JPH0460934B2 - - Google Patents

Info

Publication number
JPH0460934B2
JPH0460934B2 JP62282528A JP28252887A JPH0460934B2 JP H0460934 B2 JPH0460934 B2 JP H0460934B2 JP 62282528 A JP62282528 A JP 62282528A JP 28252887 A JP28252887 A JP 28252887A JP H0460934 B2 JPH0460934 B2 JP H0460934B2
Authority
JP
Japan
Prior art keywords
quartz glass
strain
furnace core
core tube
nuclei
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62282528A
Other languages
Japanese (ja)
Other versions
JPH01126238A (en
Inventor
Kyoichi Inagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP28252887A priority Critical patent/JPH01126238A/en
Publication of JPH01126238A publication Critical patent/JPH01126238A/en
Publication of JPH0460934B2 publication Critical patent/JPH0460934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、半導体の熱処理工程に用いられる石
英ガラス炉芯管に関し、特に、高温における変
形、たわみあるいはそり等の不都合現象が低減さ
れた耐熱性炉芯管に関するものである。 (従来の技術) 半導体ウエーハの熱処理用治具としては高純度
で高温に耐えるということから石英ガラス部材が
汎用されているが、これについてはその使用中に
おける変形、たわみ、そりなどを防止する目的に
おいて石英ガラス部材の外表面をクリストバライ
ト層で被覆するということが提案されている(特
公昭47−1477号公報、同47−1883号公報参照)。 しかし、このクリストバライト層を有する石英
ガラス管の製造は、石英ガラス管上に粉末状の純
粋なクリストバル石をスプレーしたのち、これを
火焔処理するかあるいは炉中で加熱してこのクリ
ストバル石を石英ガラス管表面に焼付け、これを
微細結晶層に成長させるように高温下に長時間加
熱するという工程で行われるために、処理時間が
長く、この工程中に石英ガラス管がつぶれるとい
う不利があるし、このようにして得られた石英ガ
ラス管にはこのクリストバライト層がダストの原
因となるためにクリーンルーム内で使用すること
ができないという欠点もある。 (発明が解決しようとする問題点) 本発明者は、半導体工業に用いられる炉芯管の
上記のような問題点ないし欠点を解決すべく、特
に、クリストバライト層の耐熱性向上効果に着目
し、クリストバライトがダストの原因とならない
炉芯管への層形成方法について研究を重ね、実用
的に極めて望ましい炉芯管形成技術を開発した。 すなわち、本発明の課題は、改善された耐熱性
を有する、クリーンルームにおいても使用し得る
炉芯管を提供することにある。 (問題点を解決するための手段) 本発明は、特許請求の範囲に記載の構成要件を
要旨とするものである。 本発明は、特に、クリストバライト結晶に成長
するひずみ核形成剤を石英ガラス炉芯管の外表面
に附着させ、加熱により、これが管の表層部に浸
透させ、その表層部に浸透したひずみ核が半導体
の高温熱処理工程においてクリストバライト結晶
に容易に成長し、その高温での使用において変
形、ひずみ、そりなどのない望ましい耐熱性炉芯
管を形成するという技術的知見に基づくものであ
る。 本発明の石英ガラス炉芯管は、半導体工業にお
ける技術的要求に関連して、その材料としての石
英ガラスは可及的高純度のものが用いられる。半
導体は、各種金属不純物類による汚染が重大であ
り、特に、ナトリウム、カリウム、リチウムなど
のアルカリ金属類の含有量は、いずれも1ppm以
下であることが望ましく、従つて、本発明の炉芯
管は、天然水晶を溶融成形したもの、けい素化合
物の加水分解や熱分解などで形成された合成石英
ガラス母材を加熱溶融成形したものが好ましく用
いられる。これらは高い無色透明性を有する高純
度素材であるが、半導体の熱処理において要求さ
れる均熱効果を高めるために、微細気泡入りの半
透明の炉芯管として提供すこともできる。この気
泡は、真球状でもよいが、楕円球状のものは、そ
の方位によつてさらに均熱効果が高められるとい
う利点を有する。気泡の大きさは、実用的には、
楕円球状のものでは長径が15〜1000μm程度、ま
た真球では直径が10〜100μm程度である。 本発明においては、そのような炉芯管の外表面
全体にひずみ核形成剤を附着させ、加熱処理され
る。このひずみ核形成剤としては例えば亜鉛、マ
グネシウム、カルシウム、ジルコニウム、すず、
ほう素、アルミニウム、りん、アンチモンおよ
び/またはこれらの元素の一つの化合物が適して
いるが、実用的には、特にアルミニウム化合物が
好適である。そのようなアルミニウム化合物とし
ては、例えば、塩化アルミニウム、硫酸アルミニ
ウム、硝酸アルミニウム、酢酸アルミニウム等の
水に溶解する塩類が好ましく用いられる。これら
は、通常、適当な濃度に水に溶解して炉芯管表面
に塗布、附着される。その附着量が少なすぎる
と、表層部のひずみ核の形成が少なくなり、満足
し得る改善効果が得られないし、多すぎると石英
ガラス部材の表面が失透する。 また、この加熱処理はこの石英ガラス部材を直
接火焔で加熱するか電気炉中で加熱すればよい
が、この加熱温度は1000℃以下では核形成が行わ
れないので、1000℃以上、好ましくは1200〜1300
℃とし、この温度で10分〜10時間加熱するように
すればよく、この成形品が管状体で高温加熱によ
つて管がつぶれるおそれがある場合にはこの成形
品を適宜回転させることがよい。 このように処理された石英ガラス部材はその表
面に付着した核形成剤がガラス層内に浸透し、加
熱によつてガラス層内に核が形成されるのである
が、このひずみ核はその大きさが5μm以下のもの
ではクリストバライト結晶に成長するのに長時間
を要するので効果がない。一方、1000μmよりも
大きくなるともはや本発明が目的とするひずみ核
ではなく、すでにクリストバライト結晶層をもつ
た石英ガラス部材製品となつてしまうので、本発
明におけるひずみ核は1000μm以下のものとされ
る。 このひずみ核を含有する石英ガラス部材は高温
時における機械的強度の大きいものになるのであ
るが、そのひずみ核は外表面から100μmの深さの
ところに存在していればよい。ひずみ核の存在数
についてはこれが核となつてクリストバライト結
晶が成長されるものであることから、あまり少な
くては効果が薄くなり、10000個/mm3以上とする
と外表面までクリストバライトとなつてしまつて
ダストの原因となり、クリーンルーム内で使用す
ることができなくなるので、1mm3当り10〜10000
個、好ましくは100〜5000個の範囲となるように
することがよい。 本発明の石英ガラス炉芯管の表層部に存在させ
るひずみ核は、その表層部を、例えば、二枚の偏
光フイルターを直交状に重ね合わせ、これを通し
て偏光顕微鏡で観察することにより容易に確認す
ることができる。石英ガラス中にひずみ核が形成
されると、貼付図面第1図及び第2図の写真から
判るように、ひずみ核の周囲が星のように明るく
輝いてその存在が明確にされ、その焦点距離を順
次、特定長だけ移動させて観察することにより単
位体積あたりの存在核数を確認することができ
る。ひずみ核がない場合には、観察面全体が暗
く、核らしきものの存在は全く認められない。 (発明の効果) 本発明の石英ガラス部材はそのガラス層中に高
温下でクリストバライト結晶に成長するひずみ核
を含有しているので、これを半導体工業における
ウエーハ処理用などに使用するとこの処理が比較
的高温で行われることからこのガラス層中にクリ
ストバライト結晶が比較的すみやかに成長し、こ
れによつて機械的強度の大きいものとなるので、
これが使用中にたわんだり、変形したり、そると
いうことがなくなるという有利性をもつものであ
る。 (実施例) つぎに本発明の実施例、比較例をあげる。 実施例1〜5,比較例1〜5 天然水晶を酸水素火焔で溶融して外径202mm、
厚さ6mmの透明石英ガラス製炉芯管1を作り、ま
た天然石英を電気溶融して微細気泡入りの半透明
な石英ガラス製炉芯管2を作つた。一方、上記と
同様にして作つた炉芯管1および2についてこれ
らの外表面に塩化アルミニウムの水溶液を塗布
し、ついで加熱処理することにより、外表面から
75μmのところのアルミニウム平均濃度が200ppm
である透明石英ガラス製炉芯管3、および微細気
泡入り半透明の石英ガラス製炉芯管4を作つた。 つぎに、この炉芯管3,4から長さ20mmのリン
グを切り出してリング、リングを作り、この
リングを箱型電気炉内の石英ガラス炉床板上に横
向きに置き、1250℃で10時間または1300℃で30分
間加熱してから取り出し冷却したものについてこ
れらのリング中に存在するひずみ核の平均濃度、
ひずみ核の大きさを測定し、外観をしらべると共
に、これらのリングについてはこれを箱型電気炉
中に立てゝ入れ1200℃で120時間加熱したときの
リングのつぶれ量を測定したところ、第1表に示
したとおりの結果が得られた。 つぎに比較のために上記における透明石英ガラ
ス製炉芯管3から得られたリングを加熱処理し
ないもの(比較例1)、リングを箱型電気炉中
に横向きにおいて1350℃で24時間加熱したもの
(比較例2)および透明石英ガラス製炉心管1か
ら得られたリングを加熱処理しないもの(比較
例5)について、そのリング中に存在しているひ
ずみ核の平均濃度、ひずみ核の大きさ、外観をし
らべると共に、上記と同じ加熱条件におけるリン
グのつぶれ量を測定したところ、第1表に併記し
たとおりの結果が得られた。 また、横型管状炉に装着し、この炉内で半導体
シリコーンウエーハの熱処理を1200℃で2000時間
行なつたところ、第2表に示したように1250℃で
10時間熱処理したもの(実施例3,4)はひずみ
核の発生が適正であり、したがつてクリストバラ
イト結晶の成長も適度であり、これによつて機械
的強度が大きくなつているのでウエーハ処理中に
たわみ、変形、そりなどが生じなかつたが、ひず
み核を発生させていない炉芯管3(比較例3)は
クリストバライト結晶の成長が始まる前の速い時
期につぶれてしまい、1350℃で24時間処理したも
の(比較例4)は横型管状炉に装着する前に外表
面がクリストバライト層になつていたために、装
着時にこれがダストの原因となり、ウエーハの歩
留りが低下した。 なお、上記で得た透明石英炉芯管1の外表面に
塩化アルミニウムの10重量%溶液を塗布し、さら
にバーナーで焼き仕上げをした炉芯管から長さ20
mmのリングを切り出し、箱型電気炉内において
1250℃で10時間加熱したのち、大気中で冷却し、
このリングの外表面から低速カツターを用いて厚
さ100μmのガラス片を切り出して、このものにつ
いての偏光顕微鏡写真をオリンパス社製の実体顕
微鏡の偏光装置を用いて倍率40倍で撮影したとこ
ろ、このひずみ核について第1図に示したとおり
の結果が得られ、この箱型電気炉における加熱を
1200℃で5時間としたものについては第2図に示
したとおりの結果が得られた。
(Field of Industrial Application) The present invention relates to a quartz glass furnace core tube used in the heat treatment process of semiconductors, and in particular to a heat-resistant furnace core tube with reduced undesirable phenomena such as deformation, deflection, and warpage at high temperatures. be. (Prior art) Quartz glass members are commonly used as jigs for heat treatment of semiconductor wafers due to their high purity and ability to withstand high temperatures.The purpose of this is to prevent deformation, deflection, warping, etc. during use. It has been proposed that the outer surface of a quartz glass member be coated with a cristobalite layer (see Japanese Patent Publication Nos. 47-1477 and 47-1883). However, in order to manufacture a quartz glass tube with a layer of cristobalite, powdered pure cristobalite is sprayed onto the quartz glass tube, and then this is treated with a flame or heated in a furnace to convert the cristobalite into quartz glass. The process involves baking the tube surface and heating it at high temperature for a long time to grow it into a fine crystalline layer, which has the disadvantage that the processing time is long and the quartz glass tube can be crushed during this process. The quartz glass tube thus obtained also has the disadvantage that it cannot be used in a clean room because the cristobalite layer causes dust. (Problems to be Solved by the Invention) In order to solve the above-mentioned problems and drawbacks of furnace core tubes used in the semiconductor industry, the present inventors focused particularly on the effect of improving heat resistance of the cristobalite layer, We have conducted extensive research into a method for forming a layer on the furnace core tube that does not cause cristobalite dust, and have developed a method for forming the furnace core tube that is highly desirable for practical use. That is, an object of the present invention is to provide a furnace core tube that has improved heat resistance and can be used even in a clean room. (Means for Solving the Problems) The gist of the present invention is the constituent elements described in the claims. In particular, in the present invention, a strain nucleating agent that grows into cristobalite crystals is attached to the outer surface of a quartz glass furnace core tube, and by heating, this agent penetrates into the surface layer of the tube, and the strain nuclei that have penetrated into the surface layer become semiconductors. This is based on the technical knowledge that cristobalite crystals easily grow in the high-temperature heat treatment process, and that a desirable heat-resistant furnace core tube without deformation, distortion, or warp can be formed when used at high temperatures. In the quartz glass furnace core tube of the present invention, the quartz glass used as its material is of the highest possible purity in relation to the technical requirements in the semiconductor industry. Semiconductors are seriously contaminated by various metal impurities, and in particular, it is desirable that the content of alkali metals such as sodium, potassium, and lithium be 1 ppm or less. Preferably used is one obtained by melt-molding natural quartz crystal, or one obtained by heating and melt-molding a synthetic quartz glass base material formed by hydrolysis or thermal decomposition of a silicon compound. These are high-purity materials with high colorless transparency, but they can also be provided as translucent furnace core tubes with fine bubbles in order to enhance the heat-uniforming effect required in semiconductor heat treatment. The bubbles may be perfectly spherical, but ellipsoidal bubbles have the advantage that the heat uniformity effect is further enhanced depending on their orientation. In practical terms, the size of the bubble is
An elliptical sphere has a major axis of about 15 to 1000 μm, and a true sphere has a diameter of about 10 to 100 μm. In the present invention, a strain nucleating agent is applied to the entire outer surface of such a furnace core tube, and then heat treated. Examples of the strain nucleating agent include zinc, magnesium, calcium, zirconium, tin,
Boron, aluminum, phosphorus, antimony and/or compounds of one of these elements are suitable, although aluminum compounds are particularly preferred in practice. As such an aluminum compound, for example, water-soluble salts such as aluminum chloride, aluminum sulfate, aluminum nitrate, and aluminum acetate are preferably used. These are usually dissolved in water to an appropriate concentration and applied and adhered to the surface of the furnace tube. If the amount of adhesion is too small, the formation of strain nuclei in the surface layer will be reduced and a satisfactory improvement effect will not be obtained, and if the amount is too large, the surface of the quartz glass member will devitrify. In addition, this heat treatment can be carried out by heating the quartz glass member directly with a flame or in an electric furnace, but since nucleation does not occur at a heating temperature of 1000°C or lower, preferably 1200°C or higher. ~1300
℃, and heat at this temperature for 10 minutes to 10 hours. If the molded product is a tubular body and there is a risk of the tube being crushed by high-temperature heating, it is recommended to rotate the molded product as appropriate. . The nucleating agent attached to the surface of the quartz glass member treated in this way penetrates into the glass layer, and nuclei are formed within the glass layer by heating, but these strain nuclei are If the crystal size is less than 5 μm, it takes a long time to grow into cristobalite crystals, so it is not effective. On the other hand, if it is larger than 1000 μm, the strain nucleus is no longer the object of the present invention, and the quartz glass member product already has a cristobalite crystal layer, so the strain nucleus in the present invention is set to be 1000 μm or less. A quartz glass member containing these strain nuclei has a high mechanical strength at high temperatures, and the strain nuclei only need to exist at a depth of 100 μm from the outer surface. As for the number of strain nuclei present, since these serve as nuclei for the growth of cristobalite crystals, if there are too few, the effect will be weak, and if it is more than 10,000/ mm3 , the outer surface will become cristobalite. 10 to 10,000 per mm3 as it causes dust and cannot be used in a clean room.
number, preferably in the range of 100 to 5000. Strain nuclei present in the surface layer of the quartz glass furnace core tube of the present invention can be easily confirmed by, for example, placing two polarizing filters orthogonally overlapping each other and observing the surface layer through a polarizing microscope. be able to. When a strain nucleus is formed in quartz glass, the area around the strain nucleus shines brightly like a star, making its presence clear, as can be seen from the photographs in attached drawings Figures 1 and 2. The number of nuclei present per unit volume can be confirmed by sequentially moving a specific length and observing them. When there are no strain nuclei, the entire observation surface is dark and the presence of anything that resembles a nucleus is not recognized at all. (Effects of the Invention) Since the quartz glass member of the present invention contains strain nuclei that grow into cristobalite crystals at high temperatures in its glass layer, when it is used for wafer processing in the semiconductor industry, this processing is compared to Since cristobalite crystals grow relatively quickly in this glass layer because it is carried out at a relatively high temperature, this results in high mechanical strength.
This has the advantage that it will not bend, deform, or warp during use. (Example) Next, examples of the present invention and comparative examples will be given. Examples 1 to 5, Comparative Examples 1 to 5 Natural crystals were melted with an oxyhydrogen flame and had an outer diameter of 202 mm.
A transparent quartz glass furnace core tube 1 with a thickness of 6 mm was made, and a translucent quartz glass furnace core tube 2 containing microbubbles was also manufactured by electrically melting natural quartz. On the other hand, by applying an aqueous solution of aluminum chloride to the outer surfaces of the furnace core tubes 1 and 2 made in the same manner as above, and then heat-treating them,
Average aluminum concentration at 75μm is 200ppm
A transparent quartz glass furnace core tube 3 and a translucent quartz glass furnace core tube 4 containing microbubbles were manufactured. Next, rings with a length of 20 mm are cut out from the furnace core tubes 3 and 4, and the rings are placed horizontally on a quartz glass hearth plate in a box-type electric furnace and heated at 1250°C for 10 hours or The average concentration of strain nuclei present in these rings after heating them at 1300℃ for 30 minutes, then taking them out and cooling them.
In addition to measuring the size of the strain nuclei and examining their appearance, we also measured the amount of collapse of these rings when they were placed in a box-type electric furnace and heated at 1200℃ for 120 hours. The results shown in the table were obtained. Next, for comparison, a ring obtained from the above transparent quartz glass furnace core tube 3 was not heat-treated (Comparative Example 1), and a ring was placed horizontally in a box electric furnace and heated at 1350°C for 24 hours. (Comparative Example 2) and a ring obtained from the transparent quartz glass furnace tube 1 without heat treatment (Comparative Example 5), the average concentration of strain nuclei present in the ring, the size of the strain nucleus, When the appearance was examined and the amount of ring collapse was measured under the same heating conditions as above, the results shown in Table 1 were obtained. In addition, when a semiconductor silicon wafer was heat-treated at 1200℃ for 2000 hours in a horizontal tube furnace, it was heated to 1250℃ as shown in Table 2.
Those heat-treated for 10 hours (Examples 3 and 4) have appropriate generation of strain nuclei, and accordingly, appropriate growth of cristobalite crystals, which increases mechanical strength and is therefore suitable for use during wafer processing. Although no bending, deformation, or warping occurred, furnace core tube 3 (comparative example 3), which did not generate strain nuclei, collapsed at a rapid stage before the growth of cristobalite crystals began, and was heated at 1350°C for 24 hours. The treated wafer (Comparative Example 4) had a cristobalite layer on its outer surface before being installed in a horizontal tube furnace, which caused dust during installation, resulting in a decrease in wafer yield. In addition, a 10% by weight solution of aluminum chloride was applied to the outer surface of the transparent quartz furnace core tube 1 obtained above, and a length of 20 mm was obtained from the furnace core tube, which was finished by baking with a burner.
Cut out a mm ring and place it in a box electric furnace.
After heating at 1250℃ for 10 hours, it was cooled in the air.
A 100 μm thick piece of glass was cut from the outer surface of this ring using a low-speed cutter, and a polarized light micrograph of this piece was taken at 40x magnification using the polarization device of an Olympus stereo microscope. The results shown in Figure 1 regarding the strain nuclei were obtained, and the heating in this box-type electric furnace was
When heated at 1200°C for 5 hours, the results shown in Figure 2 were obtained.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、いずれも本発明の石英ガ
ラス部材のひずみ核の粒子構造を示す偏光顕微鏡
写真である。
FIG. 1 and FIG. 2 are both polarized light micrographs showing the grain structure of strain nuclei in the quartz glass member of the present invention.

Claims (1)

【特許請求の範囲】 1 高温下でクリストバライト結晶に成長し得る
5〜1000μmの大きさのひずみ核をガラスの外表
面から100μmまでのガラス表層中に1mm3当り10〜
10000個存在させて成る石英ガラス炉芯管。 2 ひずみ核形成剤としてアルミニウム化合物を
透明もしくは微細気泡入り半透明の石英ガラス炉
芯管の外表面に附着させ、加熱してその炉芯管の
表層中に浸透させてなる特許請求の範囲第1項記
載の石英ガラス炉芯管。
[Claims] 1. Strain nuclei with a size of 5 to 1000 μm that can grow into cristobalite crystals at high temperatures are present in the glass surface layer from the outer surface to 100 μm at 10 to 10 per mm3.
A quartz glass furnace core tube made up of 10,000 pieces. 2. Claim 1, in which an aluminum compound is attached as a strain nucleation agent to the outer surface of a transparent or translucent quartz glass furnace core tube with fine bubbles, and is heated to penetrate into the surface layer of the furnace core tube. The quartz glass furnace core tube described in .
JP28252887A 1987-11-09 1987-11-09 Quartz glass member Granted JPH01126238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28252887A JPH01126238A (en) 1987-11-09 1987-11-09 Quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28252887A JPH01126238A (en) 1987-11-09 1987-11-09 Quartz glass member

Publications (2)

Publication Number Publication Date
JPH01126238A JPH01126238A (en) 1989-05-18
JPH0460934B2 true JPH0460934B2 (en) 1992-09-29

Family

ID=17653631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28252887A Granted JPH01126238A (en) 1987-11-09 1987-11-09 Quartz glass member

Country Status (1)

Country Link
JP (1) JPH01126238A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5096857A (en) * 1990-10-22 1992-03-17 E. I. Du Pont De Nemours And Company Chemically stabilized cristobalite
DE69600781T2 (en) * 1995-02-28 1999-05-20 Heraeus Quarzglas METHOD FOR PRODUCING A CRISTOBALIT CONTAINING QUARTZ GLASS
US7118789B2 (en) 2001-07-16 2006-10-10 Heraeus Shin-Etsu America Silica glass crucible
US6641663B2 (en) 2001-12-12 2003-11-04 Heracus Shin-Estu America Silica crucible with inner layer crystallizer and method
US6875515B2 (en) * 2002-05-10 2005-04-05 General Electric Company Fused quartz article having controlled devitrification
JP5050363B2 (en) * 2005-08-12 2012-10-17 株式会社Sumco Heat treatment jig for semiconductor silicon substrate and manufacturing method thereof
US7427327B2 (en) 2005-09-08 2008-09-23 Heraeus Shin-Etsu America, Inc. Silica glass crucible with barium-doped inner wall
US7383696B2 (en) 2005-09-08 2008-06-10 Heraeus Shin-Etsu America, Inc. Silica glass crucible with bubble-free and reduced bubble growth wall

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2038564A1 (en) * 1970-08-04 1972-02-10 Heraeus Schott Quarzsehmelze G Quartz glass device part
JPS5210312A (en) * 1975-07-10 1977-01-26 Bayer Ag Heattstable silica glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2038564A1 (en) * 1970-08-04 1972-02-10 Heraeus Schott Quarzsehmelze G Quartz glass device part
US3772134A (en) * 1970-08-04 1973-11-13 Heraeus Schott Quarzschmelze Quartz glass elements
JPS5210312A (en) * 1975-07-10 1977-01-26 Bayer Ag Heattstable silica glass

Also Published As

Publication number Publication date
JPH01126238A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
TWI658177B (en) Quartz glass crucible and manufacturing method thereof, and manufacturing method of silicon single crystal using quartz glass crucible
US20150266096A1 (en) Silver nanowires with thin diameter and high aspect ratio and hydrothermal synthesis method for making the same
JPH0460934B2 (en)
JP2012056832A (en) Method of evaluating silica powder, vitreous silica crucible, and method of manufacturing the vitreous silica crucible
JPH029783A (en) Quartz crucible
JP2006206342A (en) Quartz glass crucible whose inner surface is semi-crystallized, its manufacturing method and application
JP2840195B2 (en) Method for producing quartz glass crucible for single crystal pulling
JPS63236723A (en) Quartz glass products for semiconductor industry
US2895839A (en) Method of incorporating titanium into selectively transparent silica glass
JPH0575703B2 (en)
JPS63166730A (en) Production of quartz glass
US2936216A (en) Method of making monocrystalline calcium titanate
JP2931742B2 (en) Opal glass ceramic and method for producing the same
JP2001348220A (en) Spherical leucite crystal and manufacturing method thereof
JP5992572B2 (en) Method for evaluating silica powder, silica glass crucible, method for producing silica glass crucible
JPH04154613A (en) Synthetic silica powder having high purity
JPH0624993B2 (en) Quartz glass manufacturing method
JP3121733B2 (en) High purity synthetic cristobalite powder, method for producing the same, and silica glass
JPH01115897A (en) Production of magnesium fluoride single crystal
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JPH0791160B2 (en) Quartz glass member for semiconductor manufacturing
JP3114936B2 (en) High heat resistant synthetic quartz glass
CN108609864A (en) A kind of plated film heat insulation reflecting quartz heat shielding and preparation method thereof
CN105886964A (en) Preparation method of titanium-based amorphous material
JP2701079B2 (en) Method for producing silica glass tubular member for semiconductor production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees