にしなくても高飽和磁束密度を
持ち、保磁力が小さく、熱安定性に優れた磁性合金を提
供することを目的とする。Therefore, an object of the present invention is to provide a magnetic alloy that has a high saturation magnetic flux density without having a multilayer structure, has a small coercive force, and has excellent thermal stability.
(課題を解決するための手段)
本発明は上記の課題を解決するためになされたものであ
り、FexNyOzMvなる組成式で表される磁性合金
膜において、その合金がa−Feとγ −Fe4Nの結
晶構造からなり、その膜面がa−Feは(110)面に
、γ′ −Fe4 Nは(111)面に配向しており、
a −F e (110)面のX線回折の相対強度がγ
′ −F e4 N (111)面及び(200)而の
相対強度よりも大きい磁性合金膜(但し、Mは鉄以外の
金属または半金属の中から選ばれた少なくとも1種類以
上の元素)または、磁性合金膜の結晶粒径が300A以
下である特許請求の範囲第1項記載の磁性合金膜、また
は、
x、y、z、vで表される原子%が
■≦y≦10
0.1≦Z≦10
0.5≦v≦6
! +y +z +v wloo
である特許請求の範囲第1項及び第2項記載の磁性合金
膜をそれぞれ提供するものである。(Means for Solving the Problems) The present invention has been made to solve the above problems, and provides a magnetic alloy film represented by the composition formula FexNyOzMv, in which the alloy is composed of a-Fe and γ-Fe4N. It has a crystal structure, and its film plane is oriented in the (110) plane for a-Fe and the (111) plane for γ'-Fe4N.
a - F e The relative intensity of X-ray diffraction of the (110) plane is γ
' -F e4 N A magnetic alloy film having a relative strength greater than that of the (111) plane and the (200) plane (where M is at least one element selected from metals or semimetals other than iron), or The magnetic alloy film according to claim 1, wherein the crystal grain size of the magnetic alloy film is 300A or less, or the atomic % represented by x, y, z, and v is ■≦y≦10 0.1≦ Z≦10 0.5≦v≦6! +y +z +vwloo The magnetic alloy films according to claims 1 and 2 are provided, respectively.
(実施例)
Fe−N−0−M合金膜(Mは鉄以外の金属または半金
属の少なくとも1種類以上の元素)を成膜する場合、そ
の成膜条件や熱処理温度によって、結晶構造や配向する
面方位が異なり、これによって磁気特性も異なる。ここ
では、ある面方位の相対回折強度の他の面方位の相対回
折強度に対する比が理論計算上の比よりも明らかに大き
い時、その面方位に配向していると定義する。(Example) When forming a Fe-N-0-M alloy film (M is at least one element of a metal or metalloid other than iron), the crystal structure and orientation may vary depending on the film forming conditions and heat treatment temperature. The surface orientations differ, and the magnetic properties also differ accordingly. Here, when the ratio of the relative diffraction intensity of a certain plane orientation to the relative diffraction intensity of another plane orientation is clearly larger than the theoretically calculated ratio, it is defined that the plane is oriented in that plane direction.
表は、窒素と酸素の量とMの種類と量を変えた時の結晶
粒径と抗磁力(Hc)の特性を表すものである。The table shows the characteristics of crystal grain size and coercive force (Hc) when the amount of nitrogen and oxygen and the type and amount of M are changed.
表
第1図(a)は、前記した表中に示される試料番号1の
合金組成になる、この試料1のX線回折パターン図であ
り、この図より明らかな如く、この試料1ではα−Fe
の(200)面に配向しており、γ’−Fe4Nの結晶
構造は見られない。また、この時の保磁力Hcは、10
0 eと大きい。Table 1 (a) is an X-ray diffraction pattern diagram of this sample 1, which has the alloy composition of sample number 1 shown in the table, and as is clear from this figure, this sample 1 has an α- Fe
The crystal structure of γ'-Fe4N is not observed. Also, the coercive force Hc at this time is 10
It is large at 0 e.
第1図(b)は、同表中の試料番号2の合金組成になる
、この試料2のX線回折パターン図であり、この試料2
によれば、α−Feの(110)面に配向しているが、
(a)と同様にγ’−Fe4Nの結晶構造は見られない
。この時のHcは20eで、やはり大きい。FIG. 1(b) is an X-ray diffraction pattern diagram of this sample 2, which has the alloy composition of sample number 2 in the same table.
According to, α-Fe is oriented in the (110) plane,
Similar to (a), the crystal structure of γ'-Fe4N is not observed. Hc at this time was 20e, which is still large.
これに対し、表中の試料番号3乃至5に相当する第1図
(C)〜(Cンは、(110)面に配向したa−Feと
(111)面に配向したγ′−Fe4Nの結晶構造から
なり、Hcが0.2〜0.50eと小さく良好な磁気特
性が得られている。In contrast, Figures 1 (C) to (C) corresponding to sample numbers 3 to 5 in the table show a-Fe4N oriented in the (110) plane and γ'-Fe4N oriented in the (111) plane. It has a crystal structure, has a small Hc of 0.2 to 0.50e, and has good magnetic properties.
表中の試料番号6に相当する第1図(f)は、a−Fe
とγ′−Fe4Nの結晶構造から成っているものの、γ
’−Fe4Nの(200)面に配向しており、この時の
Hcは50eと大きい。FIG. 1(f), which corresponds to sample number 6 in the table, shows a-Fe
Although it consists of the crystal structure of γ'-Fe4N, γ
It is oriented in the (200) plane of '-Fe4N, and Hc at this time is as large as 50e.
第1図(g)は、同図(C)と同じ試料を400℃で熱
処理したものであるが、γ’−Fe4Nが(l1l)面
に配向しているものの、γ’−Fe4N(111)面の
X線回折の相対強度が、α−Fe(IIO)面の相対強
度よりも大きく、この時のHcは、70eと大きく、や
はり良好な磁気特性は得られない。Figure 1 (g) shows the same sample as in Figure 1 (C) heat-treated at 400°C, but although γ'-Fe4N is oriented in the (l1l) plane, γ'-Fe4N (111) The relative intensity of X-ray diffraction of the plane is larger than the relative intensity of the α-Fe(IIO) plane, and the Hc at this time is as large as 70e, so good magnetic properties cannot be obtained.
また、第1図(f)及び(g)は、第1図(C)〜(e
)と比較して結晶粒径が大きくなっている。In addition, FIGS. 1(f) and (g) are similar to FIGS. 1(C) to (e).
) The crystal grain size is larger than that of
これら第1図及び表より明らかな如く、熱処理条件等を
変えることにより、結晶粒径や保磁力の向上効果が見ら
れるものである。As is clear from these FIG. 1 and the table, by changing the heat treatment conditions etc., the effect of improving the crystal grain size and coercive force can be seen.
第2図は、Fe−N合金における窒素含有量と飽和磁束
密度(Bs)の関係を示したものである。FIG. 2 shows the relationship between nitrogen content and saturation magnetic flux density (Bs) in Fe--N alloys.
この図が示すように、窒素含有量がlO原子%の時、B
sが15k G以上の高Bs磁性合金が得られる。As this figure shows, when the nitrogen content is 1O at%, B
A high Bs magnetic alloy with s of 15 kG or more can be obtained.
例えば、特願平1−256102に開示されているよう
に、窒素の含有量が1原子%未病の時は、窒素の顕著な
効果が得られず、α−Fe(110)面への配向も得ら
れない。For example, as disclosed in Japanese Patent Application No. 1-256102, when the nitrogen content is 1 atomic %, no significant effect of nitrogen can be obtained, and the orientation toward the α-Fe(110) plane I can't get it either.
また、酸素の含有量が0.1原子%未虜の時は、酸素の
顕著な効果が見られず、γ’−Fe4N(111)面へ
の配向も得られない。Further, when the oxygen content is 0.1 atomic %, no significant effect of oxygen is observed, and no orientation toward the γ'-Fe4N (111) plane is obtained.
更に、Mの含有量が0.5原子%未膚の時は熱安定性の
向上がほとんど見られず、0.5原子%以上であると熱
安定性の向上が見られる。Further, when the M content is less than 0.5 at%, little improvement in thermal stability is observed, and when it is 0.5 at% or more, an improvement in thermal stability is observed.
しかしMが6原子%を越えた場合は、磁気特性の劣化が
生じる。(但し、Mは鉄以外の金属または半金属の中か
ら選ばれた少なくとも1種類以上の元素である)
(発明の効果)
以上詳述したように、本発明になる磁性合金膜は、高飽
和磁束密度を有し、保磁力が小さく、透磁率が大きく、
更に熱安定性に優れた磁気ヘッド等の磁気デバイス用磁
性合金が得られる。However, if M exceeds 6 at %, the magnetic properties will deteriorate. (However, M is at least one element selected from metals or metalloids other than iron.) (Effects of the Invention) As detailed above, the magnetic alloy film of the present invention has high saturation. It has magnetic flux density, low coercive force, high magnetic permeability,
Furthermore, a magnetic alloy for magnetic devices such as magnetic heads with excellent thermal stability can be obtained.
従って、本発明の磁性合金膜を用いれば、高保磁力媒体
への良好な記録再生が行える他、高性能の薄膜磁気ヘッ
ド等を作製することができ、高密度磁気記録再生が実現
できる。Therefore, by using the magnetic alloy film of the present invention, it is possible to perform good recording and reproducing on a high coercive force medium, and also to produce a high-performance thin film magnetic head and the like, and realize high-density magnetic recording and reproducing.
第1図は、異なる合金組成の試料のX線回折パターン図
、第2図は、Fe−N合金膜における窒素含有量と飽和
磁束密度(Bs)の関係を示す図である。
特許出願人 口本ビクター株式会社
代表者 切上 ※部
2θ
寮
団
手続補正書
平成2年Z月/2日
1゜
事件の表示
平成2年特許願第173021号
2゜
発明の名称
磁性合金膜
3゜
補正をする者
事件との関係FIG. 1 is an X-ray diffraction pattern diagram of samples with different alloy compositions, and FIG. 2 is a diagram showing the relationship between nitrogen content and saturation magnetic flux density (Bs) in an Fe--N alloy film. Patent Applicant Kuchimoto Victor Co., Ltd. Representative Kirigami *Part 2θ Dormitory Group Proceedings Amendment Date Z/2, 1990 1゜Indication of Incident 1990 Patent Application No. 173021 2゜Name of Invention Magnetic Alloy Film 3゜Relationship with the person making the amendment case
Claims (1)
る磁性合金膜において、その合金がa−Feとγ′−F
e4Nの結晶構造からなり、その膜面がa−Feは(1
10)面に、γ′−Fe4Nは(111)面に配向して
おり、a−Fe(110)面のX線回折の相対強度がγ
′−Fe4N(111)面及び(200)面の相対強度
よりも大きいことを特徴とする磁性合金膜。(但し、M
は鉄以外の金属または半金属の中から選ばれた少なくと
も1種類以上の元素) (2)磁性合金膜の結晶粒径が300A以下である特許
請求の範囲第1項記載の磁性合金膜。 (3)x、y、z、vで表される原子%が 1≦y≦10 0.1≦z≦10 0.5≦v≦ 6 x+y+z+v=100 である特許請求の範囲第1項及び第2項記載の磁性合金
膜。[Claims] (1) In a magnetic alloy film represented by the composition formula Fe_XN_YO_ZM_V, the alloy is a-Fe and γ′-F.
It consists of an e4N crystal structure, and its film surface is (1
10) plane, γ'-Fe4N is oriented in the (111) plane, and the relative intensity of X-ray diffraction of the a-Fe (110) plane is γ
1. A magnetic alloy film characterized in that the relative strength of the '-Fe4N (111) plane and (200) plane is greater than that of the (200) plane. (However, M
(2) The magnetic alloy film according to claim 1, wherein the magnetic alloy film has a crystal grain size of 300A or less. (3) Claims 1 and 1 in which the atomic % represented by x, y, z, and v is as follows: 1≦y≦10 0.1≦z≦10 0.5≦v≦6 x+y+z+v=100 The magnetic alloy film according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17302190A JPH0461307A (en) | 1990-06-29 | 1990-06-29 | Magnetic alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17302190A JPH0461307A (en) | 1990-06-29 | 1990-06-29 | Magnetic alloy film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0461307A true JPH0461307A (en) | 1992-02-27 |
Family
ID=15952741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17302190A Pending JPH0461307A (en) | 1990-06-29 | 1990-06-29 | Magnetic alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0461307A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
JP2009168005A (en) * | 2007-12-19 | 2009-07-30 | Toyota Industries Corp | Swash plate compressor |
CN103403212A (en) * | 2011-02-23 | 2013-11-20 | 同和热处理技术株式会社 | Nitrided steel member and method for producing same |
-
1990
- 1990-06-29 JP JP17302190A patent/JPH0461307A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5617275A (en) * | 1994-05-02 | 1997-04-01 | Sanyo Electric Co., Ltd. | Thin film head having a core comprising Fe-N-O in a specific atomic composition ratio |
JP2009168005A (en) * | 2007-12-19 | 2009-07-30 | Toyota Industries Corp | Swash plate compressor |
CN103403212A (en) * | 2011-02-23 | 2013-11-20 | 同和热处理技术株式会社 | Nitrided steel member and method for producing same |
CN103403212B (en) * | 2011-02-23 | 2015-08-26 | 同和热处理技术株式会社 | Nitriding steel component and manufacture method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001101645A (en) | High density information recording medium and method for manufacturing the medium | |
JP2963003B2 (en) | Soft magnetic alloy thin film and method of manufacturing the same | |
JPH0461307A (en) | Magnetic alloy film | |
US4609593A (en) | Magnetic recording medium | |
JPS60239916A (en) | Vertical magnetic recording medium | |
JP2635422B2 (en) | Magnetic head | |
JPH0465805A (en) | Magnetic alloy film | |
JP2579184B2 (en) | Magnetic recording media | |
JPS60132305A (en) | Iron-nitrogen laminated magnetic film and magnetic head using the same | |
JPH0517608B2 (en) | ||
JPH0483313A (en) | Soft magnetic thin film and magnetic head | |
JPH0461306A (en) | Magnetic alloy film | |
JP2001015339A (en) | Soft magnetic laminate film and thin-film magnetic head | |
JP2569897B2 (en) | Magnetoresistive head | |
JP2979557B2 (en) | Soft magnetic film | |
KR940005554B1 (en) | Magnetic head | |
JP3279591B2 (en) | Ferromagnetic thin film and manufacturing method thereof | |
JPS58166706A (en) | Magnetic recording medium | |
JPS6398827A (en) | Perpendicular magnetic recording medium | |
JPH04359501A (en) | Multilayer ferromagnetic substance | |
JPS6089539A (en) | Amorphous magnetic alloy having low magnetostriction | |
JPH04367205A (en) | Soft magnetic thin film | |
JPH04168706A (en) | Magnetic film with modulated composition | |
JPS6022726A (en) | Thin film magnetic playback head | |
JPH08167110A (en) | Magnetic head and its production |