JPH045890A - Manufacture of multilayer printed wiring board - Google Patents

Manufacture of multilayer printed wiring board

Info

Publication number
JPH045890A
JPH045890A JP10537490A JP10537490A JPH045890A JP H045890 A JPH045890 A JP H045890A JP 10537490 A JP10537490 A JP 10537490A JP 10537490 A JP10537490 A JP 10537490A JP H045890 A JPH045890 A JP H045890A
Authority
JP
Japan
Prior art keywords
printed wiring
copper
wiring board
resin
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10537490A
Other languages
Japanese (ja)
Inventor
Takeo Kaneoka
金岡 威雄
Norio Sayama
憲郎 佐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10537490A priority Critical patent/JPH045890A/en
Priority to DE4113231A priority patent/DE4113231A1/en
Priority to US07/689,428 priority patent/US5173150A/en
Publication of JPH045890A publication Critical patent/JPH045890A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PURPOSE:To prevent the generation of a void, the positional displacement of an internal-layer conductor layer, etc., to reduce the dispersion of the degree of cure of a resin, to facilitate etching, burying, etc., and to improve reliability and productivity by using a semirigid resin copper-clad laminated board. CONSTITUTION:A semirigid resin copper-clad laminated board having the adhesive force of 0.85kg/cm of a copper foil and a glass transition temperature of 92 deg.C (136 deg.C after full cure) is employed. Wiring patterns are formed on the semirigid resin copper- clad laminated board through an etching method, and press-molded at surface pressure of 75kg/cm<2> at a temperature of 170 deg.C, thus manufacturing a smooth printed board 1 for an internal layer. Two boards 1 and two copper foils 3 for external layers on the outsides of the boards 1 are used, glass woven-fabric epoxy-resin prepregs 2 in thickness of 0.2mm are arranged one by one for interlaminar bonding, and the boards 1, the copper foils 3 and the prepregs 2 are laminate-molded for ninety min at pressure of 40kg/cm<2> at a temperature of 170 deg.C, thus manufacturing the multilayer shield board of six layers. Accordingly, the generation of voids, the positional displacement of an internal-layer conductor layer, etc., are prevented, the dispersion of the degree of cure of a resin is reduced, etching and burying are facilitated, and reliability and productivity can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄い層間接着用プリプレグを使用して、信頼
性に優れた多層プリント配線板を製造する方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method of manufacturing a highly reliable multilayer printed wiring board using a thin interlayer bonding prepreg.

〔従来の技術およびその課題〕[Conventional technology and its problems]

従来、多層プリント配線板は、内層板或いは中間層板と
して、完全に硬化した銅張積層板に所望のプリント配線
パターンを形成したプリント配線板を使用して製造され
てる。
Conventionally, multilayer printed wiring boards are manufactured using printed wiring boards in which a desired printed wiring pattern is formed on a completely cured copper clad laminate as an inner layer board or an intermediate layer board.

この方法では、内層のプリント配線導体間を完全に埋め
且つ隣のプリント配線導体との距離を保ち、信頼性を確
保するために、所定の含浸樹脂流れを有する接着用プリ
プレグを所望量の倍程度使用することが必要であり、ま
た、プリント配線パターンの形状によっては、ボイドの
発生などを避けるために減圧積層成形が必須であった。
In this method, adhesive prepreg with a predetermined impregnated resin flow is applied at twice the desired amount in order to completely fill the spaces between the printed wiring conductors in the inner layer, maintain a distance from the adjacent printed wiring conductors, and ensure reliability. In addition, depending on the shape of the printed wiring pattern, vacuum lamination molding is essential to avoid the occurrence of voids.

この結果、プリント配線層間が広くなり、厚い多層板し
か製造出来ないという欠点があった。
As a result, the distance between printed wiring layers becomes wider, resulting in the disadvantage that only thick multilayer boards can be manufactured.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明者らは、導体層間隔の狭い、薄い多層板プリント
配線板の製造法について鋭意検討した結果、連続法によ
り容易に製造可能な半硬化樹脂積層板を用いる方法によ
り、上記の課題が容易に解決可能であることを見出し、
本発明を完成するに至った。
The inventors of the present invention have conducted intensive studies on a method for manufacturing thin multilayer printed wiring boards with narrow conductor layer spacing. As a result, the above-mentioned problems can be easily solved by a method using semi-cured resin laminates that can be easily manufactured by a continuous method. found that it is possible to solve
The present invention has now been completed.

すなわち、本発明は、内層用プリント配線網を形成した
内層板、層間接着用プリプレグ、外層用の銅箔或いは片
面銅張積層板又はプリント配線板を所望の多層板構成に
て組合せて多層化積層成形して多層プリント配線基板を
製造する方法において、該内層板として半硬化樹脂銅張
積層板に所望のプリント配線網を形成し、プレス成形し
て導体表面と基板表面とが略同一平面上とされたプリン
ト配線板(以下、平滑プリント板と記す)を用いること
を特徴とする多層プリント配線板の製造法であり、該半
硬化樹脂銅張積層板が、銅箔の剥離強度が0゜2 kg
 / cm以上で完全硬化時の90%以下の範囲となる
ように加熱加圧してなるものであること、該半硬化樹脂
銅張積層板が、銅箔と基材との間に少なくとも厚み20
Il−以上の半硬化樹脂層を有するものであること、該
半硬化樹脂銅張積層板が、ダブルベルI・プレス法によ
る連続プレスで製造されたもの或いは一対の熱盤間で1
枚の積層板をプレス成形する回分速続プレス成形法によ
り製造したものてあることを特徴とする多層プリント配
線板の製造法である。
That is, the present invention provides a multilayer laminate by combining an inner layer board forming a printed wiring network for the inner layer, a prepreg for interlayer adhesion, and a copper foil or single-sided copper-clad laminate or printed wiring board for the outer layer in a desired multilayer board configuration. In a method of manufacturing a multilayer printed wiring board by molding, a desired printed wiring network is formed on a semi-cured resin copper-clad laminate as the inner layer board, and press molding is performed so that the conductor surface and the board surface are on substantially the same plane. This is a method for manufacturing a multilayer printed wiring board characterized by using a printed wiring board (hereinafter referred to as a smooth printed wiring board) made of a semi-hardened resin copper clad laminate having a copper foil peel strength of 0°2. kg
/ cm or more, and the semi-cured resin copper clad laminate is heated and pressurized to a range of 90% or less of the fully cured state, and the semi-cured resin copper clad laminate has a thickness of at least 20 mm between the copper foil and the base material.
The semi-cured resin copper clad laminate shall have a semi-cured resin layer of Il- or more, and the semi-cured resin copper clad laminate shall be manufactured by continuous pressing using the double bell I press method or pressed between a pair of hot plates.
This is a method for producing a multilayer printed wiring board, characterized in that the multilayer printed wiring board is produced by a batch rapid press forming method in which two laminates are press-formed.

まず、本発明の平滑プリント板の製造に用いる半硬化樹
脂銅張積層板は、銅箔の剥離強度が0.2kg / c
m以上、好ましくは0.3kg/cm以上で完全硬化後
の剥離強度の90%以下の範囲のものである。
First, the semi-cured resin copper-clad laminate used for manufacturing the smooth printed board of the present invention has a copper foil peel strength of 0.2 kg/c.
m or more, preferably 0.3 kg/cm or more, and 90% or less of the peel strength after complete curing.

この銅箔剥離強度の目安はマトリックス樹脂として熱硬
化性樹脂主体の組成物を使用した場合には、そのガラス
転位温度からも把握出来るものであって、マトリックス
樹脂のガラス転位温度(TgsoC)/完全硬化後のマ
トリックス樹脂のガラス転位温度Tgf′C)−0,5
5〜0.90の範囲に相当する。特に、有機溶剤型のレ
ジスト剥離液を用いてプリント配線パターンを形成する
方法を使用する場合には、Tg′/Tg”4.65〜0
.85程度の範囲が好ましい。
When a thermosetting resin-based composition is used as the matrix resin, the standard for the copper foil peel strength can be determined from the glass transition temperature of the matrix resin (glass transition temperature (TgsoC)/perfect Glass transition temperature of matrix resin after curing Tgf'C) -0,5
This corresponds to a range of 5 to 0.90. In particular, when using a method of forming a printed wiring pattern using an organic solvent type resist stripper, Tg'/Tg"4.65 to 0
.. A range of about 85 is preferable.

また、銅箔と基材との間に樹脂層が20.、、、、以上
存在するように例えば接着剤付き銅箔や樹脂層形成プリ
プレグを使用すること、銅箔接着部に不織布プリプレグ
を用いること等によって硬化度の高い場合にも、パター
ンの埋め込み性を改善したものが望ましい。ここに、銅
箔剥離強度が0.2kg/cm未満では、プリント配線
網を形成することが困難であり好ましくなく、完全硬化
後の剥離強度の90%を超えると硬化が進み過ぎて、製
造したプリント配線網を加熱加圧により絶縁樹脂層中に
埋め込むことが困難となるので好ましくない。なお、従
来の多段プレス用エポキシプリプレグを使用した場合、
200°Cでは、1〜3分間の加熱で銅箔の剥離強度が
0.3〜1.5 kg/cm (完全硬化後の銅箔剥離
強度2.0kg/cm以上)、TgS/Tg’ =0.
70〜0.85程度となり、又、180°Cでば2〜4
分間の加熱で、剥離強度が0.4〜1.0 kg/cm
、 Tg”/Tg’ = 0.6〜0.75程度となる
ものである。なお、使用する樹脂としては従来のもので
よく、ポリエステル系、エポキシ系、ポリイミド系、シ
アン酸エステル系など特に限定されない。
In addition, a resin layer of 20. As mentioned above, pattern embeddability can be improved even when the degree of curing is high, for example by using adhesive-coated copper foil or resin layer prepreg, or by using non-woven fabric prepreg for the copper foil bonding area. An improved version is desirable. Here, if the copper foil peel strength is less than 0.2 kg/cm, it is difficult to form a printed wiring network, which is undesirable, and if it exceeds 90% of the peel strength after complete curing, the curing will proceed too much, making it difficult to manufacture. This is not preferred because it becomes difficult to embed the printed wiring network in the insulating resin layer by heating and pressurizing. In addition, when using conventional epoxy prepreg for multi-stage presses,
At 200°C, the peel strength of copper foil is 0.3 to 1.5 kg/cm after heating for 1 to 3 minutes (peel strength of copper foil is 2.0 kg/cm or more after complete curing), TgS/Tg' = 0.
It will be about 70 to 0.85, and 2 to 4 at 180°C.
Peel strength is 0.4 to 1.0 kg/cm after heating for 1 minute.
, Tg"/Tg' = about 0.6 to 0.75. The resin used may be any conventional resin, and is particularly limited to polyester, epoxy, polyimide, cyanate ester, etc. Not done.

本発明のプリント配線網の形成は、従来の半硬化樹脂銅
張積層板を使用してプリント配線網を形成する方法でよ
い。しかしながら、本発明の好適な製造法で製造された
半硬化樹脂銅張積層板を使用する場合、その硬化度のバ
ラツキが従来に比較して大幅に小さいものであることか
ら、従来に比較してより厳しい条件が使用可能である。
The printed wiring network of the present invention may be formed by a conventional method of forming a printed wiring network using a semi-cured resin copper clad laminate. However, when using a semi-cured resin copper-clad laminate manufactured by the preferred manufacturing method of the present invention, the variation in the degree of curing is significantly smaller than that of the conventional method. More stringent conditions are available.

上記により製造した導体層が基板樹脂面より盛り上がっ
たプリント配線板をプレス成形して、プリント配線導体
層を絶縁層中に埋め込み平滑プリント板とする。
The printed wiring board produced as described above, in which the conductor layer is raised above the resin surface of the substrate, is press-molded to form a smooth printed wiring board with the printed wiring conductor layer embedded in the insulating layer.

埋め込みに使用する条件としては、従来の平滑プリント
板(−フラッンユサーキット)の製法と同様でよいが、
本発明の好適な製造法による半硬化樹脂積層板の場合、
基本的には1回1枚プレスであることから、樹脂の半硬
化度のバラツキ範囲が小さいものであり、従来よりも低
い圧力の使用が可能である。また、埋め込めは、従来の
フラシュサーキットに比較して不十分であっても特に問
題なく本発明においては使用可能であり、例えば、基板
の絶縁樹脂表面とのギャップが10/7TII程度以下
であれば、絶8.!塗料層の厚みが薄くなる問題は実質
的にないものである。
The conditions used for embedding may be the same as the manufacturing method for conventional smooth printed boards (-flange circuit), but
In the case of a semi-cured resin laminate manufactured by the preferred manufacturing method of the present invention,
Since basically one sheet is pressed at a time, the range of variation in the degree of semi-curing of the resin is small, and it is possible to use a lower pressure than in the past. Furthermore, even if the embedding is insufficient compared to conventional flash circuits, it can be used in the present invention without any particular problem. For example, if the gap between the substrate and the insulating resin surface is about 10/7 TII or less, , Absolute 8. ! There is virtually no problem of thinning of the paint layer.

以上の二つの条件から、本発明に用いる平滑プリント板
は極めて生産性よく製造可能であることが理解されるも
のである。□また、プリント配線導体を埋め込む時に導
体層の位置づれが生じないように注意を払えば、多層化
ゑ、きそう成形時の層間接着用プリプレグの樹脂流れ等
の力による導体層の位置づれは実質的に生しない。
From the above two conditions, it is understood that the smooth printed board used in the present invention can be manufactured with extremely high productivity. □Also, if care is taken to avoid misalignment of the conductor layer when embedding the printed wiring conductor, there will be virtually no misalignment of the conductor layer due to forces such as resin flow of interlayer adhesive prepreg during multi-layer molding. It doesn't really work.

また、導体層が基板面と略平面を形成しているので、層
間接着用プリプレグの樹脂流れが小さいものでもボイド
などが発生することが少ないものであり、積層成形は極
めて容易となる。
Furthermore, since the conductor layer forms a substantially flat surface with the substrate surface, even if the resin flow of the interlayer bonding prepreg is small, voids are less likely to occur, making lamination molding extremely easy.

〔実施例〕〔Example〕

以上、本発明の詳細な説明したが、添付の図面を使用し
て、実施例を説明する。
The present invention has been described in detail above, and embodiments will now be described using the accompanying drawings.

第1図は本発明の平滑プリント板を用いた多層プリント
配線板の積層成形材の配置の断面図の一例であり、第2
図は従来の導体箔が基板表面に突出したプリント配線板
を使用した場合の配置断面図の例である。
FIG. 1 is an example of a cross-sectional view of the arrangement of laminated molding materials of a multilayer printed wiring board using the smooth printed board of the present invention, and FIG.
The figure is an example of a layout cross-sectional view when using a conventional printed wiring board with conductor foil protruding from the board surface.

第1図において、厚の0.2mmのガラス織布エポキシ
樹脂プリプレグ3枚、その両側に厚み35岬の銅箔を重
ね、ダブルベルトプレスに連続的に送り込んで温度20
0°C5圧力50kg/cJで1分間加熱加圧成形を行
い、銅箔の接着力が0.85kg/cm、ガラス転移温
度 92°C(完全硬化後=136°C)の半硬化樹脂
銅張積層板を用い、この半硬化樹脂銅張積層板にエツチ
ング法によりプリント配線パターンを形成した後、温度
170°C1面圧75 kg / (nlにてプレス成
形し内層用の平滑プリント板〔]〕を得た。
In Figure 1, three sheets of glass woven epoxy resin prepreg with a thickness of 0.2 mm are layered with copper foil of 35 cape thickness on both sides, and are continuously fed into a double belt press at a temperature of 20 mm.
Semi-hardened resin copper clad with a copper foil adhesive strength of 0.85 kg/cm and a glass transition temperature of 92°C (after complete curing = 136°C) by heating and pressure molding at 0°C5 and a pressure of 50kg/cJ for 1 minute. After forming a printed wiring pattern on this semi-cured resin copper-clad laminate by etching using a laminate, it was press-formed at a temperature of 170°C and a surface pressure of 75 kg/(NL) to form a smooth printed board for the inner layer []] I got it.

なお、エツチング時、パターンの接着不良に基づく剥離
等のトラブルはなく、又、埋め込みによるギャップも5
〜10(nnであり、埋め込みに伴う導体パターンの位
置ずれは実質的になかった。
During etching, there were no problems such as peeling due to poor adhesion of the pattern, and there were no gaps due to embedding.
~10 (nn), and there was substantially no displacement of the conductor pattern due to embedding.

ついで、この平滑プリント板12枚とその外側に外層用
の銅箔〔3〕 2枚を用い、層間接着用に厚さ0.2m
mのガラス織布エポキシ樹脂プリプレグ〔2〕を1枚づ
つ配置した構成として、温度170°C1圧力 40k
g/cm2で90分間積層成形して、6層の多層シール
ド板を製造した。
Next, using 12 of these smooth printed boards and 2 pieces of copper foil [3] for the outer layer on the outside, a thickness of 0.2 m was used for bonding between the layers.
Temperature: 170° C. Pressure: 40 k
A six-layer multilayer shield plate was manufactured by lamination molding at g/cm2 for 90 minutes.

得られた多層シールド板について、ボイドの発生、内層
導体層間隔などについて検査したところ良好なものであ
った。
The obtained multilayer shield plate was inspected for occurrence of voids, inner conductor layer spacing, etc., and was found to be good.

第2図は、従来の導体層が突出した内層用のプリント配
線板[1゛]を用いた場合であり、内層用プリント配線
板間(1’−1’ :lには、厚さ0 、2mn+のガ
ラス織布エポキシ樹脂プリプレグ〔2〕を3枚、外層銅
箔との間には2枚のプリプレグを挟むことが必要であり
、更に、ボイドなどの不良の発生を避けるためには、減
圧積層成形することが必要である。
Fig. 2 shows a case where a conventional printed wiring board for inner layer [1'] with a protruding conductor layer is used. It is necessary to sandwich three sheets of 2mm+ glass woven epoxy resin prepreg [2] and two sheets of prepreg between the outer layer copper foil, and in order to avoid defects such as voids, It is necessary to perform laminated molding.

〔発明の作用および効果] 以上、発明の詳細な説明などから明らかなように、本発
明の半硬化樹脂銅張板を用いて平滑プリント板(−フラ
シュサーキット)を製造し、これを内層用プリント配線
板として用いる多層プリント配線板の製造法によれば、
ボイドの発生、プリプレグの樹脂流れに基づく内層導体
層の位置ずれなどがなく、少ない層間接着用プリプレグ
にて多層化積層成形が信耗性よく達成されるものである
[Operations and Effects of the Invention] As is clear from the detailed description of the invention, a smooth printed board (-flash circuit) is manufactured using the semi-cured resin copper clad board of the present invention, and this is used for inner layer printing. According to the method for manufacturing a multilayer printed wiring board used as a wiring board,
There is no occurrence of voids or displacement of the inner conductor layer due to resin flow of the prepreg, and multilayer lamination molding can be achieved with good reliability using a small amount of interlayer bonding prepreg.

また、本発明において好適に使用される半硬化樹脂銅張
積層板は、ダブルベルトプレス法や1回1枚の積層板を
回分連続的に積層成形する方法によって製造されたもの
であることから、樹脂の硬化度のバラツキが小さく、エ
ツチング、埋め込みなどが極めて容易であるものである
In addition, since the semi-cured resin copper-clad laminate preferably used in the present invention is manufactured by a double belt press method or a method of continuously laminating one laminate at a time, There is little variation in the degree of curing of the resin, and etching, embedding, etc. are extremely easy.

この結果、多層プリント配線板を信頼性よ(、高い生産
性で製造可能とするものであり、その工業的意義は大き
いものである。
As a result, multilayer printed wiring boards can be manufactured with high reliability and high productivity, and this has great industrial significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の平滑プリント板を用いた多層板用積層
材の配置の断面図の一例であり、第2図は従来の導体箔
が恭板表面に突出したプリント配線板を使用した場合の
多層板用積層材の配置の断面図の例である。 特許出願人  三菱瓦斯化学株式会社 代理人(9070)弁理士  手掘 直交第1図 第2図
Fig. 1 is an example of a cross-sectional view of the arrangement of a laminate for a multilayer board using the smooth printed board of the present invention, and Fig. 2 shows a case where a conventional printed wiring board with conductor foil protruding from the surface of the board is used. FIG. 2 is an example of a cross-sectional view of the arrangement of laminated materials for a multilayer board. Patent applicant Mitsubishi Gas Chemical Co., Ltd. agent (9070) Patent attorney Hand-drawn Orthogonal Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 内層用プリント配線網を形成した内層板、層間接着
用プリプレグ、外層用の銅箔或いは片面銅張積層板又は
プリント配線板を所望の多層板構成にて組合せて多層化
積層成形して多層プリント配線基板を製造する方法にお
いて、該内層板として半硬化樹脂銅張積層板に所望のプ
リント配線網を形成し、プレス成形して導体表面と基板
表面とが略同一平面上とされたプリント配線板を用いる
ことを特徴とする多層プリント配線板の製造法。 2 該半硬化樹脂銅張積層板が、銅箔の剥離強度が0.
2kg/cm以上で完全硬化時の90%以下の範囲とな
るように加熱加圧してなるものである請求項1記載の多
層プリント配線板の製造法。 3 該半硬化樹脂銅張積層板が、銅箔と基材との間に少
なくとも厚み20μm以上の半硬化樹脂層を有するもの
である請求項2記載の多層プリント配線板の製造法。 4 該半硬化樹脂銅張積層板が、ダブルベルトプレス法
による連続プレスで製造されたものである請求項2記載
の多層プリント配線板の製造法。 5 該半硬化樹脂銅張積層板が、一対の熱盤間で1枚の
積層板をプレス成形する回分連続プレス成形法により製
造したものてある請求項2記載の多層プリント配線板の
製造法。
[Scope of Claims] 1. Multilayering by combining an inner layer board forming a printed wiring network for the inner layer, prepreg for interlayer adhesion, copper foil or single-sided copper-clad laminate or printed wiring board for the outer layer in a desired multilayer board configuration. In a method of manufacturing a multilayer printed wiring board by lamination molding, a desired printed wiring network is formed on a semi-cured resin copper clad laminate as the inner layer board, and press molding is performed so that the conductor surface and the board surface are substantially on the same plane. A method for manufacturing a multilayer printed wiring board characterized by using a printed wiring board made of 2. The semi-cured resin copper-clad laminate has a copper foil peel strength of 0.
2. The method for producing a multilayer printed wiring board according to claim 1, wherein the multilayer printed wiring board is heated and pressurized at a pressure of 2 kg/cm or more to achieve a hardening rate of 90% or less. 3. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate has a semi-cured resin layer with a thickness of at least 20 μm between the copper foil and the base material. 4. The method for producing a multilayer printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate is produced by continuous pressing using a double belt press method. 5. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the semi-cured resin copper-clad laminate is manufactured by a batch continuous press molding method in which one laminate is press-molded between a pair of hot platens.
JP10537490A 1990-04-23 1990-04-23 Manufacture of multilayer printed wiring board Pending JPH045890A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10537490A JPH045890A (en) 1990-04-23 1990-04-23 Manufacture of multilayer printed wiring board
DE4113231A DE4113231A1 (en) 1990-04-23 1991-04-23 METHOD FOR PRODUCING A PRINT BOARD
US07/689,428 US5173150A (en) 1990-04-23 1991-04-23 Process for producing printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10537490A JPH045890A (en) 1990-04-23 1990-04-23 Manufacture of multilayer printed wiring board

Publications (1)

Publication Number Publication Date
JPH045890A true JPH045890A (en) 1992-01-09

Family

ID=14405919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10537490A Pending JPH045890A (en) 1990-04-23 1990-04-23 Manufacture of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JPH045890A (en)

Similar Documents

Publication Publication Date Title
WO2007069510A1 (en) Intermediate material for manufacturing circuit board and method for manufacturing circuit board using such intermediate material
JP3903701B2 (en) Multilayer circuit board and manufacturing method thereof
KR101671120B1 (en) Method for manufacturing double-faced metal laminate, method for manufacturing printed circuit board, method for manufacturing multiple layered laminate, and method for manufacturing multiple layered printed circuit board
JP2006313932A (en) Multilayer circuit board and manufacturing method therefor
CN112533364A (en) Substrate for flexible printed wiring board and method for manufacturing the same
JP2006253328A (en) Manufacturing method of multilayer wiring board
TW201406223A (en) Multilayer printed circuit board and method for manufacturing same
JPH045890A (en) Manufacture of multilayer printed wiring board
WO2018037434A1 (en) Circuit substrate manufacturing method
KR101655928B1 (en) Method of manufacturing a printed circuit board
JP3736450B2 (en) Circuit board manufacturing method
JP2576194B2 (en) Manufacturing method of metal composite laminate
JPS6210190B2 (en)
JPH03242992A (en) Manufacture of printed circuit board with curved surface shape
JP2003086941A (en) Printed wiring board
JP3058045B2 (en) Manufacturing method of multilayer printed wiring board
JP3941662B2 (en) Manufacturing method of multilayer wiring board
JPH05167250A (en) Method of manufacturing multilayer printed wiring board
JP6811400B2 (en) Circuit board manufacturing method
JPS63285997A (en) Method and device for manufacturing multi-layer substrate
KR20230130331A (en) A method for manufacturing an antenna on a plate and an antenna on a plate
JPH11266080A (en) Manufacture of multilayer printed wiring board
KR20220080977A (en) Dielectric film, and resistor and capacitor embedded flexible copper foil structure and printed circuit board using the same
JP2001185849A (en) Producing method for multilayer printed wiring board
JPH03285391A (en) Manufacture of multilayer wiring board