JPH0460924B2 - - Google Patents

Info

Publication number
JPH0460924B2
JPH0460924B2 JP6375683A JP6375683A JPH0460924B2 JP H0460924 B2 JPH0460924 B2 JP H0460924B2 JP 6375683 A JP6375683 A JP 6375683A JP 6375683 A JP6375683 A JP 6375683A JP H0460924 B2 JPH0460924 B2 JP H0460924B2
Authority
JP
Japan
Prior art keywords
silicic acid
acid
solution
compound
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6375683A
Other languages
Japanese (ja)
Other versions
JPS59190212A (en
Inventor
Yoshiaki Koga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP6375683A priority Critical patent/JPS59190212A/en
Publication of JPS59190212A publication Critical patent/JPS59190212A/en
Publication of JPH0460924B2 publication Critical patent/JPH0460924B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性を有する含水珪酸の製造方法に
関する。 従来より、含水珪酸は天然ゴム、合成ゴムの充
填剤、各種合成樹脂の不透明剤およびブロツキン
グ防止剤、紙の填料、ペイント配合剤、農薬散布
剤、粘度調節剤などとして広い分野に使用されて
いる。近年、特に上記の如きゴム、合成樹脂、塗
料、紙などに導電性を付与するために、導電性を
有する含水珪酸が要望されている。しかしなが
ら、含水珪酸は一般に電気絶縁体であり、また高
温度で熱処理した場合に静電気を生じる問題があ
る。そのため、例えば特開昭56−114215〜114218
号には、酸化チタンなど白色金属酸化物粉末に酸
化錫、またはアンチモンと酸化錫を被覆してなる
白色導電性複合粉末およびその製造方法が提案さ
れている。即ち、これらの製造方法は白色金属酸
化物粉末の懸濁液に塩化錫、または塩化アンチモ
ンと塩化錫のアルコール溶液を添加して処理する
方法である。 本発明者らも、導電性を有する含水珪酸の簡便
な製造方法を開発すべく、鋭意研究した。その結
果、珪酸アルカリを酸で中和して含水珪酸を製造
するに際して、反応系に可溶性の錫化合物、また
は可溶性のアンチモン化合物と錫化合物を共存さ
せることによつて、極めて良好な導電性を有し且
つ高温において静電気の発生がない含水珪酸が得
られることを見出して、本発明を提供するに至つ
たものである。本発明によれば珪酸アルカリを酸
で中和するに際して、反応系に錫化合物およびア
ンチモン化合物を共存させることにより、生成す
る含水珪酸と同時に酸化錫が均一に含有されて析
出し、またアンチモンはシリカ結合の一部として
共存するものと推測される。したがつて、本発明
により得られる含水珪酸は、該含水珪酸の表面お
よび内部に酸化錫およびアンチモンが強固に含有
されるため、所望の導電性を安定して発揮するこ
とが出来る。 本発明は珪酸アルカリを酸で中和して含水珪酸
を製造する公知の方法に準じて実施することが出
来る。即ち、かかる含水珪酸の製造方法は特に制
限されないが、微細な含水珪酸を得るためには、
予め珪酸ゾル水溶液を生成させることが好まし
い。しかしながら、珪酸アルカリに所定量の錫化
合物を添加した場合には、珪酸粒子の析出時にゲ
ル化を生じて攪拌が困難になるため、良好に珪酸
ゾル水溶液を調製することが出来ない。したがつ
て、本発明においては珪酸アルカリに酸を添加し
て珪酸ゾル水溶液を調製した後、該水溶液に所定
量の錫化合物を存在させることによつて、良好に
導電性を有する微細な含水珪酸を製造することが
出来る。 一方、本発明はアンチモン化合物の存在下に珪
酸ゾル水溶液を調製した後、次いで錫化合物の存
在下に含水珪酸を製造することによつて、より良
好な導電性を有する微細な含水珪酸を得ることが
出来る。一般にアンチモン化合物を添加した珪酸
アルカリ溶液に酸を添加して珪酸粒子の一部を析
出させた後、錫化合物(または錫化合物と珪酸ア
ルカリ)を添加し、さらに酸を添加してPH調整
し、珪酸粒子を完全に析出せしめる方法が推奨さ
れる。あるいは珪酸アルカリ溶液に酸を添加して
珪酸ゾル溶液を調製した後、アンチモン化合物お
よび錫化合物を添加し、さらに酸を添加してPH調
整する方法により、所望の導電性を有する微細な
含水珪酸を得ることも出来る。しかしながら、珪
酸アルカリ溶液に酸を添加して珪酸粒子を完全に
析出させた後に、アンチモン化合物および錫化合
物を添加した場合には、得られる含水珪酸に所望
の導電性を付与することが出来ない。 本発明においてアンチモン化合物および錫化合
物は一般に水、アルコールなどの溶媒に溶解して
用いることが、得られる含水珪酸に所望の導電性
を安定かつ均一に付与するために好ましい。した
がつて、アンチモン化合物および錫化合物として
は溶媒に可溶性であればよく、例えば塩化アンチ
モン、塩化錫などのハロゲン化物が一般に用いら
れ、そのほか硫酸塩、酸化物なども適宜用いられ
る。また本発明の含水珪酸に所望の導電性を付与
するためには、珪酸アルカリ溶液においてアンチ
モン化合物をSiO2(重量)に対し一般に0.5〜10
(重量)%の割合で存在させることが好ましい。
即ち、アンチモン化合物が上記0.5(重量)%より
少ない場合には、得られる含水珪酸に所望の導電
性を充分に付与できず、また10(重量)%より多
い場合には珪酸粒子の析出時にゲル化を生じるた
め、良好な微細珪酸を得ることが困難である。一
方、錫化合物は珪酸アルカリ溶液のSiO2(重量)
に対して一般に15〜60(重量)%を存在させれば
充分である。即ち、錫化合物が上記15(重量)%
より少ない場合には、得られる含水珪酸に所望の
導電性を充分に付与できず、また60(重量)%よ
り多くしても導電性の付与に一段の向上が認めら
れない。 本発明の珪酸アルカリとしては例えば珪酸ナト
リウム、珪酸カリウム、珪酸リチウム、珪酸アン
モニウムなどであり、これらが一般に水溶液とし
て使用され、特に珪酸ナトリウム(ソーダ)の水
溶液が工業的に使用される。また、酸としては例
えば硫酸、塩酸、硝酸、リン酸などの鉱酸、また
は炭酸ガス、亜硫酸ガスなどの酸性ガス、あるい
は酢酸、ギ酸などの有機酸などから選ばれた1種
または2種以上の混合物が使用できる。 上記した珪酸アルカリの溶液に酸を添加して珪
酸ゾルを生成する反応は、仕込み珪酸アルカリの
濃度、酸添加速度、中和度、温度、攪拌などの影
響が大きい。即ち、仕込み珪酸アルカリの濃度が
高い場合には急激なフロツクが生成し易く、安定
なゾルのコントロールが難かしくなるため、一般
にSiO2として6g/100ml以下に維持することが
好ましい。仕込み珪酸アルカリの濃度が低過ぎる
場合には経済的でないばかりでなく、引続く反応
において得られる珪酸の粒度分布が難かしくなる
ため、SiO2として2g/100ml以上に維持するこ
とが好ましい。また酸の添加速度が早い場合に
は、急激にフロツクが生成し易くなるため、少な
くとも5分以上の時間をかけて、連続的または間
歇的に添加することが望ましい。中和度は若干ア
ルカリであり、珪酸ナトリウムの場合にはNa2
濃度で0.01N以上、0.3N以下が必要である。即
ち、中和度が当量点以上である酸性側の場合に
は、急激なフロツクが生成するため、アルカリ側
にとどめることが好ましい。温度は一般に70〜
100℃が好ましく、70℃より低い場合には反応液
の粘度が高くなり、得られる含水珪酸の比表面積
に影響するため適宜調節すればよい。攪拌は反応
が局部的に起らないように、充分に効かすことが
望ましい。なお、反応系にNa2SO4,NaClなど
の中性塩を少量添加することによつて、フロツク
が生成しない範囲に反応をコントロールすること
も好ましい態様である。そのほか必要に応じて、
例えば界面活性剤、有機珪素化合物、リン化合物
などの添加物を用いることもできる。 次に、上記した珪酸ゾル溶液に酸または珪酸ア
ルカリと酸を添加することにより、珪酸を析出さ
せ、珪酸ゲルの二次粒子を成長させることによつ
て安定化させる。さらに必要に応じて、酸を添加
して最終PHを8以下、好ましくは4〜7に調節す
ることが、得られる含水珪酸の物性面、あるいは
製造装置における腐食の面からも望ましい。最終
反応後の珪酸スラリーは、常法により濾過水洗し
て副生塩を除去した後、乾燥し、必要に応じて粉
砕、分級を施すことによつて、所望の微細な含水
珪酸を得ることが出来る。 本発明は上記した含水珪酸の製造方法において
錫化合物、またはアンチモン化合物と錫化合物を
反応系に存在させることによつて、良好な導電性
を有する微細な含水珪酸を得ることが出来る。か
くして得られた本発明の導電性を有する含水珪酸
は、例えば通電感熱紙、静電記録紙、静電塗料、
帯電防止用プラスチツクやゴム材などの充填剤と
して極めて有用である。 以下、実施例を挙げるが、本発明はこれらに特
に制限されるものではない。なお、実施例および
比較例における、測定方法を示す。 (1) 比抵抗(Ω・cm) ブリツヂ回路(横河電機製)で測定 (2) 静電気(KV) サンプル10gを磁性皿に入れ、500℃の電気炉
中に30分入れた後、金属製スプーンで軽くかきま
ぜ、この時に生じた静電気をスタチロンM(宍戸
商会製)で測定 実施例 1 SiO2濃度25.5%およびNa2O濃度8.57%の珪酸
ソーダ溶液703ml、水2297mlおよびエタノール60
mlに塩化アンチモン6.2g溶解した液を、容積5
の外部加熱式反応槽に仕込み、液温度を40℃と
した。 次に、22%硫酸130mlを添加して、95℃に昇温
した状態で5分間攪拌した後、水600mlに塩化錫
(SnCl4)72gを溶解した溶液を90分で添加した
後、さらに22%硫酸を添加して溶液のPHを3.5に
調節した。 得られたスラリー溶液を濾過、水洗したケーク
(水分83%)を110℃で乾燥、粉砕して、本発明の
含水珪酸とした。その含水珪酸について測定値を
第1表に示す。 実施例 2 実施例1において、塩化錫を添加後、溶液のPH
を7.2に調節したほかは同様に製造した。その結
果を第1表に示す。 実施例 3 実施例1と同様の珪酸ソーダ318mlおよび水
1854mlを反応槽に仕込み、95℃に昇温した。次に
エタノール60mlに塩化アンチモン(SbCl3)6.2g
溶解した液を添加して、22%硫酸147mlを28分で
添加した後、珪酸ソーダ232mlと水600mlに塩化錫
72gを溶解した液をそれぞれ90分で添加した。そ
の後、反応液のPHを22%硫酸で3.8に調整した。 得られたスラリー溶液から実施例1と同様の操
作をして含水珪酸の乾燥品を得た。その含水珪酸
について、測定値を第1表に示す。 実施例 4 SiO2濃度27.52%およびNa2O濃度9.32%の珪酸
ソーダ溶液654ml、水679mlおよびNa2O濃度1.8
%のNa2SO4溶液1667mlを内容積5の外部加熱
式反応槽に仕込み液温度を40℃とした。次に22%
硫酸131mlを添加して95℃に昇温した状態で5分
間攪拌した後、水600mlに塩化錫(SnCl4)72g
を溶解した溶液を90分で添加した後、さらに22%
硫酸を添加して溶液のPHを7.2に調節した。 以下は実施例1と同様に製造した。その結果を
第1表に示した。 比較例 1 SiO2濃度26.4%およびNa2O濃度9.3%の珪酸ソ
ーダ溶液682ml、芒硝1935ml(Na2O=1.55%)
および水383mlを実施例1と同様に反応槽に仕込
み、40℃とした。次に、22%硫酸を添加後、95℃
に昇温し、この状態で5分間攪拌した後、22%硫
酸274mlを90分で添加した。その後、さらに実施
例1で用いたと同一濃度の塩化錫と塩化アンチモ
ンの溶液を同時に60分で添加した。 かくして、実施例1に準じて含水珪酸の乾燥品
を得た。その含水珪酸について、測定値を第1表
に示す。 比較例 2 一般市販の含水珪酸としてトクシールP(徳山
曹達K.K製)について示した。
The present invention relates to a method for producing hydrated silicic acid having electrical conductivity. Hydrous silicic acid has been used in a wide range of fields, including as a filler for natural rubber and synthetic rubber, an opacifying agent and anti-blocking agent for various synthetic resins, a filler for paper, a compounding agent for paints, a pesticide sprayer, and a viscosity regulator. . In recent years, there has been a demand for hydrated silicic acid having electrical conductivity, particularly in order to impart electrical conductivity to rubber, synthetic resins, paints, paper, etc. as mentioned above. However, hydrated silicic acid is generally an electrical insulator and has the problem of generating static electricity when heat treated at high temperatures. Therefore, for example, JP-A-56-114215-114218
The publication proposes a white conductive composite powder made by coating a white metal oxide powder such as titanium oxide with tin oxide or antimony and tin oxide, and a method for producing the same. That is, these manufacturing methods involve adding tin chloride or an alcoholic solution of antimony chloride and tin chloride to a suspension of white metal oxide powder. The present inventors also conducted extensive research in order to develop a simple method for producing hydrated silicic acid having conductivity. As a result, when producing hydrous silicic acid by neutralizing alkali silicate with acid, extremely good conductivity can be achieved by coexisting a soluble tin compound or a soluble antimony compound and a tin compound in the reaction system. The present invention has been based on the discovery that hydrous silicic acid can be obtained which does not generate static electricity at high temperatures. According to the present invention, when an alkali silicate is neutralized with an acid, by allowing a tin compound and an antimony compound to coexist in the reaction system, tin oxide is uniformly contained and precipitated at the same time as the hydrous silicic acid produced, and antimony is added to the silica. It is assumed that they coexist as part of the bond. Therefore, the hydrated silicic acid obtained according to the present invention can stably exhibit desired conductivity because tin oxide and antimony are strongly contained on the surface and inside the hydrated silicic acid. The present invention can be carried out according to the known method of producing hydrated silicic acid by neutralizing an alkali silicate with an acid. That is, the method for producing such hydrous silicic acid is not particularly limited, but in order to obtain fine hydrous silicic acid,
It is preferable to generate an aqueous silicic acid sol solution in advance. However, when a predetermined amount of a tin compound is added to an alkali silicate, gelation occurs during precipitation of silicic acid particles, making stirring difficult, making it impossible to satisfactorily prepare an aqueous silicic acid sol solution. Therefore, in the present invention, after preparing an aqueous silicic acid sol solution by adding an acid to an alkali silicate, by adding a predetermined amount of a tin compound to the aqueous solution, fine hydrated silicic acid having good conductivity is produced. can be manufactured. On the other hand, the present invention obtains fine hydrated silicic acid having better conductivity by preparing a silicic acid sol aqueous solution in the presence of an antimony compound and then producing hydrated silicic acid in the presence of a tin compound. I can do it. Generally, an acid is added to an alkaline silicate solution containing an antimony compound to precipitate some of the silicic acid particles, and then a tin compound (or a tin compound and an alkali silicate) is added, and then an acid is added to adjust the pH. A method that allows silicic acid particles to be completely precipitated is recommended. Alternatively, after preparing a silicic acid sol solution by adding an acid to an alkaline silicate solution, adding an antimony compound and a tin compound, and then adjusting the pH by adding an acid, fine hydrated silicic acid having the desired conductivity can be obtained. You can also get it. However, when an antimony compound and a tin compound are added after silicic acid particles are completely precipitated by adding an acid to an alkaline silicate solution, desired conductivity cannot be imparted to the obtained hydrous silicic acid. In the present invention, it is generally preferable to use the antimony compound and the tin compound dissolved in a solvent such as water or alcohol in order to stably and uniformly impart the desired conductivity to the obtained hydrated silicic acid. Therefore, the antimony compound and tin compound need only be soluble in the solvent, and for example, halides such as antimony chloride and tin chloride are generally used, and sulfates, oxides, etc. are also used as appropriate. In addition, in order to impart desired conductivity to the hydrated silicic acid of the present invention, an antimony compound is generally added in an amount of 0.5 to 10% relative to SiO 2 (weight) in an alkaline silicate solution.
(by weight)%.
In other words, if the antimony compound is less than 0.5% (by weight), the desired conductivity cannot be imparted to the obtained hydrated silicic acid, and if it is more than 10% (by weight), gel formation occurs during precipitation of silicic acid particles. It is difficult to obtain good fine silicic acid. On the other hand, the tin compound is SiO 2 (weight) in an alkaline silicate solution.
Generally, the presence of 15 to 60% (by weight) is sufficient. That is, the tin compound is 15% (by weight) above.
If the amount is less than 60% (by weight), the desired conductivity cannot be sufficiently imparted to the resulting hydrated silicic acid, and even if the amount is more than 60% (by weight), no further improvement in the conductivity is observed. The alkali silicate used in the present invention includes, for example, sodium silicate, potassium silicate, lithium silicate, ammonium silicate, etc., and these are generally used as an aqueous solution, and in particular, an aqueous solution of sodium silicate (soda) is used industrially. The acid may be one or more selected from mineral acids such as sulfuric acid, hydrochloric acid, nitric acid, and phosphoric acid, acidic gases such as carbon dioxide gas and sulfur dioxide gas, and organic acids such as acetic acid and formic acid. Mixtures can be used. The reaction of adding an acid to the alkali silicate solution to produce a silicate sol is greatly influenced by the concentration of the alkali silicate charged, the rate of acid addition, the degree of neutralization, temperature, stirring, etc. That is, if the concentration of the alkali silicate charged is high, rapid flocculation tends to occur and it becomes difficult to control a stable sol, so it is generally preferable to maintain the SiO 2 content at 6 g/100 ml or less. If the concentration of the alkali silicate charged is too low, it is not only uneconomical but also makes it difficult to obtain a particle size distribution of the silicic acid obtained in the subsequent reaction, so it is preferable to maintain the concentration as SiO 2 at 2 g/100 ml or more. Furthermore, if the acid addition rate is fast, flocs are likely to be generated rapidly, so it is desirable to add the acid continuously or intermittently over a period of at least 5 minutes. The degree of neutralization is slightly alkaline, and in the case of sodium silicate, Na 2 O
A concentration of 0.01N or more and 0.3N or less is required. That is, in the case of an acidic side where the degree of neutralization is equal to or higher than the equivalence point, rapid flocculation occurs, so it is preferable to keep the degree of neutralization on an alkaline side. Temperature is generally 70~
The temperature is preferably 100°C, and if the temperature is lower than 70°C, the viscosity of the reaction liquid increases, which affects the specific surface area of the obtained hydrous silicic acid, so it may be adjusted as appropriate. It is desirable that the stirring be sufficiently effective so that the reaction does not occur locally. It is also a preferred embodiment to control the reaction within a range in which no flocs are produced by adding a small amount of a neutral salt such as Na 2 SO 4 or NaCl to the reaction system. In addition, as necessary,
For example, additives such as surfactants, organic silicon compounds, and phosphorus compounds can also be used. Next, by adding an acid or an alkali silicate and an acid to the silicic acid sol solution described above, silicic acid is precipitated and stabilized by growing secondary particles of silicic acid gel. Furthermore, if necessary, it is desirable to adjust the final pH to 8 or less, preferably 4 to 7, by adding an acid, from the viewpoint of the physical properties of the resulting hydrated silicic acid or from the viewpoint of corrosion in the production equipment. The silicic acid slurry after the final reaction is filtered and washed with water in a conventional manner to remove by-product salts, dried, and crushed and classified as necessary to obtain the desired fine hydrated silicic acid. I can do it. In the present invention, fine hydrated silicic acid having good conductivity can be obtained by allowing a tin compound or an antimony compound and a tin compound to be present in the reaction system in the above-described method for producing hydrated silicic acid. The conductive hydrated silicic acid of the present invention thus obtained can be used, for example, in electrically conductive thermal paper, electrostatic recording paper, electrostatic paint,
It is extremely useful as a filler for antistatic plastics and rubber materials. Examples will be given below, but the present invention is not particularly limited thereto. In addition, the measurement method in Examples and Comparative Examples is shown. (1) Specific resistance (Ω・cm) Measured with a Bridge circuit (manufactured by Yokogawa Electric) (2) Static electricity (KV) 10g of sample was placed in a magnetic dish and placed in an electric furnace at 500℃ for 30 minutes, then the metal Stir gently with a spoon and measure the static electricity generated at this time using Statylon M (manufactured by Shishido Shokai) Example 1 703 ml of a sodium silicate solution with a SiO 2 concentration of 25.5% and a Na 2 O concentration of 8.57%, 2297 ml of water, and 60 ml of ethanol.
Dissolve 6.2g of antimony chloride in ml and make a volume of 5.
The liquid temperature was set at 40°C. Next, 130 ml of 22% sulfuric acid was added, the temperature was raised to 95°C, and the mixture was stirred for 5 minutes. A solution of 72 g of tin chloride (SnCl 4 ) dissolved in 600 ml of water was then added over 90 minutes. % sulfuric acid was added to adjust the pH of the solution to 3.5. The obtained slurry solution was filtered and washed with water, and the cake (water content: 83%) was dried at 110°C and pulverized to obtain the hydrated silicic acid of the present invention. Measured values for the hydrated silicic acid are shown in Table 1. Example 2 In Example 1, after adding tin chloride, the pH of the solution
It was manufactured in the same manner except that the value was adjusted to 7.2. The results are shown in Table 1. Example 3 318 ml of sodium silicate and water as in Example 1
1854ml was charged into a reaction tank and the temperature was raised to 95°C. Next, add 6.2 g of antimony chloride (SbCl 3 ) to 60 ml of ethanol.
After adding the dissolved liquid and adding 147 ml of 22% sulfuric acid over 28 minutes, add tin chloride to 232 ml of sodium silicate and 600 ml of water.
A solution containing 72 g of each solution was added over 90 minutes. Thereafter, the pH of the reaction solution was adjusted to 3.8 with 22% sulfuric acid. The obtained slurry solution was subjected to the same operation as in Example 1 to obtain a dry product of hydrous silicic acid. Measured values for the hydrated silicic acid are shown in Table 1. Example 4 654 ml of sodium silicate solution with SiO 2 concentration 27.52% and Na 2 O concentration 9.32%, water 679 ml and Na 2 O concentration 1.8
% Na 2 SO 4 solution was charged into an externally heated reaction tank with an internal volume of 5, and the temperature of the solution was set at 40°C. then 22%
After adding 131 ml of sulfuric acid and stirring for 5 minutes while raising the temperature to 95°C, 72 g of tin chloride (SnCl 4 ) was added to 600 ml of water.
After adding the solution in 90 minutes, an additional 22%
The pH of the solution was adjusted to 7.2 by adding sulfuric acid. The following products were manufactured in the same manner as in Example 1. The results are shown in Table 1. Comparative Example 1 682 ml of sodium silicate solution with SiO 2 concentration of 26.4% and Na 2 O concentration of 9.3%, 1935 ml of Glauber's salt (Na 2 O = 1.55%)
and 383 ml of water were charged into a reaction tank in the same manner as in Example 1, and the temperature was set at 40°C. Next, after adding 22% sulfuric acid, 95℃
After stirring in this state for 5 minutes, 274 ml of 22% sulfuric acid was added over 90 minutes. Thereafter, a solution of tin chloride and antimony chloride having the same concentration as used in Example 1 was added simultaneously over 60 minutes. Thus, according to Example 1, a dried product of hydrated silicic acid was obtained. Measured values for the hydrated silicic acid are shown in Table 1. Comparative Example 2 Tokusil P (manufactured by Tokuyama Soda KK) is shown as a commercially available hydrous silicic acid.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 珪酸アルカリを酸で中和して含水珪酸を製造
するに際して、反応系に錫化合物を存在させるこ
とを特徴とする導電性を有する含水珪酸の製造方
法。 2 錫化合物が塩化錫である特許請求の範囲第1
項記載の製造方法。 3 珪酸ゾル溶液を調製した後、錫化合物を添加
する特許請求の範囲第1項記載の製造方法。 4 珪酸アルカリを酸で中和して含水珪酸を製造
するに際して、反応系にアンチモン化合物および
錫化合物を存在させることを特徴とする導電性を
有する含水珪酸の製造方法。 5 アンチモン化合物を存在させた珪酸アルカリ
溶液に酸を添加して珪酸ゾル溶液を調製した後、
錫化合物を添加する特許請求の範囲第4項記載の
製造方法。 6 アンチモン化合物が塩化アンチモンである特
許請求の範囲第4項記載の製造方法。
[Scope of Claims] 1. A method for producing hydrated silicic acid having electrical conductivity, characterized in that a tin compound is present in the reaction system when producing hydrated silicic acid by neutralizing an alkali silicate with an acid. 2 Claim 1 in which the tin compound is tin chloride
Manufacturing method described in section. 3. The manufacturing method according to claim 1, wherein a tin compound is added after preparing the silicic acid sol solution. 4. A method for producing hydrated silicic acid having electrical conductivity, which comprises making an antimony compound and a tin compound exist in the reaction system when producing hydrated silicic acid by neutralizing an alkali silicate with an acid. 5 After preparing a silicate sol solution by adding an acid to an alkaline silicate solution containing an antimony compound,
The manufacturing method according to claim 4, wherein a tin compound is added. 6. The manufacturing method according to claim 4, wherein the antimony compound is antimony chloride.
JP6375683A 1983-04-13 1983-04-13 Preparation of hydrated silicic acid having electrical conductivity Granted JPS59190212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6375683A JPS59190212A (en) 1983-04-13 1983-04-13 Preparation of hydrated silicic acid having electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6375683A JPS59190212A (en) 1983-04-13 1983-04-13 Preparation of hydrated silicic acid having electrical conductivity

Publications (2)

Publication Number Publication Date
JPS59190212A JPS59190212A (en) 1984-10-29
JPH0460924B2 true JPH0460924B2 (en) 1992-09-29

Family

ID=13238552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6375683A Granted JPS59190212A (en) 1983-04-13 1983-04-13 Preparation of hydrated silicic acid having electrical conductivity

Country Status (1)

Country Link
JP (1) JPS59190212A (en)

Also Published As

Publication number Publication date
JPS59190212A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
KR910009572B1 (en) Process for producing a precipituted silica
US3967563A (en) Process for producing precipitated thickener silica
US6761867B1 (en) Concentrated suspension of precipitation silica, processes for its preparation and uses of this suspension
US4551497A (en) Method of producing surface-treated barium sulfate
US2663650A (en) Process for preparing coated silica particles and product obtained thereby
KR20100126261A (en) Particles having a core-shell structure for conductive layers
JP3357107B2 (en) White conductive titanium dioxide powder and method for producing the same
JPH0258213B2 (en)
JPS60105609A (en) Silica base for dentifrice and its preparation
US2285477A (en) Method of producing sols
US4451388A (en) Preparation of aluminum oxide coated silica sols using ultrafiltration
CN110482559A (en) Modified acidic silicasol of a kind of aluminium and its preparation method and application
DE69219599T2 (en) METHOD FOR PRODUCING A HYDROPHOBIC AEROGEL
JPH08269359A (en) Hydrophobic metatitanic acid fine particle and its production
JP2002146230A (en) Method for preparing conductive pigment
JPH0460924B2 (en)
JPH0460925B2 (en)
US3993497A (en) Coating compositions containing precipitated silica
JPH0455968B2 (en)
US4614640A (en) Process of producing copper (II) hydroxide
JPS6034496B2 (en) Manufacturing method of alumina sol
JPS6045125B2 (en) Manufacturing method of alumina sol
JPS6144709A (en) Production of hydrous silicic acid having conductivity
KR100236610B1 (en) Antimony pentoxide production
JPH0127003B2 (en)