JPH0460025B2 - - Google Patents

Info

Publication number
JPH0460025B2
JPH0460025B2 JP58251886A JP25188683A JPH0460025B2 JP H0460025 B2 JPH0460025 B2 JP H0460025B2 JP 58251886 A JP58251886 A JP 58251886A JP 25188683 A JP25188683 A JP 25188683A JP H0460025 B2 JPH0460025 B2 JP H0460025B2
Authority
JP
Japan
Prior art keywords
glaze layer
layer
heating resistor
thermal head
glaze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58251886A
Other languages
Japanese (ja)
Other versions
JPS60141569A (en
Inventor
Tetsuya Sugyama
Makoto Nagaoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP58251886A priority Critical patent/JPS60141569A/en
Priority to US06/686,245 priority patent/US4612433A/en
Priority to DE19843447581 priority patent/DE3447581A1/en
Priority to GB08432697A priority patent/GB2151989B/en
Priority to FR8420020A priority patent/FR2557506B1/en
Publication of JPS60141569A publication Critical patent/JPS60141569A/en
Publication of JPH0460025B2 publication Critical patent/JPH0460025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33505Constructional details
    • B41J2/33535Substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3355Structure of thermal heads characterised by materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/33555Structure of thermal heads characterised by type
    • B41J2/3357Surface type resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • B41J2/3359Manufacturing processes

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、熱伝導性基材と発熱抵抗体との間に
多気泡ガラスよりなるグレーズ層を介してなるサ
ーマルヘツドに関する。 この種サーマルヘツドの一例を第1図に示す。
参照符号1はアルミナセラミツクスなどよりなる
熱伝導性基材、2は多気泡ガラスよりなるグレー
ズ層、4はタンタルナイトライドやチタンシリサ
イドなどよりなる発熱抵抗体、5は金、アルミニ
ウムなどよりなる電極、6はシリコンオキサイド
やタンタルオキサイドなどよりなる保護層であ
る。ここで、グレーズ層2を有する基材1表面の
全面に別途薄層状グレーズ層を形成したり、グレ
ーズ層2を図示の如き、所謂、部分グレーズとす
るのではなく、基材1表面を全て覆う全面グレー
ズとして形成したり、電極5や保護層6を被物質
あるいは複層に形成したりなどすることもある。 さて、グレーズ層2を多気泡ガラスとするの
は、無気泡であるり熱応答性が良好になるからで
ある。即ち、無気泡体に比べると多気泡体は見掛
けの熱伝導率が小さく、熱し易く冷め易いので、
電極5への通電、切電による発熱抵抗体4の昇
温、降温が速やかになる。従つて、感熱リボンを
通じての転写や感熱紙への印字性能が良好化され
ることになる。 しかし、グレーズ層2を多気泡ガラスとした場
合、上記長所を有する反面、一つの問題がある。 例えば数10μmといつた適宜長さとされるグレ
ーズ層2はガラスペーストを600℃、700℃といつ
た相当の高温で焼成して得られるが、発熱抵抗体
4の抵抗値の経時変化を大きくしないためには、
発熱抵抗体4の形成に際して、その結晶形成温度
以上にする必要があり、従つて、発熱抵抗体4の
形成にもかなりの高温過程が要されることにな
る。つまり、形成されたグレーズ層2が高温下に
おかれる訳で、その結果、グレーズ層2の表面に
凹凸ができるなど不要な形状変化を生じてしまう
ことがある。パターニングの歩止りの低下、発熱
抵抗体4に設定される抵抗値のバラツキ増大化、
保護層6のクラツク発生、あるいは転写時の不要
な線引き現象の発生など、上記グレーズ層2の不
要な形状変化がもたらす悪影響は極めて大きい。
従つて、サーマルヘツドの長寿命化を目的とし
て、結晶形成温度が500℃あるいはそれ以上と比
較的高い、チタン、タンタル、タングステンなど
の高融点金属のシリサイドを発熱抵抗体4の材質
として選択する場合には上記問題の解決は殊に重
要となつてくる。 本発明は上述したところに鑑みなされたもので
あり、熱伝導性基材と発熱抵抗体との間に多気泡
ガラスよりなるグレーズ層を介してなるサーマル
ヘツドにおいて、前記多気泡ガラスよりなるグレ
ーズ層と前記発熱抵抗体との間に層厚1〜10μm
の絶縁性物質層を介在させたことを特徴とするサ
ーマルヘツドを要旨とする。 以下、添付第2図に示す実施例に基づいて説明
すると、第2図における第1図との相違は、グレ
ーズ層2と発熱抵抗体4との間に介在される絶縁
性物質層3の存在にある。この絶縁性物質層3
は、少くとも発熱抵抗体4のグレーズ層2上に位
置する部分に対して形成されるものであるが、ス
パツタリングなどによつてグレーズ層2の全表面
を覆うよう形成するのが簡単でよい。また、材質
的には絶縁性を有するならば格別限定されること
なく、例えば、シリコンオキサイド、アルミナ、
シリコンナイトライド、タンタルオキサイド、シ
リコンカーバイド、高抵抗シリコンなどを挙げる
ことができるが、耐熱衝撃性が高く熱伝導率の小
さいものがよく、SiO2などのシリコンオキサイ
ドはその代表的なものである。 そして、層厚は1〜10μmである。1μm未満の
場合は絶縁性物質層3の存在効果が実質的に現わ
れず、また、10μmをこえた場合はグレーズ層2
を多気泡体とした価値、即ち、熱応答性の良さが
失われてしまう。更に好ましくは2〜4μm程度と
するのが良い。 尚、上記点に付随して、グレーズ層2が有する
気泡のグレーズ層2全体に占める体積割合は約20
〜30%程度とするのがよい。本来、グレーズ層2
が有する気泡は微小、かつ、体積割合が大なもの
ほど熱応答性にとつては都合が良く、また、本発
明は体積割合に格別の依存性を有さないものでも
あるが、あまりに気泡の占める割合が大きくなる
と、グレーズ層2の強度が低下することになる
し、上記程度の割合で十分に多気泡体としての効
果を発揮するからである。 以上述べたように、本発明のサーマルヘツドは
多気泡ガラスよりなるグレーズ層2と発熱抵抗体
4との間に層厚1〜10μmの絶縁性物質層を介在
させることにより、歩止りの向上、発熱抵抗体4
の抵抗値のバラツキ減小化などに効果を発揮する
ばかりでなく、グレーズ層2が多気泡体であるこ
とによつて奏せられる熱応答性の良好さを十分に
発揮させることができ、真に高品質、長寿命のサ
ーマルヘツド足ることができるものである。以
下、一例として、アルミナセラミツクス製基材1
にガラスペーストをスクリーン印刷し700℃で焼
成して約0.1〜5μmの気泡が約20%ランダムに存
在する厚さ約60μmのグレーズ層2を形成し、シ
リコンオキサイドよりなる絶縁性物質層3をその
上から最高温度400℃のスパツタリング法により
層厚を変えて形成し、これらの上にチタンシリサ
イドよりなる発熱抵抗体4を最高温度550℃のス
パツタリング法によつて形成し、更にその上から
アルミ合金よりなる電極5と窒素を添加したシリ
コンよりなる厚さ約5μmの保護層6を順次形成し
て得たものについて2×10-3秒の周期で5×10-4
秒の0.65Wの電力印加による転写テスト結果を表
−1に示す。
The present invention relates to a thermal head in which a glaze layer made of multicellular glass is interposed between a thermally conductive base material and a heating resistor. An example of this type of thermal head is shown in FIG.
Reference numeral 1 is a thermally conductive base material made of alumina ceramics or the like, 2 is a glaze layer made of multicellular glass, 4 is a heating resistor made of tantalum nitride, titanium silicide, etc., 5 is an electrode made of gold, aluminum, etc. 6 is a protective layer made of silicon oxide, tantalum oxide, or the like. Here, instead of forming a separate thin glaze layer on the entire surface of the base material 1 having the glaze layer 2 or making the glaze layer 2 a so-called partial glaze as shown in the figure, the entire surface of the base material 1 is covered. It may be formed as a glaze over the entire surface, or the electrode 5 and the protective layer 6 may be formed as a covering material or as a multilayer. Now, the reason why the glaze layer 2 is made of multi-celled glass is that it is bubble-free and has good thermal response. In other words, compared to non-cellular materials, multi-cellular materials have a lower apparent thermal conductivity and are easier to heat up and cool down.
The temperature of the heating resistor 4 increases and decreases quickly due to energization and disconnection of the electrode 5. Therefore, the transfer performance through the thermal ribbon and the printing performance on thermal paper are improved. However, when the glaze layer 2 is made of multicellular glass, although it has the above advantages, there is one problem. For example, the glaze layer 2, which has an appropriate length of several tens of micrometers, is obtained by firing glass paste at a considerably high temperature such as 600°C or 700°C, but it does not cause a large change in the resistance value of the heating resistor 4 over time. In order to
When forming the heating resistor 4, it is necessary to maintain the temperature at or above the crystal formation temperature thereof, and therefore, the formation of the heating resistor 4 also requires a considerably high temperature process. That is, the formed glaze layer 2 is exposed to high temperatures, which may result in unnecessary changes in shape such as unevenness on the surface of the glaze layer 2. Decreased patterning yield, increased variation in resistance values set for the heating resistor 4,
Unnecessary changes in the shape of the glaze layer 2 have extremely large adverse effects, such as the occurrence of cracks in the protective layer 6 or the occurrence of unnecessary line-drawing phenomena during transfer.
Therefore, for the purpose of extending the life of the thermal head, when selecting silicide of a high-melting point metal such as titanium, tantalum, or tungsten, which has a relatively high crystal formation temperature of 500°C or higher, as the material for the heating resistor 4. Solving the above problems becomes especially important. The present invention has been made in view of the above, and provides a thermal head in which a glaze layer made of multi-cell glass is interposed between a thermally conductive base material and a heating resistor. and the heating resistor with a layer thickness of 1 to 10 μm.
The gist of the invention is a thermal head characterized by having an insulating material layer interposed therebetween. The following explanation will be given based on the embodiment shown in the attached FIG. 2. The difference between FIG. 2 and FIG. It is in. This insulating material layer 3
is formed on at least the portion of the heating resistor 4 located on the glaze layer 2, but it is easier to form it so as to cover the entire surface of the glaze layer 2 by sputtering or the like. In addition, the material is not particularly limited as long as it has insulating properties, such as silicon oxide, alumina,
Examples include silicon nitride, tantalum oxide, silicon carbide, and high-resistance silicon, but those with high thermal shock resistance and low thermal conductivity are preferred, and silicon oxide such as SiO 2 is a typical example. The layer thickness is 1 to 10 μm. When the thickness is less than 1 μm, the effect of the presence of the insulating material layer 3 does not appear substantially, and when it exceeds 10 μm, the glaze layer 2
The value of making it a multicellular material, that is, the good thermal responsiveness, is lost. More preferably, the thickness is about 2 to 4 μm. Incidentally, in conjunction with the above point, the volume ratio of the air bubbles in the glaze layer 2 to the entire glaze layer 2 is approximately 20
It is best to keep it at around 30%. Originally, glaze layer 2
The smaller the bubbles and the larger the volume ratio, the better the thermal response.Also, although the present invention does not have a particular dependence on the volume ratio, This is because when the proportion increases, the strength of the glaze layer 2 decreases, and the above-mentioned proportion sufficiently exhibits the effect as a multicellular material. As described above, the thermal head of the present invention improves yield by interposing an insulating material layer with a thickness of 1 to 10 μm between the glaze layer 2 made of multicellular glass and the heating resistor 4. Heat generating resistor 4
Not only is it effective in reducing variations in the resistance value of What you need is a high quality, long life thermal head. Below, as an example, alumina ceramics base material 1
A glass paste is screen printed on the glass paste and baked at 700℃ to form a glaze layer 2 with a thickness of about 60 μm in which about 20% of air bubbles of about 0.1 to 5 μm exist randomly. A heating resistor 4 made of titanium silicide is formed on top by a sputtering method at a maximum temperature of 400°C with varying thickness, and then a heating resistor 4 made of titanium silicide is formed by a sputtering method at a maximum temperature of 550°C. 5 × 10 -4 at a period of 2 × 10 -3 seconds, obtained by sequentially forming an electrode 5 made of silicon and a protective layer 6 of approximately 5 μm thick made of nitrogen-doped silicon.
Table 1 shows the results of the transfer test by applying a power of 0.65W for a second.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るサーマルヘツドの一例を
示す要部断面図、第2図は本発明の一実施例を示
す要部断面図である。 1…熱伝導性基材、2…グレーズ層、3…絶縁
性物質層、4…発熱抵抗体、5…電極、6…保護
層。
FIG. 1 is a sectional view of a main part showing an example of a thermal head according to the present invention, and FIG. 2 is a sectional view of a main part showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Heat conductive base material, 2... Glaze layer, 3... Insulating material layer, 4... Heat generating resistor, 5... Electrode, 6... Protective layer.

Claims (1)

【特許請求の範囲】[Claims] 1 熱伝導性基材と発熱抵抗体との間に多気泡ガ
ラスよりなるグレーズ層を介してなるサーマルヘ
ツドにおいて、前記多気泡ガラスよりなるグレー
ズ層と前記発熱抵抗体との間に層厚1〜10μmの
絶縁性物質層を介在させたことを特徴とするサー
マルヘツド。
1 In a thermal head formed by interposing a glaze layer made of multi-celled glass between a thermally conductive base material and a heat generating resistor, a layer thickness of 1 to 1 is provided between the glaze layer made of multi-celled glass and the heat generating resistor. A thermal head characterized by having a 10μm insulating material layer interposed therebetween.
JP58251886A 1983-12-28 1983-12-28 Thermal head Granted JPS60141569A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58251886A JPS60141569A (en) 1983-12-28 1983-12-28 Thermal head
US06/686,245 US4612433A (en) 1983-12-28 1984-12-26 Thermal head and manufacturing method thereof
DE19843447581 DE3447581A1 (en) 1983-12-28 1984-12-28 THERMAL PRINTER AND METHOD FOR THE PRODUCTION THEREOF
GB08432697A GB2151989B (en) 1983-12-28 1984-12-28 Thermal printing head
FR8420020A FR2557506B1 (en) 1983-12-28 1984-12-28 THERMAL HEAD AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58251886A JPS60141569A (en) 1983-12-28 1983-12-28 Thermal head

Publications (2)

Publication Number Publication Date
JPS60141569A JPS60141569A (en) 1985-07-26
JPH0460025B2 true JPH0460025B2 (en) 1992-09-24

Family

ID=17229406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58251886A Granted JPS60141569A (en) 1983-12-28 1983-12-28 Thermal head

Country Status (1)

Country Link
JP (1) JPS60141569A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3074625B2 (en) * 1989-10-14 2000-08-07 ローム株式会社 Thermal print head and method of manufacturing the same
JP6154338B2 (en) * 2014-02-25 2017-06-28 京セラ株式会社 Thermal head and thermal printer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455449A (en) * 1977-10-13 1979-05-02 Canon Inc Thermal head for thermal recorder
JPS5859864A (en) * 1981-10-07 1983-04-09 Seiko Epson Corp Thermal head
JPS5874370A (en) * 1981-10-29 1983-05-04 Seiko Instr & Electronics Ltd Thermal head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5455449A (en) * 1977-10-13 1979-05-02 Canon Inc Thermal head for thermal recorder
JPS5859864A (en) * 1981-10-07 1983-04-09 Seiko Epson Corp Thermal head
JPS5874370A (en) * 1981-10-29 1983-05-04 Seiko Instr & Electronics Ltd Thermal head

Also Published As

Publication number Publication date
JPS60141569A (en) 1985-07-26

Similar Documents

Publication Publication Date Title
JP5102303B2 (en) Ceramic heater and oxygen sensor and hair iron using the ceramic heater
EP2237638B1 (en) Ceramic heater, and oxygen sensor and hair iron having the ceramic heater
JP3826961B2 (en) Heating body and manufacturing method thereof
US4232213A (en) Thermal head
US7969458B2 (en) Thermal printhead
KR100525939B1 (en) Heating element and method for producing the same
JPH0460025B2 (en)
JPH06106758A (en) Thermal head
JPS606478A (en) Thermal recording head
JPH0312551B2 (en)
JP2608031B2 (en) Chip type fuse resistor
JPH10162715A (en) Chip fuse
US5081471A (en) True edge thermal printhead
US4251792A (en) Thermistor bonded to thermally conductive plate
JPS58203070A (en) Thermal head
JP2795050B2 (en) Thermal head
JPS62181162A (en) Thermal head
JPH06246945A (en) Thermal head
JP3476938B2 (en) Thermal head
JP2582397B2 (en) Thin-film thermal head
JP3231233B2 (en) Thermal head
JPH0245595B2 (en)
JPH07266594A (en) Thermal head
JPH068052B2 (en) Thick film thermal head manufacturing method
JPS54125044A (en) Thin film type thermal head