JPH0461129A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0461129A
JPH0461129A JP16458690A JP16458690A JPH0461129A JP H0461129 A JPH0461129 A JP H0461129A JP 16458690 A JP16458690 A JP 16458690A JP 16458690 A JP16458690 A JP 16458690A JP H0461129 A JPH0461129 A JP H0461129A
Authority
JP
Japan
Prior art keywords
layer
source
gaas layer
gate
hemt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16458690A
Other languages
Japanese (ja)
Inventor
Mitsuro Kawano
川野 充郎
Ichiro Inami
一郎 稲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16458690A priority Critical patent/JPH0461129A/en
Publication of JPH0461129A publication Critical patent/JPH0461129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To provide a HEMT with an improved noise figure without the decrease in source-gate and source-drain breakdown voltage by forming a thin p-type GaAs layer, with a limited hole concentration, between a semi-insulating GaAs substrate and an undoped GaAs layer. CONSTITUTION:A Be-doped p-type GaAs layer 12, an undoped GaAs layer 13 and an Si-doped AlGaAs layer 15 are sequentially formed on a semi- insulating GaAs substrate 11. The AlGaAs layer 15 includes a two-dimensional electron gas region 14, as an electron source, near the heterojunction with the undoped GaAs layer 13. To provide a HEMT, an aluminum gate electrode 16 is formed on the Si-doped AlGaAs layer 15, and a source electrode 17 and a drain electrode 18 are formed on opposite sides of the gate electrode. The carrier concentration of the Be-doped p-type GaAs layer 12 is in a range of 2X10<11> to 1X10<12>cm<-2>. This HEMT is prevented from the decrease in source- gate and source-drain breakdown voltage and the decrease in gm near the pinch-off point.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置に係り、特に2次元電子ガスを利
用した高電子移動度トランジスタ(High Elec
tron Mobility Transistor、
以下、HEMTと略称する)の改良に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a semiconductor device, and in particular to a high electron mobility transistor (High Electron Transistor) using a two-dimensional electron gas.
tron Mobility Transistor,
The present invention relates to improvements in the HEMT (hereinafter abbreviated as HEMT).

(従来の技術) 旺訂は、バンドギャップの相異なる2種の半導体でヘテ
ロ接合を形成し、そのペテロ接合界面に形成される2次
元電子ガスの電子濃度を制御電極に印加する電圧によっ
て制御することをその動作原理とする3端子能動半導体
装置である。
(Conventional technology) In the advanced technology, a heterojunction is formed using two types of semiconductors with different band gaps, and the electron concentration of the two-dimensional electron gas formed at the heterojunction interface is controlled by the voltage applied to the control electrode. This is a three-terminal active semiconductor device based on this principle of operation.

従来の)IEMTの構造の一例を第3図に断面図で示す
。第3図に示される一例のHE M Tは、半絶縁性G
aAs基板101上に形成されたアンドープGaAsM
102と、このアンドープGaAs層102に積層され
アンドープGaAs層102とへテロ接合を形成する高
不純物濃度のAlGaAs層104を備え、この高不純
物濃度のA lGaAs層104が電子供給層となり、
ペテロ接合界面のアンドープGaAs層102側に電子
走行層103が形成されている。また、AlGaAs層
104上には、制御電極であるゲート電極105と、こ
れを挟むようにAlGaAs層104上にソース電極1
06およびドレイン電極107が設けられ旺MTが構成
されている。
An example of the structure of a conventional IEMT is shown in cross-section in FIG. The example HEMT shown in FIG.
Undoped GaAsM formed on aAs substrate 101
102, and a high impurity concentration AlGaAs layer 104 which is laminated on this undoped GaAs layer 102 and forms a heterojunction with the undoped GaAs layer 102, this high impurity concentration AlGaAs layer 104 serves as an electron supply layer,
An electron transit layer 103 is formed on the undoped GaAs layer 102 side of the Peter junction interface. Further, a gate electrode 105 serving as a control electrode is provided on the AlGaAs layer 104, and a source electrode 105 is provided on the AlGaAs layer 104 to sandwich the gate electrode 105.
06 and a drain electrode 107 are provided to constitute an MT.

(発明が解決しようとする課題) )IEMTの特徴は、電子供給層であるAlGaAs層
104と電子走行層103がへテロ接合によって分離さ
れ、キャリアとL2ての2次元電f−ガスは不純物の少
ないアンドープGaAsJil102側を走行するので
、不純物散乱が抑制されて高い電子移動度が得られる点
にある。従って、HEMTは高周波での低雑音素子とし
ての利用が期待されている。HE M Tの高周波特性
をさらに向上させるためには、ゲート長の短縮が有効な
毛段である。ゲート長を短縮することによりソース・ゲ
ート間容意Cgmの低減と相互コンダクタンスg、の増
大が図られ、遮断周波数ftの増大を通じて雑音特性が
向−J−する。しかし、ゲート長の短縮に伴って生じる
ショートチャネル効果により、旺MTの静特性において
ピンチオフ近傍でのg、の低Fが顕著になるという問題
が生じる。例えば、本発明者らが試作したゲート長が0
.254のHEIITは、第4図に示すような静特性を
示した。このピンチオフ近傍でのg、の低下は、雑音特
性を悪化させる。このため、ゲート長の短縮番1、よる
雑音特性向上の効果は必ずしも十分ではなかった。
(Problems to be Solved by the Invention)) The characteristics of IEMT are that the AlGaAs layer 104, which is the electron supply layer, and the electron transport layer 103 are separated by a heterojunction, and the carriers and the two-dimensional electric f-gas in L2 are free from impurities. Since it runs on the less undoped GaAs Jil 102 side, impurity scattering is suppressed and high electron mobility can be obtained. Therefore, HEMT is expected to be used as a low-noise device at high frequencies. In order to further improve the high frequency characteristics of the HEMT, shortening the gate length is an effective step. By shortening the gate length, the source-gate capacitance Cgm is reduced and the mutual conductance g is increased, and the noise characteristics are improved by increasing the cutoff frequency ft. However, due to the short channel effect that occurs with the shortening of the gate length, a problem arises in that the low F of g near the pinch-off becomes noticeable in the static characteristics of the MT. For example, the gate length prototyped by the present inventors is 0.
.. HEIIT No. 254 exhibited static characteristics as shown in FIG. This decrease in g near the pinch-off worsens the noise characteristics. Therefore, the effect of improving noise characteristics by shortening the gate length was not necessarily sufficient.

ピンチオフ近傍でのらの低下を防ぐため、アンドープG
aAs層102中の電T走行層103から約1000A
の位置に0層厚が約1000Aのl】型GaAs層を挿
入する方法が報告されている(電子情報通信学会技術研
究報告ED87−159 p、、43)。通常HE M
 Tでは、素子分離のためにメサエッチングを?−1な
い、エツチングされたアンドープGaAs層102上に
ソース、1−レイン、ゲートの各電極の電極の電極パッ
ドが形成される。1−記報前されている構造ではメサエ
ッチングの深さによっては、この電極パッドがp型Ga
As層」;に形成されてしまったり、p型層までの距離
が近すぎてしまい、電極パッド間例えば、ソース・ドレ
イン間の耐圧が低下しリーク電流が流れてしまう。従っ
て、電極パッド間の耐圧低下を防ぐためには、メサエッ
チング深さを精密に制御しなければならず、このため素
子の製造において歩留りが低トするという問題があった
In order to prevent a decrease in R in the vicinity of pinch-off, undoped G
Approximately 1000 A from the electric T running layer 103 in the aAs layer 102
A method has been reported in which a 1] type GaAs layer with a zero layer thickness of about 1000 Å is inserted at the position (IEICE technical research report ED87-159 p., 43). Normal HE M
In T, do you use mesa etching for element isolation? Electrode pads for the source, 1-rain, and gate electrodes are formed on the etched undoped GaAs layer 102. 1- In the previously reported structure, depending on the depth of mesa etching, this electrode pad may be a p-type Ga
If the As layer is formed in the As layer or the distance to the p-type layer is too short, the withstand voltage between the electrode pads, for example between the source and the drain, decreases and a leakage current flows. Therefore, in order to prevent a drop in breakdown voltage between the electrode pads, the mesa etching depth must be precisely controlled, resulting in a problem of low yield in device manufacturing.

そこで、本発明者らは、第5図に示すように、半絶縁性
GaAs基板101とアンドープGaAs層102との
間にp型GaAs層1.08 を挿入し、アンドープG
aAs層1.02の厚さを例えば5000 Aとし、電
極パッドをP型層から離し、確実にアンドープGaAs
層りに形成すれば−に記バッド間のリークを抑制できる
ものと考え実験を進めた。ここで、104は電子供給層
である高不純物濃度のAlGaAs層、103は電r走
行層である6A1.GaAs層104」−には、制御電
極であるゲート電極1.05と、これを挟むようにAl
GaAs層104上にソース電極106およびドレイン
電極107が設けられている。本発明者らが、層厚10
0A、p型キャリア濃度が3 X 10”cm−’なる
p型GaAs層を挿入した結晶を用いてHEMTを試作
したところ、第6図に示すようにピンチオフ近傍でのg
、の低下が緩和され、P型GaAs層を基板とアンドー
プGaAs層との間に挿入しても効果のあることが判明
した。しかしながら、第5図に示すl(EMTにおいて
も雑音特性向上の効果は必ずしも十分ではなかった。
Therefore, as shown in FIG.
The thickness of the aAs layer 1.02 is set to 5000 A, for example, and the electrode pad is separated from the P-type layer to ensure that the undoped GaAs
We proceeded with the experiment thinking that if we formed the pads in layers, leakage between the pads could be suppressed. Here, 104 is an AlGaAs layer with high impurity concentration which is an electron supply layer, and 103 is an electron transport layer 6A1. The GaAs layer 104'' has a gate electrode 1.05, which is a control electrode, and an Al layer sandwiching the gate electrode 1.05, which is a control electrode.
A source electrode 106 and a drain electrode 107 are provided on the GaAs layer 104. The inventors have determined that the layer thickness is 10
When we prototyped a HEMT using a crystal in which a p-type GaAs layer with a p-type carrier concentration of 3 x 10"cm-' was inserted, as shown in Figure 6, the g
It was found that the decrease in , was alleviated, and it was found that inserting a P-type GaAs layer between the substrate and the undoped GaAs layer is also effective. However, even in the EMT shown in FIG. 5, the effect of improving noise characteristics was not necessarily sufficient.

原因を調べるためにソース・ゲート間のリーク電流を調
べたところ、p型GaAs層を挿入しないHEMTのリ
ーク電流は6vで10μAであるものが、この素子では
1.5vで10μAであった。また、ソース・ドレイン
間でも耐圧の低化がみられた。さらに、これら耐圧の低
化はP型GaAs層を挿入したことによる電極パッド間
のリーク電流に起因していることが分かった。そこで、
本発明者らはこのGaAsバッファ層の耐圧とp型層の
シートキャリア濃度との関係に注目し依存性を調べたと
ころ、第7図に示すようにp型薄層のシートキャリア濃
度がIX 10”cm−’を越えたときこれらの耐圧低
化が著しくなることが分かった。第7図に示した結果よ
り、第5図に示す構造の計重においては、挿入するp型
層のシートキャリア濃度には耐圧低ドを防ぐという観点
から上限値が存在し、その値は概ね]×1012cm−
2であることが分かった。
In order to investigate the cause, we investigated the leakage current between the source and gate, and found that while the leakage current in a HEMT without a p-type GaAs layer was 10μA at 6V, it was 10μA at 1.5V in this element. In addition, a decrease in breakdown voltage was observed between the source and drain. Furthermore, it was found that these reductions in breakdown voltage were caused by leakage current between the electrode pads due to the insertion of the P-type GaAs layer. Therefore,
The present inventors focused on the relationship between the breakdown voltage of the GaAs buffer layer and the sheet carrier concentration of the p-type layer and investigated the dependence. As shown in FIG. It was found that these reductions in withstand voltage become significant when exceeding ``cm-''.From the results shown in Fig. 7, when weighing the structure shown in Fig. 5, the sheet carrier of the p-type layer to be inserted is There is an upper limit value for the concentration from the viewpoint of preventing low pressure resistance, and that value is approximately] x 1012 cm-
It turned out to be 2.

次に、ショートチャネル効果の抑止という観点からp型
GaAs層挿入の効果を調べるため、p型シートキャリ
ア濃度とピンチオフ近傍(Ins=5mA)でのg、ど
の関係を調べた。その結果を第8図に示す。図示するよ
うにシートキャリア濃度が1X 10″Icm−”では
g、=17mS、 2 XIO”cm−”以上では30
m5〜35m5であった。この結果より、シートキャリ
ア濃度が2 X 101101l”以下では、ショート
チャネル効果の抑止効果がほとんどないことが分かつた
Next, in order to investigate the effect of inserting a p-type GaAs layer from the viewpoint of suppressing the short channel effect, the relationship between the p-type sheet carrier concentration and g near the pinch-off (Ins = 5 mA) was investigated. The results are shown in FIG. As shown in the figure, when the sheet carrier concentration is 1X 10"Icm-", g = 17mS, and when it is 2XIO"cm-" or more, it is 30
It was between 5 m and 35 m5. From this result, it was found that when the sheet carrier concentration is 2×101101 l” or less, there is almost no effect of suppressing the short channel effect.

本発明は以上の問題点に鑑みて改良された構造の半導体
装置を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to provide a semiconductor device with an improved structure.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明に係る半導体装置は、単絶縁性化合物半導体基板
上に順次積層して形成された正孔濃度が2 X 101
1〜I X 1012cm−2の範囲内にあるp型半導
体薄層、該p型半導体層上に設けられたアンドープされ
た電子供給層、および該電子供給層に設けられたゲート
、ソース、ドレインの各電極を具備したことを特徴とす
る。
(Means for Solving the Problems) A semiconductor device according to the present invention is formed by sequentially stacking layers on a single insulating compound semiconductor substrate, and has a hole concentration of 2×101.
A p-type semiconductor thin layer within the range of 1 to I x 1012 cm-2, an undoped electron supply layer provided on the p-type semiconductor layer, and a gate, source, and drain provided on the electron supply layer. It is characterized by having each electrode.

(作 用) 本発明の半導体装置に係るHEMTは、ゲート長をO,
254以下に短縮してもソース・ゲート間およびソース
・ドレイン間の耐圧を低下させる二となく1.かつピン
チオフ近傍でのg、の低下をも改善してRENTの雑音
特性を向上させることができる。
(Function) The HEMT according to the semiconductor device of the present invention has a gate length of O,
Even if it is shortened to 254 or less, the withstand voltage between the source and gate and between the source and drain inevitably decreases. Moreover, it is possible to improve the noise characteristics of RENT by also improving the decrease in g near the pinch-off.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図に本発明の一実施例にかかる旺MTの断面図を示
す。結晶層は次に示す方法の分子−線結晶成長(Mol
ecular Bearn Epitaxy; MBE
)法により成長させた。半絶縁性G a A s基板1
1 、、J−にi3eドープP型GaAs層12を層厚
100A、次にアンドープGaAs層13を層厚500
0A、およびSiドープA1GaAs層15を層厚30
0Aに順次積層させる。上記A1GaAs層15のキャ
リア濃度は2 X 10”cm”″でこのAlGaAs
115は電T−供給層としてアンドープGaAs層13
とのへテロ界面近傍のアンドープGaAsM13側に2
次元電子ガス14を形成する。
FIG. 1 shows a sectional view of an MT according to an embodiment of the present invention. The crystal layer is formed by molecular-line crystal growth (Mol) using the following method.
ecular Bearn Epitaxy; MBE
) grown by the law. Semi-insulating GaAs substrate 1
1,, J-, an i3e-doped P-type GaAs layer 12 with a layer thickness of 100A, and then an undoped GaAs layer 13 with a layer thickness of 500A.
0A, and Si-doped A1GaAs layer 15 with a layer thickness of 30A.
0A is sequentially laminated. The carrier concentration of the A1GaAs layer 15 is 2 x 10"cm", and this AlGaAs
115 is an undoped GaAs layer 13 as a current T-supply layer.
2 on the undoped GaAsM13 side near the hetero interface with
A dimensional electron gas 14 is formed.

次に、SiドープA1.GaAs層15上にA1で形成
されたゲート電極16と、これを挟むようにNi/Au
Geで形成されたソース電極17、およびドレイン電極
18とを備えてHEMTが構成されている。
Next, Si-doped A1. A gate electrode 16 made of A1 is formed on the GaAs layer 15, and a Ni/Au layer is sandwiched therebetween.
A HEMT includes a source electrode 17 and a drain electrode 18 made of Ge.

BeドープP型GaAs層12のキャリア濃度が8XI
O17c〔1、すなわち、シートキャリア濃度も・8×
104.1c〔2としたゲート長0.25鐸の旺MTの
静特性を第2図に示す。第4図に示した従来構造の静特
性と比較して、低ドレイン電流でのhの低減の顕著な改
善を認めることができる。例えば、VD=3V。
The carrier concentration of the Be-doped P-type GaAs layer 12 is 8XI
O17c [1, that is, the sheet carrier concentration is also 8×
Fig. 2 shows the static characteristics of an MT with a gate length of 0.25 mm and a gate length of 104.1c[2. Compared to the static characteristics of the conventional structure shown in FIG. 4, it can be seen that there is a significant improvement in the reduction of h at low drain currents. For example, VD=3V.

IDS” 5 raAでのglは従来構造の16m5に
対して35鱈となっている。また、従来構造でのソース
・ゲート間の電圧が6vで10μAのリーク電流に対し
て、本発明でのRENTでは、ソース・ゲート間の電圧
が5■で10μAのリーク電流であり、また、GaAs
バッファ層の耐圧は25■(リーク電流が10μAとな
る耐圧)であった、従ってp型GaAs薄層を挿入した
ことによるGaAsバッファ層の耐圧劣化、電極パッド
間の耐圧劣化は見られなかった。
The gl at IDS" 5 raA is 35 m5 compared to 16 m5 in the conventional structure. Also, compared to the leakage current of 10 μA at a source-gate voltage of 6 V in the conventional structure, the RENT in the present invention In this case, the leakage current is 10μA when the voltage between the source and gate is 5μ, and the GaAs
The breakdown voltage of the buffer layer was 25 µA (the breakdown voltage at which the leakage current was 10 μA).Therefore, no deterioration in the breakdown voltage of the GaAs buffer layer due to the insertion of the p-type GaAs thin layer and no deterioration in the breakdown voltage between the electrode pads was observed.

さらに、このときの18GHzにおける雑音指数はO,
8clBであり、第3図に示す従来構造のFIEMTに
比べて約0.2dB低減した。
Furthermore, the noise figure at 18 GHz at this time is O,
8 clB, which is approximately 0.2 dB lower than that of the FIEMT with the conventional structure shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、半絶縁性GaAs基
板とバッファ層であるアンドープGaAs層との間にP
型GaAs薄層を挿入したHEMTにおいて、p型Ga
As薄層の正孔面濃度を2 X 1011cm”−”以
上、lX10’′em−”以下とすることにより、ソー
ス・ゲート間およびソース・ドレイン間の1圧を低ドさ
せることなく、ピンチオフ近傍でのg、の低■を抑止し
、雑音特性を向」ニさせることができる。
As described above, according to the present invention, P is formed between the semi-insulating GaAs substrate and the undoped GaAs layer which is the buffer layer.
In HEMTs with a thin GaAs layer inserted, p-type GaAs
By setting the hole surface concentration of the As thin layer to 2 x 1011cm"-" or more and lx10'em-" or less, it is possible to reduce the pressure near the pinch-off without lowering the voltage between the source and gate and between the source and drain. It is possible to suppress low g, and improve noise characteristics.

なお」−記実施例では、p型GaAs層の膜厚100A
、キャリア濃度が8 X 10”cm−’の場合につい
て述べたが、本発明はこの数値に限定されるものではな
く、P型GaAs層の正孔面濃度が2 X 10”cm
−2以1−1l X to”Cm−2以下であればよく
、またP型ドーパントの種類にも制約を受けるものでな
く、例えばZn、 Mg等でもよい。また!(EMTの
素子構造は、リセス構造であってもよく、さらにAlG
aAsの電を供給層とアンドープGaAs層との間にア
ンドープのAlGaAsからなるスペーサ層を設けた構
造としてもよい。
Note that in the example described in "-", the film thickness of the p-type GaAs layer was 100A.
, the carrier concentration is 8 x 10"cm, but the present invention is not limited to this value, and the hole surface concentration of the P-type GaAs layer is 2 x 10"cm.
-2 to 1-1l It may be a recessed structure, and further AlG
A structure may be employed in which a spacer layer made of undoped AlGaAs is provided between the aAs power supply layer and the undoped GaAs layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るHEMTの構造を示す断面図、第
2図は本発明に係るHEMTの静特性を示す線図、第3
図は従来例による旺MTの構造を示す断面図、第4図は
前記第3図に示した従来例によるHEMTの静特性髪示
す線図、第5図は従来例によるHEにTの構造を示す断
面図、第6図は前記第5図に示した従来例による旧EM
Tの静特性を示す線図、第7図はP型GaAs層のシー
トキャリア濃度とGaAsバッファ層の耐圧との関係を
示す線図、第8図はp型GaAs層のシートキャリア濃
度と旺MTのピンチオフ近傍でのg、どの関係を示すl
iA図である。 1.1・半絶縁性GaAS基板、12・・p型GaAs
層、13・・・アンドープGaAs層、14・・・2次
元電子ガス、15− S iドープAlGaAs層、1
6・ゲート電極、17・・ソース電極、18・・・ドレ
イン電極や代理人 弁理士 大 胡 典 夫 101: 102 : 104: 106; ヤ訛健aGaAs、g′飄 アン1”−7’(7ユAs層  103゜5iF−7”
AffieaAs層   105:ソースを駕*   
  107: 第 3 図 2ン5;プt=?3少]“ス ケート1L層に ドLイlt、k V[)S  − 第 4 図 ?l 二’Hl!g:a二、昨^5JIJtドしイン1
1k 0S 108: P竺GαAs膚 〔mA] OS 笛  6
FIG. 1 is a sectional view showing the structure of the HEMT according to the present invention, FIG. 2 is a diagram showing the static characteristics of the HEMT according to the present invention, and FIG.
Figure 4 is a cross-sectional view showing the structure of a conventional HEMT, Figure 4 is a diagram showing the static characteristics of the conventional HEMT shown in Figure 3, and Figure 5 is a diagram showing the structure of a T in the HEMT according to the conventional example. The cross-sectional view shown in FIG. 6 is the old EM according to the conventional example shown in FIG.
Figure 7 is a diagram showing the relationship between the sheet carrier concentration of the p-type GaAs layer and the breakdown voltage of the GaAs buffer layer, and Figure 8 is a diagram showing the relationship between the sheet carrier concentration of the p-type GaAs layer and the MT g near the pinch-off of , which relationship l indicates
It is an iA diagram. 1.1.Semi-insulating GaAS substrate, 12..p-type GaAs
Layer, 13... Undoped GaAs layer, 14... Two-dimensional electron gas, 15- Si doped AlGaAs layer, 1
6. Gate electrode, 17... Source electrode, 18... Drain electrode or agent Patent attorney Norio Ogo 101: 102: 104: 106; YuAs layer 103°5iF-7”
AffieaAs layer 105: Pass the source*
107: 3rd figure 2n5; t=? 3 small] “Skate 1L layer do L it, k V[) S - Fig. 4?l 2'Hl!g: a2, yesterday^5JIJt Do in 1
1k 0S 108: P 纺GαAs 体 [mA] OS Flute 6

Claims (1)

【特許請求の範囲】[Claims]  単絶縁性化合物半導体基板上に順次積層して形成され
た正孔濃度が2×10^1^1〜1×10^1^2cm
^−^2の範囲内にあるp型半導体薄層、該p型半導体
薄層上に設けられたアンドープ半導体層、該アンドープ
半導体層上にこれよりも禁止帯幅が大きくかつ不純物の
ドープされた電子供給層、および該電子供給層に設けら
れたゲート、ソース、ドレインの各電極を具備した半導
体装置。
Hole concentration formed by sequentially stacking layers on a single insulating compound semiconductor substrate is 2 x 10^1^1 to 1 x 10^1^2 cm
A p-type semiconductor thin layer within the range of ^-^2, an undoped semiconductor layer provided on the p-type semiconductor thin layer, and an impurity doped on the undoped semiconductor layer with a band gap larger than this. A semiconductor device comprising an electron supply layer and gate, source, and drain electrodes provided on the electron supply layer.
JP16458690A 1990-06-22 1990-06-22 Semiconductor device Pending JPH0461129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16458690A JPH0461129A (en) 1990-06-22 1990-06-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16458690A JPH0461129A (en) 1990-06-22 1990-06-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0461129A true JPH0461129A (en) 1992-02-27

Family

ID=15795992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16458690A Pending JPH0461129A (en) 1990-06-22 1990-06-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0461129A (en)

Similar Documents

Publication Publication Date Title
US6777278B2 (en) Methods of fabricating aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
US6797994B1 (en) Double recessed transistor
US10411125B2 (en) Semiconductor device having high linearity-transconductance
US10658501B2 (en) Vertically stacked multichannel pyramid transistor
US4652896A (en) Modulation doped GaAs/AlGaAs field effect transistor
EP2416353A1 (en) Semiconductor device
US5900641A (en) Field effect semiconductor device having a reduced leakage current
JPS6242569A (en) Field effect transistor
US5751029A (en) Field-effect semiconductor device having heterojunction
US5389807A (en) Field effect transistor
US5945695A (en) Semiconductor device with InGaP channel layer
JPH0461129A (en) Semiconductor device
US6787817B2 (en) Compound semiconductor having a doped layer between the gate and an ohmic contact of an active region
US5408111A (en) Field-effect transistor having a double pulse-doped structure
JP2500459B2 (en) Heterojunction field effect transistor
Prost et al. High speed, high gain InP-based heterostructure FETs with high breakdown voltage and low leakage
JP2894801B2 (en) Semiconductor transistor and method of manufacturing the same
JPS59171167A (en) Field effect transistor
JP3275072B2 (en) Semiconductor element
JPH04369842A (en) Heterojunction field-effect transistor
JPH06163602A (en) High-electron-mobility transistor and its manufacture
JPH0864616A (en) Compound semiconductor device
JPH08321600A (en) Heterojunction field effect transistor and fabrication thereof
JPH06163598A (en) High electron mobility transistor
JPS6177368A (en) Field effect transistor