JPH0461023B2 - - Google Patents

Info

Publication number
JPH0461023B2
JPH0461023B2 JP60119257A JP11925785A JPH0461023B2 JP H0461023 B2 JPH0461023 B2 JP H0461023B2 JP 60119257 A JP60119257 A JP 60119257A JP 11925785 A JP11925785 A JP 11925785A JP H0461023 B2 JPH0461023 B2 JP H0461023B2
Authority
JP
Japan
Prior art keywords
parts
weight
crosslinking
electron beam
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60119257A
Other languages
Japanese (ja)
Other versions
JPS61276838A (en
Inventor
Kenji Harada
Shuichi Tsurumaru
Tadayuki Nishio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP11925785A priority Critical patent/JPS61276838A/en
Publication of JPS61276838A publication Critical patent/JPS61276838A/en
Publication of JPH0461023B2 publication Critical patent/JPH0461023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は電子線照射架橋ポリオレフイン組成
物に関するものである。 〔従来の技術〕 ポリオレフインは電気的特性、機械的特性等に
優れていることから広範囲にわたつて使用されて
いるが、使用環境によつては耐熱変形性、機械的
特性、耐薬品性等の向上がさらに要求されること
があり、そのために通常架橋が行なわれている。
このような架橋方法の一つに電子線照射法があ
り、特に機器内配線等の細物の絶縁電線のように
薄い被覆材料に対しては水素蒸気架橋法等に比較
して非常に効率が良いことから、少なくともこの
ような分野においては主として電子線照射法が採
用されている。 一般にポリオレフインを高温雰囲気下で使用す
るためには、架橋によつて耐熱変形性を向上させ
ると同時に、耐熱老化特性をも改善することが肝
要であることから、従来、電子線照射に供される
樹脂に対して架橋効率を上げるための架橋促進剤
と熱老化防止剤とが配合されて来た。その架橋促
進剤にはたとえばトリメチルロールプロパントリ
メタクリレート(以下、TMPTと略称する)、ま
た熱老化防止剤には4,4′−チオ−ビス(6−t
−ブチル−m−クレゾール)(以下、フエノール
系老化防と略称する)が使用されている。 〔発明が解決しようとする問題点〕 しかし、従来のこのような電子線照射架橋ポリ
オレフイン組成物には次のような問題点があつ
た。すなわち、 TMPTの架橋促進効果があまり大きくない。 フエノール系老防がTMPTの架橋促進効果
を一層低下させる。 TMPTの親和性が悪くブリード現象(にじ
み出し現象)生じやすい。 である。 〔問題点を解決するための手段〕 上記の問題点を解決するために、この発明はポ
リオレフイン樹脂100重量部にジアリルクロレン
デート0.5〜5重量部および2−メルカブトベン
ゾイミダゾールの亜鉛塩または2−メルカブト−
メチル−ベンゾイミダゾールの亜鉛塩2−30重量
部を配合した組成物とする手段を採用したのであ
る。 〔実施例〕 この発明でいうポリオレフインとは、たとえば
C2〜C8のオレフインモノマーの1種または2種
以上の重合体、C2〜C8のジエンモノマーの重合
体、エチレン酢酸ビニル共重合体、エチレンエチ
ルアクリレート共重合体およびこれらの混合物を
いう。 また、この発明でいうジアリルクロレンデート
は、電子線照射時に、ポリマー鎖からの脱水素反
応を促進し、架橋反応を促す作用を有するもので
次の化学構造式で表わされる。 なお、nは1〜4程度のものが使用に供される
が、好ましくは1又は2のものである。このジア
リルクロレンデートは液体でポリオレフインには
きわめて親和性があつてよく分散する。そしてこ
の発明においては、ポリオレフイン100重量部に
対して、ジアリルクロレンデートの添加量を0.5
〜5重量部とすることが望ましい。なぜならば、
添加量が0.5重量部未満では、架橋促進効果が認
められず、逆に5重量部を越える場合には、架橋
促進効果の向上がないばかりでなく、ブリード現
象が生じ、商品価値を著しく低下させるからであ
る。 つぎにこの発明における熱老化防止剤として
は、前記の架橋促進剤を使用するうえで、2−メ
ルカプトベンゾイミダゾールの亜鉛塩 または2−メルカプト−メチル−ベンゾイミダ
ゾールの亜鉛塩 があげられ、これらの化合物は空気中における電
子線照射時の酸素によるポリオレフインの老化を
防ぎ、しかも架橋反応を阻害することなく、ブリ
ード現象もなく、耐熱老化特性にきわめて顕著な
効果を表わす。そしてこのような熱老化防止剤の
配合量はポリオレフイン100重量部に対して2〜
30重量部とすることが望ましい。なぜならば熱老
化防止剤が2重量部未満の少量では耐熱性の向上
に不充分であり、逆に、30重量部を越える場合に
は、増量による効果が期待できないばかりでな
く、機械的特性の低下が著しくなつて好ましくな
いからである。 いま、つぎの基準配合、すなわち (重量部) (1) 線状低密度ポリエチレン(日本ユニカ社製: GS−650) ……80部 (2) エチレン−エチルアクリレート共重合体(同
社製:DPDJ−6182)
……20部に難燃剤および難燃助剤として、 (3) デカブロモジフエニルエーテル(三井フアイ
ンケミカル社製:プラネロンDB−102)
……50部 (4) 三酸化アンチモン
……20部さらに加工助剤として (5) 亜鉛華 ……5部 (6) ステアリン酸亜鉛 ……2部 (7) バリウム−亜鉛系安定剤 ……3部 に第1表に示す割合で架橋促進剤および熱老化防
止剤を配合した(実施例1〜10)。これら各例の
諸原料はミキシングロールによつて150〜180℃に
加熱混練した後、ゲージ圧150Kg/cm2、180℃10分
間の条件でプレス成形し、0.5mm厚のシートを作
製し、加速電圧750keV、44mAの条件下、得ら
れたシートに対し空気中で電子線照射を行なつ
た。この際の電子線照射量はいずれも20Mradで
あり、その電子線照射後におけるシートの引張り
強さ(Kg/mm2)および伸び(%)を測定した。な
お、電子線照射後のシートについては特にUL規
格の125℃定格評価法に準じて158℃の空気熱老化
試験機中に7日間保持した熱老化試験後の引張り
強さおよび伸びとをこの熱老化試験前の値に対す
る残率(%)の形で求め、電子線照射後のゲル分
率(%)、ブリード現象の有無(”あり”を×
印、”なし”を○印で示す)などとともにえられ
た結果を第1表にまとめて併記した。ポリオレフ
インを架橋したものは架橋度が増すにつれゲル分
率は増加し、それと共に加熱変形性が減少すると
いう関係があり、第1表中のゲル分率(%)はキ
シレン溶液に120℃で24時間浸漬した後、120℃で
24時間乾燥し、 ゲル分率(%)=乾燥後の重量/浸漬前の重量×100 によつて求めた。また同表中「TMPT」は前記
したとおりトリメチロールプロパントリメタクリ
レートである。
[Industrial Application Field] This invention relates to an electron beam irradiation crosslinked polyolefin composition. [Prior Art] Polyolefins are widely used due to their excellent electrical and mechanical properties. However, depending on the usage environment, their heat deformation resistance, mechanical properties, chemical resistance, etc. Further improvements may be required and crosslinking is usually carried out for this purpose.
One such crosslinking method is electron beam irradiation, which is much more efficient than hydrogen vapor crosslinking, especially for thin coating materials such as thin insulated wires used in equipment wiring. Because of its advantages, electron beam irradiation is mainly used, at least in this field. In general, in order to use polyolefins in high-temperature environments, it is important to improve their heat deformation resistance through crosslinking and at the same time improve their heat aging resistance. Crosslinking accelerators and heat aging inhibitors have been added to resins to increase crosslinking efficiency. The crosslinking accelerator is, for example, trimethylolpropane trimethacrylate (hereinafter abbreviated as TMPT), and the heat aging inhibitor is 4,4'-thio-bis(6-t
-butyl-m-cresol) (hereinafter abbreviated as phenolic anti-aging agent) is used. [Problems to be Solved by the Invention] However, such conventional electron beam irradiation crosslinked polyolefin compositions have the following problems. In other words, the crosslinking promoting effect of TMPT is not very large. Phenolic anti-aging agents further reduce the crosslinking promoting effect of TMPT. TMPT has poor affinity and tends to cause bleed phenomenon. It is. [Means for Solving the Problems] In order to solve the above problems, the present invention adds 0.5 to 5 parts by weight of diallyl chlorendate and a zinc salt of 2-mercabutobenzimidazole or 2-mercabutobenzimidazole to 100 parts by weight of a polyolefin resin. -Merkabuto-
They adopted a method of creating a composition containing 2-30 parts by weight of zinc salt of methyl-benzimidazole. [Example] The polyolefin referred to in this invention is, for example,
Refers to one or more polymers of C2 to C8 olefin monomers, polymers of C2 to C8 diene monomers, ethylene vinyl acetate copolymers, ethylene ethyl acrylate copolymers, and mixtures thereof. . Further, the diallyl chlorendate referred to in this invention has the effect of promoting dehydrogenation reaction from polymer chains and promoting crosslinking reaction during electron beam irradiation, and is represented by the following chemical structural formula. Note that n may be about 1 to 4, but preferably 1 or 2. This diallylchlorendate is a liquid and has an extremely high affinity for polyolefins and is well dispersed. In this invention, the amount of diallylchlorendate added is 0.5 parts by weight per 100 parts by weight of polyolefin.
It is desirable to set it as 5 parts by weight. because,
If the amount added is less than 0.5 parts by weight, no crosslinking promotion effect will be observed, and if it exceeds 5 parts by weight, not only will there be no improvement in the crosslinking promotion effect, but a bleeding phenomenon will occur, significantly reducing the commercial value. It is from. Next, as the heat aging inhibitor in this invention, when using the above-mentioned crosslinking accelerator, zinc salt of 2-mercaptobenzimidazole is used. or zinc salt of 2-mercapto-methyl-benzimidazole These compounds prevent the aging of polyolefins due to oxygen during electron beam irradiation in the air, do not inhibit the crosslinking reaction, do not cause any bleeding phenomenon, and exhibit extremely remarkable effects on heat aging resistance. The amount of such heat aging inhibitor added is 2 to 100 parts by weight of polyolefin.
The amount is preferably 30 parts by weight. This is because if the amount of heat aging inhibitor is less than 2 parts by weight, it is insufficient to improve heat resistance, and conversely, if it exceeds 30 parts by weight, not only can no effect be expected from increasing the amount, but also the mechanical properties may deteriorate. This is because the decrease becomes significant, which is undesirable. Now, the following standard composition, i.e. (parts by weight) (1) Linear low-density polyethylene (manufactured by Nippon Unica Co., Ltd.: GS-650) ...80 parts (2) Ethylene-ethyl acrylate copolymer (manufactured by the same company: DPDJ- 6182)
...20 parts as a flame retardant and flame retardant aid, (3) Decabromodiphenyl ether (Mitsui Fine Chemicals: Planelon DB-102)
...50 parts (4) Antimony trioxide
...20 parts and as a processing aid (5) Zinc white ...5 parts (6) Zinc stearate ...2 parts (7) Barium-zinc stabilizer ...3 parts cross-linked in the ratio shown in Table 1. Accelerators and heat aging inhibitors were formulated (Examples 1-10). The raw materials in each of these examples were heated and kneaded at 150 to 180°C using a mixing roll, then press-formed under the conditions of a gauge pressure of 150 kg/cm 2 and 180°C for 10 minutes to produce a 0.5 mm thick sheet. The obtained sheet was irradiated with an electron beam in air at a voltage of 750 keV and 44 mA. The amount of electron beam irradiation at this time was 20 Mrad in each case, and the tensile strength (Kg/mm 2 ) and elongation (%) of the sheet after the electron beam irradiation were measured. In addition, for sheets after electron beam irradiation, the tensile strength and elongation after a heat aging test held in an air heat aging tester at 158°C for 7 days in accordance with the UL standard's 125°C rating evaluation method are calculated based on the heat aging test. It is determined in the form of the residual rate (%) of the value before the aging test, and the gel fraction (%) after electron beam irradiation and the presence or absence of bleeding phenomenon (“Yes” is
The results obtained are summarized and listed in Table 1. In crosslinked polyolefins, as the degree of crosslinking increases, the gel fraction increases, and the heat deformability decreases. After soaking for an hour, at 120℃
It was dried for 24 hours and determined by gel fraction (%) = weight after drying/weight before immersion x 100. In addition, "TMPT" in the same table is trimethylolpropane trimethacrylate as described above.

【表】【table】

〔効果〕〔effect〕

以上述べたように、この発明によつて、すぐれ
た架橋促進効果、引張り強さや伸び等の機械的性
質、耐熱老化特性および耐ブリード性などの諸点
で、従来見られなかつた良い結果を示す電子線照
射ポリオレフイン組成物が得られた。
As described above, the present invention has enabled electronics to exhibit previously unseen good results in terms of excellent crosslinking promotion effects, mechanical properties such as tensile strength and elongation, heat aging resistance, and bleed resistance. A radiation-irradiated polyolefin composition was obtained.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリオレフイン100重量部にジアリルクロレ
ンデート0.5〜5重量部および2−メルカブトベ
ンゾイミダゾールの亜鉛塩または2−メルカブト
−メチル−ベンゾイミダゾールの亜鉛塩を2〜30
重量部配合したことを特徴とする電子線照射架橋
ポリオレフイン組成物。
1 Add 0.5 to 5 parts by weight of diallylchlorendate and 2 to 30 parts by weight of a zinc salt of 2-mercabutobenzimidazole or a zinc salt of 2-mercabuto-methyl-benzimidazole to 100 parts by weight of a polyolefin.
An electron beam irradiation crosslinked polyolefin composition characterized in that it contains parts by weight.
JP11925785A 1985-05-31 1985-05-31 Polyolefin composition crosslinked by electron ray irradiation Granted JPS61276838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11925785A JPS61276838A (en) 1985-05-31 1985-05-31 Polyolefin composition crosslinked by electron ray irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11925785A JPS61276838A (en) 1985-05-31 1985-05-31 Polyolefin composition crosslinked by electron ray irradiation

Publications (2)

Publication Number Publication Date
JPS61276838A JPS61276838A (en) 1986-12-06
JPH0461023B2 true JPH0461023B2 (en) 1992-09-29

Family

ID=14756850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11925785A Granted JPS61276838A (en) 1985-05-31 1985-05-31 Polyolefin composition crosslinked by electron ray irradiation

Country Status (1)

Country Link
JP (1) JPS61276838A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143A (en) * 1980-05-31 1982-01-05 Dainichi Nippon Cables Ltd Polyethylene composition for high-expansion extrusion
JPS57197155A (en) * 1981-05-11 1982-12-03 Goodyear Tire & Rubber Rubber composite material reinforced by metal
JPS61228043A (en) * 1985-03-30 1986-10-11 Tatsuta Electric Wire & Cable Co Ltd Polyolefin composition crosslinked by irradiation with electron rays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143A (en) * 1980-05-31 1982-01-05 Dainichi Nippon Cables Ltd Polyethylene composition for high-expansion extrusion
JPS57197155A (en) * 1981-05-11 1982-12-03 Goodyear Tire & Rubber Rubber composite material reinforced by metal
JPS61228043A (en) * 1985-03-30 1986-10-11 Tatsuta Electric Wire & Cable Co Ltd Polyolefin composition crosslinked by irradiation with electron rays

Also Published As

Publication number Publication date
JPS61276838A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
EP1000981B1 (en) Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
JP2740253B2 (en) High voltage cable with insulation based on ethylene polymer with high resistance to water tree formation
US5539052A (en) Crosslinked thermoplastic elastomers
JPH0461023B2 (en)
JPH0155661B2 (en)
JP2648874B2 (en) Heat-resistant polyolefin composition
WO1986004595A1 (en) Polyolefin composition
JP2820736B2 (en) Radiation resistant insulation composition
JP2582395B2 (en) Flame retardant composition
JPH07126450A (en) Non-halogenic flame-retardant insulating composition useful under radiation exposure environment
JPH0573135B2 (en)
JPH07116333B2 (en) Heat resistant resin composition
JPH0114932B2 (en)
JPS6214175B2 (en)
JPH01204945A (en) Heat-resistant and flame-retardant composition
JP2857733B2 (en) Heat resistant crosslinked polyolefin composition
JPH085997B2 (en) Resin composition for wire coating
JPS59139504A (en) Copolymer electrically insulating composition of fluoroolefin for suppressing generation of hydrogen fluoride
JPS62230809A (en) Electron radiation crosslinked polyethylene composition
JP2579765B2 (en) Resin composition
JPH0114931B2 (en)
JPH0699601B2 (en) Heat resistant resin composition
JPS5989345A (en) Electrical insulating composition
JPH03115339A (en) Radiation-resistant insulating composition
JPS6389517A (en) Electron beam-crosslinked polyethylene composition