JPH0459382B2 - - Google Patents

Info

Publication number
JPH0459382B2
JPH0459382B2 JP31260588A JP31260588A JPH0459382B2 JP H0459382 B2 JPH0459382 B2 JP H0459382B2 JP 31260588 A JP31260588 A JP 31260588A JP 31260588 A JP31260588 A JP 31260588A JP H0459382 B2 JPH0459382 B2 JP H0459382B2
Authority
JP
Japan
Prior art keywords
molybdenum
weight
cerium oxide
temperature
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP31260588A
Other languages
Japanese (ja)
Other versions
JPH02159341A (en
Inventor
Koji Fujii
Keiji Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tungsten Co Ltd
Original Assignee
Nippon Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Tungsten Co Ltd filed Critical Nippon Tungsten Co Ltd
Priority to JP31260588A priority Critical patent/JPH02159341A/en
Publication of JPH02159341A publication Critical patent/JPH02159341A/en
Publication of JPH0459382B2 publication Critical patent/JPH0459382B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高温で使用されるモリブデン材料に
関する。 〔従来の技術〕 高温強度を要求される材料として、約2600℃の
高い融点を持つモリブデンがあげられ、このモリ
ブデンには多くの用途がある。しかし、純モリブ
デンは、約1200℃で再結晶し、再結晶温度以上に
一度加熱されると、その結晶が粗大化して、非常
に脆くなり、強度が著しく低下するという欠点が
あつた。 この問題を解決するには、モリブデンの再結晶
温度を高くする必要がある。本発明者等はモリブ
デンとほぼ同じ融点を持つ酸化セリウムを0.1〜
3.0重量%、モリブデンに添加した再結晶温度の
高いモリブデン材料を発明(特開昭61−23741)
した。酸化セリウムを添加したこのモリブデン材
料は、再結晶温度が1600℃以上と高く、特に酸化
セリウムを1.0重量%添加したものは再結晶温度
を1800℃にまで向上させることができた。 〔発明が解決しようとする問題点〕 その後、モリブデン材料の使用条件はますます
過酷なものとなつており、1800℃以上の高温に加
熱された後も、高強度、高靭性を保持するような
材料が要求されるようになつてきた。 前記酸化セリウムを1.0重量%添加したモリブ
デン材料においても、1800℃以上に加熱すると結
晶が粗大化し、引張強度、伸びともに低下して、
要求される高強度、高靭性を十分に満足すること
ができない場合がでてきた。 前記問題点に鑑み、本発明は、1800℃以上の高
温に加熱後も、機械的強度が低下しにくく、高温
特性に優れたモリブデン材料を提供することを目
的とする。 〔問題点を解決するための手段及び作用〕 本発明者は、モリブデン材料の組成を以下のよ
うにすることにより前記問題点を解決し、前記目
的を達成した。即ち、0.1〜3.0重量%の酸化セリ
ウムと0.004〜0.03重量%のホウ素とを含み、残
部が実質的にモリブデンからなるモリブデン材料
を得た。 本発明のモリブデン材料において、酸化セリウ
ムは、モリブデン中に微細に分散して粒界の移動
を阻止し、モリブデンの再結晶温度を高める働き
をする。その添加量としては0.1重量%未満では
再結晶温度の向上が見られず、3.0重量%を超え
ると線引時の加工性が劣化する。そのため、酸化
セリウムの量は0.1〜3.0重量%とする必要があ
る。 ホウ素は、粒界の脆化を防止する作用があると
推察されるが、その添加量としては0.004重量%
未満では添加の効果がみられず、0.03重量%を超
えると逆に靭性の低下をもたらす。そのため、ホ
ウ素の添加量として0.004〜0.03重量%とする必
要がある。 前述のように、モリブデンに酸化セリウムを単
独に添加するときは、再結晶温度は向上するもの
の再結晶温度以上に加熱した場合、靭性の低下が
みられ、またホウ素を単独で添加した場合は再結
晶温度が1200℃以下と低いため同様に高温での靭
性の向上は望めない。 即ち、本発明のモリブデン材料の特徴は、0.1
〜3.0重量%の酸化セリウムと0.004〜0.03重量%
のホウ素を同時に含有することにあり、本発明に
よれば、1800℃以上の高温に加熱された後でも高
強度高靭性を保持するという、従来の材料にみら
れない優れた特性を有するモリブデン材料が得ら
れる。 本発明のモリブデン材料は、様々な方法で製造
できるが、例えば次のようにして製造することが
できる。即ち、モリブデン粉末に酸化セリウム粉
末と、ホウ化モリブデン、炭化ホウ素等のホウ素
化合物の粉末を混合し、プレス成形した後に、水
素中または真空中で焼結することにより製造され
る。また、このようにして得られたインゴツト
は、鍛造、圧延、線引等の所定の加工を施して、
所望の形状にすることができる。 以下、実施例により本発明の内容を詳細に説明
する。 〔実施例〕 (1) 純度99.9%以上の金属モリブデン粉末と、酸
化セリウム粉末及びホウ化モリブデン粉末を所
定の割合で均一によく混合する。その後、加圧
成形し、予備焼結を行ない、溶融電流の90%の
電流で焼結して、インゴツトとした。次いで、
インゴツトを転打加工及び線引加工をしてφ0.8
mmの線材を得た。 (2) 純度99.9%以上の金属モリブデン粉末と、酸
化セリウム粉末及び炭化ホウ素粉末を所定の割
合で均一によく混合した後、上記(1)と同様に加
工してφ0.8mmの線材を得た。 (3) 比較のために、モリブデンに酸化セリウムの
みを添加したもの、及び何も添加しない純モリ
ブデンについても、上記(1),(2)と同様な加工を
してφ0.8mmの線材を作製した。 上記(1),(2),(3)で得られた線材について、各温
度に加熱した後室温での引張試験、及び1950℃で
熱処理して室温で折り曲げ試験を行ない、靭性の
比較をした。その結果を第1表、第1図及び第2
図に示す。 第1表は、モリブデン線を1950℃に通電加熱し
た後の折り曲げ試験の結果を示す。折り曲げは、
熱処理後の線材をペンチで保持し90゜折り曲げた
ときを1回とし、破断せずに折り曲げができた回
数でその強度を示した。第1表から明らかなよう
に、純モリブデンNo.90は1回も折り曲げができ
ず、また酸化セリウムを単独で添加した線No.10も
11回折り曲げ後、破断した。これに対し、酸化セ
リウムとホウ素とを添加したNo.1,2,3及びNo.
5,6,7の本発明のモリブデン材料は、いずれ
も折り曲げ特性が向上し、靭性に優れている
[Industrial Field of Application] The present invention relates to molybdenum materials used at high temperatures. [Prior Art] Molybdenum, which has a high melting point of about 2600°C, is a material that requires high-temperature strength, and has many uses. However, pure molybdenum recrystallizes at about 1200°C, and once heated above the recrystallization temperature, the crystals become coarse and brittle, resulting in a significant decrease in strength. To solve this problem, it is necessary to increase the recrystallization temperature of molybdenum. The present inventors used cerium oxide, which has almost the same melting point as molybdenum, to
Invented a molybdenum material with a high recrystallization temperature by adding 3.0% by weight to molybdenum (Japanese Patent Application Laid-Open No. 61-23741)
did. This molybdenum material to which cerium oxide is added has a high recrystallization temperature of 1,600°C or higher, and in particular, the material with 1.0% by weight of cerium oxide can increase the recrystallization temperature to 1,800°C. [Problems to be solved by the invention] Since then, the conditions for using molybdenum materials have become increasingly harsh, and materials that maintain high strength and toughness even after being heated to temperatures of 1800°C or higher have been developed. Materials are now in demand. Even in the molybdenum material to which 1.0% by weight of cerium oxide is added, when heated above 1800°C, the crystals become coarse and both tensile strength and elongation decrease.
There have been cases where the required high strength and high toughness cannot be fully satisfied. In view of the above-mentioned problems, an object of the present invention is to provide a molybdenum material that does not easily lose its mechanical strength even after being heated to a high temperature of 1800° C. or higher and has excellent high-temperature properties. [Means and effects for solving the problems] The present inventor solved the problems and achieved the object by changing the composition of the molybdenum material as follows. That is, a molybdenum material containing 0.1 to 3.0% by weight of cerium oxide and 0.004 to 0.03% by weight of boron, with the balance essentially consisting of molybdenum was obtained. In the molybdenum material of the present invention, cerium oxide is finely dispersed in molybdenum to prevent movement of grain boundaries and serve to increase the recrystallization temperature of molybdenum. If the amount added is less than 0.1% by weight, no improvement in the recrystallization temperature will be observed, and if it exceeds 3.0% by weight, the workability during wire drawing will deteriorate. Therefore, the amount of cerium oxide needs to be 0.1 to 3.0% by weight. Boron is presumed to have the effect of preventing grain boundary embrittlement, but the amount added is 0.004% by weight.
If it is less than 0.03% by weight, the effect of addition will not be seen, and if it exceeds 0.03% by weight, the toughness will decrease. Therefore, the amount of boron added needs to be 0.004 to 0.03% by weight. As mentioned above, when cerium oxide is added alone to molybdenum, the recrystallization temperature increases, but when heated above the recrystallization temperature, the toughness decreases, and when boron is added alone, the recrystallization temperature increases. Similarly, since the crystal temperature is low at 1200°C or less, improvement in toughness at high temperatures cannot be expected. That is, the feature of the molybdenum material of the present invention is that 0.1
~3.0 wt% cerium oxide and 0.004-0.03 wt%
According to the present invention, a molybdenum material has excellent properties not found in conventional materials, such as retaining high strength and high toughness even after being heated to a high temperature of 1800°C or higher. is obtained. The molybdenum material of the present invention can be manufactured by various methods, and for example, it can be manufactured as follows. That is, it is manufactured by mixing molybdenum powder, cerium oxide powder, and powder of a boron compound such as molybdenum boride or boron carbide, press-molding the mixture, and then sintering it in hydrogen or vacuum. In addition, the ingot obtained in this way is subjected to prescribed processing such as forging, rolling, and wire drawing.
It can be made into any desired shape. Hereinafter, the content of the present invention will be explained in detail with reference to Examples. [Example] (1) Metallic molybdenum powder with a purity of 99.9% or more, cerium oxide powder, and molybdenum boride powder are uniformly and thoroughly mixed in a predetermined ratio. Thereafter, it was pressure-molded, pre-sintered, and sintered at 90% of the melting current to form an ingot. Then,
The ingot is rolled and drawn to a diameter of φ0.8.
mm wire rod was obtained. (2) Metallic molybdenum powder with a purity of 99.9% or higher, cerium oxide powder, and boron carbide powder were mixed uniformly and well in a predetermined ratio, and then processed in the same manner as in (1) above to obtain a wire rod with a diameter of 0.8 mm. . (3) For comparison, wire rods with a diameter of 0.8 mm were made using the same processing as in (1) and (2) above for molybdenum with only cerium oxide added and pure molybdenum without any addition. did. The wire rods obtained in (1), (2), and (3) above were heated to various temperatures and then subjected to a tensile test at room temperature, and after heat treatment at 1950°C and a bending test at room temperature, the toughness was compared. . The results are shown in Table 1, Figure 1 and 2.
As shown in the figure. Table 1 shows the results of a bending test after electrically heating a molybdenum wire to 1950°C. The bending is
One time was when the wire after heat treatment was held with pliers and bent 90 degrees, and the strength was measured by the number of times the wire could be bent without breaking. As is clear from Table 1, pure molybdenum No. 90 could not be bent even once, and wire No. 10 with cerium oxide added alone also
It broke after being bent 11 times. On the other hand, Nos. 1, 2, 3, and No. 1 added cerium oxide and boron.
The molybdenum materials of the present invention Nos. 5, 6, and 7 all have improved bending properties and excellent toughness.

【表】【table】

〔効 果〕〔effect〕

以上説明してきたように、本発明によれば、高
温に加熱した後も高強度、高靭性を有するモリブ
デン材料が得られ、本発明の産業上の利用価値は
大きい。
As described above, according to the present invention, a molybdenum material having high strength and high toughness even after being heated to a high temperature can be obtained, and the present invention has great industrial utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱処理温度と引張強度との関係を示
すグラフである。第2図は、熱処理温度と引張試
験における伸びとの関係を示すグラフである。図
中の番号は、試料番号を示す。
FIG. 1 is a graph showing the relationship between heat treatment temperature and tensile strength. FIG. 2 is a graph showing the relationship between heat treatment temperature and elongation in a tensile test. The numbers in the figure indicate sample numbers.

Claims (1)

【特許請求の範囲】 1 0.1〜3.0重量%の酸化セリウムと、0.004〜
0.03重量%のホウ素と、残部が実質的にモリブデ
ンからなる高温用モリブデン合金。 2 0.1〜3.0重量%の酸化セリウムと、ホウ素と
して0.004〜0.03重量%のホウ化炭素と、残部が
実質的にモリブデンからなる高温用モリブデン合
金。
[Claims] 1. 0.1 to 3.0% by weight of cerium oxide, and 0.004 to 3.0% by weight of cerium oxide.
A high temperature molybdenum alloy consisting of 0.03% by weight boron and the balance essentially molybdenum. 2. A high-temperature molybdenum alloy consisting of 0.1 to 3.0% by weight of cerium oxide, 0.004 to 0.03% by weight of carbon boride as boron, and the remainder substantially molybdenum.
JP31260588A 1988-12-09 1988-12-09 Molybdenum material Granted JPH02159341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31260588A JPH02159341A (en) 1988-12-09 1988-12-09 Molybdenum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31260588A JPH02159341A (en) 1988-12-09 1988-12-09 Molybdenum material

Publications (2)

Publication Number Publication Date
JPH02159341A JPH02159341A (en) 1990-06-19
JPH0459382B2 true JPH0459382B2 (en) 1992-09-22

Family

ID=18031220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31260588A Granted JPH02159341A (en) 1988-12-09 1988-12-09 Molybdenum material

Country Status (1)

Country Link
JP (1) JPH02159341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083900C (en) * 1999-04-06 2002-05-01 株洲硬质合金厂 Preparation of doped molybdenum-base alloy
CN102274969B (en) * 2011-07-07 2013-03-13 西安交通大学 Preparation method of molybdenum alloy electrode material doped with nano rare earth oxides

Also Published As

Publication number Publication date
JPH02159341A (en) 1990-06-19

Similar Documents

Publication Publication Date Title
KR100236429B1 (en) Wrought tantalum or niobium alloy having silicon and a compound dopant
JPS62215B2 (en)
US3236699A (en) Tungsten-rhenium alloys
US5604321A (en) Tungsten-lanthana alloy wire for a vibration resistant lamp filament
JP3894987B2 (en) Heat-resistant platinum material
US4322248A (en) Doped molybdenum-tantalum wire and method for making
JPH0459382B2 (en)
JP2003535214A (en) High temperature heat treated alloy
US3141235A (en) Powdered tantalum articles
JP5086503B2 (en) Method for manufacturing thorium tungsten wire
US3136039A (en) Tungsten alloy
USRE24242E (en) Alloys and electrical resistance
JPS6123741A (en) Molybdenum material
JP2002302727A (en) Electroconductive, heat-resistant aluminum alloy wire and production method therefor
JPS604898B2 (en) Molybdenum-based alloy
JP2575059B2 (en) Material for electric heating element made of Fe-Cr-Al alloy with low temperature coefficient of electrical resistivity
JPS5980746A (en) Tantalum-tungsten-molybdenum alloy
US3107998A (en) Copper-zirconium-arsenic alloys
EP0073814B1 (en) Alloy wire for lamp components and lamps incorporating same
KR101957559B1 (en) Ti-Fe based hypereutectic alloy
JPH0468370B2 (en)
JPS62275091A (en) Production of tungsten single crystal
WO2000073523A1 (en) Cr-BASE ALLOY EXCELLENT IN BALANCE BETWEEN STRENGTH AND DUCTILITY AT HIGH TEMPERATURE
JPS6221066B2 (en)
JPH0310042A (en) Heat resistant high temperature high strength molybdenum material and its manufacture