JPH0459790B2 - - Google Patents

Info

Publication number
JPH0459790B2
JPH0459790B2 JP18188686A JP18188686A JPH0459790B2 JP H0459790 B2 JPH0459790 B2 JP H0459790B2 JP 18188686 A JP18188686 A JP 18188686A JP 18188686 A JP18188686 A JP 18188686A JP H0459790 B2 JPH0459790 B2 JP H0459790B2
Authority
JP
Japan
Prior art keywords
light
optical semiconductor
fresnel lens
chip
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18188686A
Other languages
Japanese (ja)
Other versions
JPS6338272A (en
Inventor
Shigeru Aoyama
Shiro Ogata
Maki Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP61181886A priority Critical patent/JPS6338272A/en
Publication of JPS6338272A publication Critical patent/JPS6338272A/en
Publication of JPH0459790B2 publication Critical patent/JPH0459790B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 発明の背景 この発明は光半導体装置に関する。光半導体装
置とは、発光もしくは受光の単機能、または発光
および受光の両機能をもつ半導体装置を意味し、
発光装置、受光装置、発光受光装置等を含む概念
である。
DETAILED DESCRIPTION OF THE INVENTION BACKGROUND OF THE INVENTION This invention relates to optical semiconductor devices. Optical semiconductor device means a semiconductor device with a single function of emitting or receiving light, or a semiconductor device with both functions of emitting and receiving light,
This concept includes a light emitting device, a light receiving device, a light emitting device, and a light receiving device.

レーザ・ダイオード(LD)、発光ダイオード
(LED)などの発光素子から出射される光は広が
りをもつ発散光であるために、この光を利用する
ためには、一般にこの発光素子の前面に別途にコ
リメート・レンズを設けて平行光に変換すること
が多い。しかしながら、コリメート・レンズを設
けるとこの発光素子を利用した装置が大型化する
ことは避けられず、光軸調整や焦点距離調整など
が必要となる。また、LDの出射光はその広がり
角が異方性をもつので楕円錐状に発散する。した
がつて、通常の1枚のレンズではこれを完全にコ
リメートすことはできず、充分にコリメートされ
た光を得るためには組レンズや非球面レンズを使
用しなければならないので高価となる。
The light emitted from light-emitting devices such as laser diodes (LDs) and light-emitting diodes (LEDs) is spread and divergent light, so in order to utilize this light, a separate A collimating lens is often provided to convert the light into parallel light. However, if a collimating lens is provided, a device using this light emitting element will inevitably become larger, and optical axis adjustment, focal length adjustment, etc. will be required. Furthermore, the light emitted from the LD has anisotropic spread angle, so it diverges into an elliptical cone shape. Therefore, it is not possible to completely collimate this light with a single normal lens, and in order to obtain sufficiently collimated light, a combination lens or an aspherical lens must be used, which is expensive.

他方、フオトダイオード(PD)、アバランシ
エ・フオトダイオード(APD)などの受光素子
において、入射光を効率よくその受光面上に集光
させるためにも、従来は外部にレンズを設ける必
要があつた。
On the other hand, in light receiving elements such as photodiodes (PD) and avalanche photodiodes (APD), it has conventionally been necessary to provide an external lens in order to efficiently focus incident light onto the light receiving surface.

発明の概要 この発明は、新しいタイプの小形の光学系を光
半導体素子チツプ近傍に設けることによつて上記
の問題点を解決することを目的とする。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems by providing a new type of compact optical system near an optical semiconductor element chip.

この発明は、光半導体チツプを窓付キヤツプに
よつて実装するタイプのものにおいて、光通過位
置にあけられた上記の窓に、回折形マイクロ・フ
レネル・レンズが、その凹凸が形成されている面
を内側にして設けられていることを特徴とする。
This invention is of a type in which an optical semiconductor chip is mounted using a cap with a window, in which a diffraction type micro Fresnel lens is placed in the above-mentioned window opened at a light passing position on the surface where the unevenness is formed. It is characterized by being provided with the inside.

光半導体チツプが発光素子チツプの場合には、
発光素子からの出射光が上記マイクロ・フレネ
ル・レンズによつてほぼ平行化されるようにする
ことが好ましく、また光半導体チツプが受光素子
チツプの場合には、上記マイクロ・フレネル・レ
ンズの焦点を受光素子の受光面上にほぼ位置させ
ることが好ましい。
When the optical semiconductor chip is a light emitting element chip,
It is preferable that the light emitted from the light emitting element be substantially collimated by the micro Fresnel lens, and when the optical semiconductor chip is a light receiving element chip, the focal point of the micro Fresnel lens should be It is preferable to position it substantially on the light-receiving surface of the light-receiving element.

光半導体チツプが、発光と受光の両機能をもつ
発光受光素子チツプの場合には上記マイクロ・フ
レネル・レンズをこれに適した位置、形状とす
る。たとえば、中央部が発光部で周囲に受光部が
あるような素子においては、中央部からの出射光
が平行光となつて外部に出力され、外部からの入
射光の多くが周囲の受光部に集まるような2つの
焦点をもつフレネル・レンズを作製するとよい。
When the optical semiconductor chip is a light-emitting and light-receiving element chip having both light-emitting and light-receiving functions, the micro Fresnel lens is positioned and shaped appropriately. For example, in a device with a light emitting section in the center and a light receiving section around it, the light emitted from the center becomes parallel light and is output to the outside, and much of the light incident from the outside reaches the surrounding light receiving sections. It is preferable to create a Fresnel lens with two focal points that converge.

さらに光半導体チツプがLDであり、その出射
光の発散角が方向によつて異なる場合には、フレ
ネル・レンズのパターンを方向に応じて焦点距離
が異なるような楕円形パターンとすることによつ
て、ほぼ完全なコリメート光を得るようにするこ
ともできる。
Furthermore, if the optical semiconductor chip is an LD and the divergence angle of the emitted light differs depending on the direction, the pattern of the Fresnel lens can be made into an elliptical pattern with a focal length that differs depending on the direction. , it is also possible to obtain almost completely collimated light.

この発明によると、発光素子チツプに対しては
その出射光がほぼ平行化されるので、比較的高強
度(高輝度)で指向性がよくなり、受光素子チツ
プに対しては入射光が受光面上に集光されるので
集光効率がよく高感度となる。
According to this invention, the light emitted from the light-emitting element chip is almost parallelized, resulting in relatively high intensity (high brightness) and good directivity, and the light incident on the light-receiving element chip is directed toward the light-receiving surface. Since the light is focused upward, the light collection efficiency is good and the sensitivity is high.

また、発光、受光素子チツプを間わず、マイク
ロ・フレネル・レンズはプラスチツク成形するこ
とが可能であるから生産性がよく安価に提供でき
るとともに、マイクロ・フレネル・レンズが素子
チツプのキヤツプに固定されているから光軸のず
れ等が生じることがなく耐環境性にすぐれたもの
となり、さらに小型、軽量化が期待できる。
In addition, since the micro Fresnel lens can be molded in plastic immediately after the light emitting and light receiving element chips, it is highly productive and can be provided at low cost. Because of this, there is no optical axis misalignment, resulting in excellent environmental resistance, and further downsizing and weight reduction can be expected.

さらにこの発明によると、光通過位置にあけら
れた窓に、回折形マイクロ・フレネル・レンズ
が、その凹凸が形成されてりう面を内側にして設
けられているので、凹凸が形成されている面が外
部に露出することがない。このために微細加工さ
れた凹凸による溝内に塵埃が詰つたり、外から加
えらる力によつて凹凸に損傷が生じたりすること
がなく、常に高効率のレンズ作用を確保できる。
Furthermore, according to the present invention, the diffractive micro Fresnel lens is provided in the window opened at the light passing position, with the surface on which the unevenness is formed inside, so that the surface on which the unevenness is formed is is not exposed to the outside. This prevents dust from clogging the grooves formed by the micro-machined concavities and convexities, and prevents the concavities and convexities from being damaged by external forces, ensuring highly efficient lens action at all times.

マイクロ・フレネル・レンズは回折形レンズで
あるから原理的には無収差であり、効率良く光を
平行化または集束することができる。
Since the micro Fresnel lens is a diffractive lens, it has no aberration in principle and can efficiently collimate or focus light.

実施例の説明 第1図および第2図を参照して、いくつかの端
子2を有するステムないしはマウント1上にサブ
マウントないしはヒート・シンク3が設けられ、
このヒート・シンク3に素子チツプ4が取付けら
れている。素子チツプ4は、上述したようにLD、
LED、PD、APD等のチツプである。素子チツプ
4にはキヤツプ5が被せられている。キヤツプ5
は、キヤンシール、接着、溶着その他の通常のや
り方でマウント1に固定される。キヤツプ5の頂
部(上面)すなわち素子チツプ4の出射光のまた
は素子チツプ4へ入射光の通過位置には窓5aが
あけられており、こおに透明樹脂製のマイクロ・
フレネル・レンズ6が取付けられている。このフ
レネル・レンズ6はその周縁において窓5aの内
周面に接着によつて固定される。フレネル・レン
ズ6は、第2図に示されているようにフレネル・
レンズ6の凹凸が形成された微細加工面がキヤツ
プ5の内側を向くように配置される。このことに
よつて、この微細加工面の外力からの保護とレン
ズ特性の劣化の防止とが図られる。キヤツプ5の
窓5aの外側に保護ガラスを設けると一層よい。
DESCRIPTION OF THE EMBODIMENTS Referring to FIGS. 1 and 2, a submount or heat sink 3 is provided on a stem or mount 1 having several terminals 2;
An element chip 4 is attached to this heat sink 3. As mentioned above, the element chip 4 includes LD,
Chips such as LED, PD, APD, etc. The element chip 4 is covered with a cap 5. cap 5
is fixed to the mount 1 by can sealing, gluing, welding or other conventional methods. A window 5a is provided at the top (upper surface) of the cap 5, that is, at the position where the light emitted from the element chip 4 passes or the light incident on the element chip 4 passes through, and a window 5a is provided in the window 5a, and a transparent resin micro-film is provided in the window 5a.
A Fresnel lens 6 is attached. This Fresnel lens 6 is fixed at its periphery to the inner peripheral surface of the window 5a by adhesive. The Fresnel lens 6 is a Fresnel lens as shown in FIG.
The lens 6 is arranged so that the finely machined surface on which the concave and convex portions are formed faces the inside of the cap 5. This protects the microfabricated surface from external forces and prevents deterioration of lens characteristics. It is even better to provide a protective glass outside the window 5a of the cap 5.

素子チツプ4が発光素子(LD、LEDなど)の
場合には、素子4からの出射光がマイクロ・フレ
ネル・レンズ6によつてほぼ平行化されるよう
に、このレンズ6の位置および焦点が定められ
る。また素子チツプ4が受光素子(PD、APDな
ど)の場合には、入射光がこの素子4の受光面上
にほぼ集光されるようにマイクロ・フレネル・レ
ンズ6の位置、焦点等が決定される。
When the element chip 4 is a light emitting element (LD, LED, etc.), the position and focus of the micro Fresnel lens 6 are determined so that the light emitted from the element 4 is almost collimated by the micro Fresnel lens 6. It will be done. In addition, when the element chip 4 is a light receiving element (PD, APD, etc.), the position, focus, etc. of the micro Fresnel lens 6 are determined so that the incident light is almost focused on the light receiving surface of the element 4. Ru.

とくに素子チツプ4がLDの場合には、その出
射光の広がり角は異方性を示し、第3図に示すよ
うにX方向とY方向とでは発散角が異なる。この
ため、出射光の横断面は楕円形となる。このよう
な出射光をほぼ完全にコリメートさせるために
は、第4図に示すような楕円形パターンをもつフ
レネル・レンズを用いる。
In particular, when the element chip 4 is an LD, the spread angle of the emitted light exhibits anisotropy, and as shown in FIG. 3, the divergence angles are different in the X direction and the Y direction. Therefore, the cross section of the emitted light is elliptical. In order to almost completely collimate such emitted light, a Fresnel lens having an elliptical pattern as shown in FIG. 4 is used.

第1図において、素子チツプ4の電極は対応す
る端子2にワイヤ・ボンデイングされているのは
いうまでもない。
In FIG. 1, it goes without saying that the electrodes of the element chip 4 are wire-bonded to the corresponding terminals 2.

このようなマイクロ・フレネル・レンズ6は射
出成形その他のやり方によつて透明樹脂で一体成
形することができる。
Such a micro Fresnel lens 6 can be integrally molded from transparent resin by injection molding or other methods.

この樹脂成形のためのマイクロ・フレネル・レ
ンズの雌型は種々のやり方でこれをつくることが
できるが、たとえば次のようにして作製すればよ
い。
The female mold of the micro Fresnel lens for resin molding can be made in various ways, for example, as follows.

所定の基板上に電子線レジストを塗布し、電子
線描画法によりレジスト上にマイクロ・フレネ
ル・レンズ・パターンを描画し、その後、このレ
ジストを現像する。そして、基板上の残膜レジス
ト・パターンをドライ・エツチングによつて基板
に転写する。この基板が雌型となる(特願昭61−
3419参照)。
An electron beam resist is applied onto a predetermined substrate, a micro Fresnel lens pattern is drawn on the resist by electron beam lithography, and then this resist is developed. Then, the remaining resist pattern on the substrate is transferred to the substrate by dry etching. This board becomes the female mold (patent application 1986-
3419).

または、上記の残膜レジスト・パターンを雄型
として電鋳法によつて雌型を形成する。すなわ
ち、残膜レジスト・パターンに金属をめつきし、
その後、残膜パターンおよび基板を有機溶剤等で
溶解することにより、金属めつき部分のみを残す
(特願昭61−3420参照)。
Alternatively, a female mold is formed by electroforming using the above residual film resist pattern as a male mold. In other words, the remaining resist pattern is plated with metal,
Thereafter, by dissolving the remaining film pattern and the substrate with an organic solvent or the like, only the metal-plated parts are left (see Japanese Patent Application No. 61-3420).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すもので一部を
破断した斜視図、第2図は第1図のキヤツプおよ
びマイクロ・フレネル・レンズの断面図、第3図
は半導体レーザから出射する光の発散の様子を示
す図、第4図はこのような発散角をもつ光をコリ
メートするために好適なマイクロ・フレネル・レ
ンズ・パターンを示すものである。 4……発光または受光素子チツプ、5……キヤ
ツプ、5a……窓、6……マイクロ・フレネル・
レンズ。
Fig. 1 shows an embodiment of the present invention, a partially cutaway perspective view, Fig. 2 is a sectional view of the cap and micro Fresnel lens shown in Fig. 1, and Fig. 3 shows the light emitted from the semiconductor laser. FIG. 4 shows a micro Fresnel lens pattern suitable for collimating light having such a divergence angle. 4... Light emitting or light receiving element chip, 5... Cap, 5a... Window, 6... Micro Fresnel.
lens.

Claims (1)

【特許請求の範囲】 1 光半導体チツプを窓付キヤツプによつて実装
するタイプのものにおいて、 光通過位置にあけられた上記の窓に、回折形マ
イクロ・フレネル・レンズが、その凹凸が形成さ
れている面を内側にして設けられていることを特
徴とする光半導体装置。 2 光半導体チツプが受光素子チツプであり、発
光素子からの発光が上記マイクロ・フレネル・レ
ンズによつてほぼ平行化される、特許請求の範囲
第1項に記載の光半導体装置。 3 光半導体チツプが受光素子チツプであり、上
記マイクロ・フレネル・レンズの焦点が受光素子
の受光面上にほぼ位置している、特許請求の範囲
第1項に記載の光半導体装置。 4 光半導体チツプが発光受光素子である、特許
請求の範囲第1項に記載の光半導体装置。 5 光半導体チツプが半導体レーザ・チツプであ
り、上記マイクロ・フレネル・レンズが半導体レ
ーザ・チツプから出射し異方向に拡散する光を平
行光に変換するように楕円形パターをもつもので
ある、特許請求の範囲第1項に記載の光半導体装
置。
[Claims] 1. In a type of optical semiconductor chip mounted by a cap with a window, a diffraction type micro Fresnel lens is formed in the above-mentioned window opened at the light passage position, and its concavities and convexities are formed. An optical semiconductor device characterized in that the optical semiconductor device is provided with the side facing inside. 2. The optical semiconductor device according to claim 1, wherein the optical semiconductor chip is a light receiving element chip, and the light emitted from the light emitting element is substantially collimated by the micro Fresnel lens. 3. The optical semiconductor device according to claim 1, wherein the optical semiconductor chip is a light receiving element chip, and the focal point of the micro Fresnel lens is located substantially on the light receiving surface of the light receiving element. 4. The optical semiconductor device according to claim 1, wherein the optical semiconductor chip is a light emitting light receiving element. 5. A patent in which the optical semiconductor chip is a semiconductor laser chip, and the micro Fresnel lens has an elliptical pattern so as to convert light emitted from the semiconductor laser chip and diffused in different directions into parallel light. An optical semiconductor device according to claim 1.
JP61181886A 1986-08-04 1986-08-04 Photosemiconductor device Granted JPS6338272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61181886A JPS6338272A (en) 1986-08-04 1986-08-04 Photosemiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61181886A JPS6338272A (en) 1986-08-04 1986-08-04 Photosemiconductor device

Publications (2)

Publication Number Publication Date
JPS6338272A JPS6338272A (en) 1988-02-18
JPH0459790B2 true JPH0459790B2 (en) 1992-09-24

Family

ID=16108594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61181886A Granted JPS6338272A (en) 1986-08-04 1986-08-04 Photosemiconductor device

Country Status (1)

Country Link
JP (1) JPS6338272A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212501A (en) * 1991-04-30 1993-05-18 Minolta Camera Kabushiki Kaisha Image recording apparatus with a laser optical unit
JPH04328513A (en) * 1991-04-30 1992-11-17 Minolta Camera Co Ltd Laser beam scanning optical system
EP0582958B1 (en) * 1992-08-07 1998-05-13 Matsushita Electric Industrial Co., Ltd. A semiconductor laser device, an optical device and a method of producing the same
US5825054A (en) * 1995-12-29 1998-10-20 Industrial Technology Research Institute Plastic-molded apparatus of a semiconductor laser
JP4504662B2 (en) * 2003-04-09 2010-07-14 シチズン電子株式会社 LED lamp
EP1622205A3 (en) * 2004-07-29 2006-02-08 Schott AG Electronic package incorporating electronic components generating and/or receiving light-based signals
KR101008687B1 (en) * 2010-05-13 2011-01-17 주식회사 세코닉스 Ir receiver and liquid crystal shutter glasses having the same
US10809596B2 (en) 2016-05-19 2020-10-20 Lg Innotek Co., Ltd. Flash module and terminal comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113387A (en) * 1979-02-22 1980-09-01 Sanyo Electric Co Ltd Light emitting diode indicator
JPS5815965U (en) * 1981-07-24 1983-01-31 日産自動車株式会社 Vehicle relay device
JPS59205774A (en) * 1983-05-09 1984-11-21 Nec Corp Semiconductor light-emitting element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183763U (en) * 1981-05-18 1982-11-20

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113387A (en) * 1979-02-22 1980-09-01 Sanyo Electric Co Ltd Light emitting diode indicator
JPS5815965U (en) * 1981-07-24 1983-01-31 日産自動車株式会社 Vehicle relay device
JPS59205774A (en) * 1983-05-09 1984-11-21 Nec Corp Semiconductor light-emitting element

Also Published As

Publication number Publication date
JPS6338272A (en) 1988-02-18

Similar Documents

Publication Publication Date Title
US5175783A (en) Optical molded device including two lenses and active element integrally
WO2000024062A1 (en) Led module and luminaire
JP5237641B2 (en) LIGHTING DEVICE, AUTOMOBILE HEADLIGHT AND METHOD FOR MANUFACTURING LIGHTING DEVICE
US20100165635A1 (en) Led unit
JP4699966B2 (en) Module for projecting rays
US8368093B2 (en) LED unit
US20060152820A1 (en) Lens and light-emitting device including the lens
GB2282700A (en) Optical element for use with an LED
JP2005236299A (en) Illumination system using led
JP2002043629A (en) Led projector and lens body for use therein
US20070114549A1 (en) Light-emitting diode
US8269243B2 (en) LED unit
JP2002324918A (en) Semiconductor module equipped with reflector
US6916105B2 (en) Optical assembly for light emitting diode package
JP2000266969A (en) Light transmitting and receiving module
JPH0459790B2 (en)
JPH10105635A (en) Optical semiconductor device
JP7372522B2 (en) light emitting device
US8226277B2 (en) Lens and LED module using the same
JPH0750797B2 (en) Light emitting diode
JPH0459789B2 (en)
TWI827948B (en) Illuminating device with spherical modulator
JPS6338270A (en) Light emitting and receiving device
JPS60213069A (en) Led for optical communication
JPS584102A (en) Optical element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees