JPH0458750A - Double stator synchronous induction motor - Google Patents

Double stator synchronous induction motor

Info

Publication number
JPH0458750A
JPH0458750A JP17047090A JP17047090A JPH0458750A JP H0458750 A JPH0458750 A JP H0458750A JP 17047090 A JP17047090 A JP 17047090A JP 17047090 A JP17047090 A JP 17047090A JP H0458750 A JPH0458750 A JP H0458750A
Authority
JP
Japan
Prior art keywords
rotor
stator
winding
poles
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17047090A
Other languages
Japanese (ja)
Other versions
JP2975400B2 (en
Inventor
Toshihiko Satake
佐竹 利彦
Yukio Onoki
大野木 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Original Assignee
Satake Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2170470A priority Critical patent/JP2975400B2/en
Application filed by Satake Engineering Co Ltd filed Critical Satake Engineering Co Ltd
Priority to AU77297/91A priority patent/AU643525B2/en
Priority to CA002043208A priority patent/CA2043208A1/en
Priority to EP91304765A priority patent/EP0467517B1/en
Priority to FI912532A priority patent/FI912532A/en
Priority to DK91304765.0T priority patent/DK0467517T3/en
Priority to DE91304765T priority patent/DE69100430T2/en
Priority to KR1019910008579A priority patent/KR100215534B1/en
Priority to NO912024A priority patent/NO303606B1/en
Priority to US07/706,009 priority patent/US5254894A/en
Publication of JPH0458750A publication Critical patent/JPH0458750A/en
Application granted granted Critical
Publication of JP2975400B2 publication Critical patent/JP2975400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Synchronous Machinery (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To increase starting torque and synchronizing torque by setting a phase difference between a rotary field to be produced around an opposing rotor core by a specific one of two stators and a rotary field to be produced around a rotor core opposing to the other stator. CONSTITUTION:A three-phase AC power supply R, S, T is thrown in under a state where stator windings 21, 22 are connected so that the voltages induced in first rotor windings 4a, 42 have phase difference theta equal to zero. Polarity of the stator winding 22 is switched through a switch T2 so that the rotary fields produced by the stator windings 21, 22 have a phase difference theta equal to 180 deg.. A switch T is then closed and exciting voltages Ea, Eb, Ec, -Ea, -Ec are applied, respectively, between the intermediate points of respective stator windings thus producing an eight pole static field. Currents flowing through second rotor windings 43, 44 produce a four pole field in the rotor windings 41, 42 which produces a synchronizing torque together with a four pole rotary field produced by the stator windings 21, 22.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は同期電動機に関する。 The present invention relates to a synchronous motor.

【従来の技術】[Conventional technology]

一般に同期電動機は、その回転子を固定子巻線の作る回
転磁界の回転速度すなわち同期速度近くまで加速する起
動機と、回転子巻線の直流励磁が必要である。 この起動機を省略して同期電動機自体に起動トルクを持
たせるように考案されたのが誘導同期電動機で、これは
起動時には回転子巻線を短絡して誘導電動機として起動
するために起動機は必要としないが、同期運転に必要な
回転子巻線の直流励磁のためにブラシを必要とする。 すなわち、回転子の回転速度が同期速度に近づくと回転
子巻線の短絡を開放して外部の直流電源からブラシを介
して回転子巻線に直流電流を流して回転子に磁極を作り
、この磁極が固定子巻線の作る回転磁界に引張られて回
転子は同期速度で回転する。このブラシは保守点検を必
要とすることから保守費が嵩み、ブラシレス構造の同期
電動機の開発が望まれている。 このブラシレス構造の同期電動機としては、従来から永
久磁石形やりラフタンス形があるが、誘導機起動が不可
能なために起動トルクが小さい欠点があるため小容量の
ものに限られている。 またランゾル形やインダクタ形の同期電動機は磁路の構
成が複雑で大型となる欠点があった。 また交流励磁器と回転整流器を用いる方法も同様である
。また回転子巻線にダイオードを接続してインバーター
の方形波電圧による高調波磁界を利用するブラシレス自
励形三相同期電動機は回転子の起磁力が不足で十分な出
力が得られない欠点がある。 更には三相の固定子巻線の一相にダイオードを挿入して
固定子の作る正相分回転磁界に静止励磁を重畳して、同
期速度で回転する回転子巻線に静止磁界による交流電圧
を誘起させて、これをダイオードで整流することによっ
て回転子巻線を直流励磁して、正相分回転磁界を作用さ
せて同期トルクを発生するブラシレス自励形三相同期電
動機があるが、これは誘導機始動が不可能なために、回
転子鉄心の渦電流による起動となり起動トルクが小さい
欠点がある。 また特公昭54−34124には起動を誘導機の原理に
よって行い、同期運転は軸方向の直流磁界を作ってこれ
によって回転子コアに磁極を形成して行うものがあるが
、これは発生トルりが回転軸に対して非対称となるため
に軸の振動の原因になる欠点がある。 また特公昭61−1992には、4極と8極の相互干渉
のない2つの回転磁界を用いて、3相の回転子巻線のう
ち2相を同期運転に利用し残る1相を短絡して起動用に
利用するものがあるが、ゲルゲス現象のため起動トルク
が小さくなる欠点がある。
Generally, a synchronous motor requires a starter that accelerates the rotor to the rotation speed of the rotating magnetic field generated by the stator winding, that is, close to the synchronous speed, and DC excitation of the rotor winding. The induction synchronous motor was devised to omit this starter and give the synchronous motor itself its own starting torque.This motor short-circuits the rotor windings at startup and starts the motor as an induction motor. Although not required, brushes are required for DC excitation of the rotor windings required for synchronous operation. In other words, when the rotational speed of the rotor approaches the synchronous speed, the short circuit in the rotor winding is opened and a DC current is passed through the rotor winding from an external DC power source through the brushes to create magnetic poles on the rotor. The magnetic poles are pulled by the rotating magnetic field created by the stator windings, causing the rotor to rotate at a synchronous speed. This brush requires maintenance and inspection, which increases maintenance costs, and there is a desire to develop a synchronous motor with a brushless structure. As a synchronous motor with this brushless structure, there has been a permanent magnet type and a lance type synchronous motor, but since induction motor cannot be started, the starting torque is small, so it is limited to small capacity ones. Furthermore, Ransol-type and inductor-type synchronous motors have the disadvantage of having complicated magnetic path configurations and being large. Also, the method using an AC exciter and a rotating rectifier is similar. In addition, brushless self-excited three-phase synchronous motors that connect diodes to the rotor windings and utilize the harmonic magnetic field generated by the square wave voltage of the inverter have the disadvantage that sufficient output cannot be obtained due to insufficient magnetomotive force of the rotor. . Furthermore, by inserting a diode into one phase of the three-phase stator winding, static excitation is superimposed on the positive phase rotating magnetic field generated by the stator, and the alternating current voltage due to the static magnetic field is applied to the rotor winding rotating at a synchronous speed. There is a brushless self-excited three-phase synchronous motor that generates synchronous torque by inducing a DC current and rectifying it with a diode to excite the rotor winding and applying a positive-phase rotating magnetic field. Since it is impossible to start the induction motor, the starting torque is low due to the eddy current in the rotor core. In addition, in Japanese Patent Publication No. 54-34124, there is a method in which starting is performed using the principle of an induction machine, and synchronous operation is performed by creating a DC magnetic field in the axial direction, which forms magnetic poles in the rotor core. This has the disadvantage that the shaft is asymmetrical with respect to the rotating shaft, causing vibration of the shaft. In addition, in Japanese Patent Publication No. 61-1992, two phases of the three-phase rotor winding are used for synchronous operation, and the remaining one phase is short-circuited, using two rotating magnetic fields of 4 poles and 8 poles that do not interfere with each other. There are some that are used for starting, but the drawback is that the starting torque is small due to the Goerges phenomenon.

【発明が解決しようとする課題】[Problem to be solved by the invention]

したがって起動トルクが大きく、更に同期トルクも大き
く、しかもブラシを必要とせず、保守点検が容易で構造
が簡単で専用の起動機も必要としない同期電動機の提供
を技術的課題とするものである。
Therefore, the technical object is to provide a synchronous motor that has a large starting torque and a large synchronous torque, does not require brushes, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter.

【課題を解決するための手段】[Means to solve the problem]

前記課題を解決するために、同一回転軸上に任意の間隔
をおいて設けた2個の回転子コアを有し、該2個の回転
子コアのそれぞれに任意の極数をもつ第1の回転子巻線
と該第1の回転子巻線の極数の整数倍の極数をもつ第2
の回転子巻線とを有し前記2個の回転子コア間でそれぞ
れの巻線を接続した回転子と、前記2個の回転子コアに
それぞれ対向して周設した2個の固定子コアを有し、該
2個の固定子コアのそれぞれに前記第1の回転子巻線の
極数に等しい極数をもつ一相当り2つの巻線を設けて並
列に接続した固定子巻線を設け、前記一相当り2つの巻
線のそれぞれの中間点間に励磁電圧を入力するようにし
た固定子と、前記第1と第2の回転子巻線の接続部分で
前記第2の回転子巻線の出力電圧を整流し前記第1の回
転子巻線に入力するよう連絡した整流回路及び前記2個
の固定子のうち特定の固定子がこれに対峙する回転子コ
アの周囲に生じる回転磁界と他の固定子がこれに対峙す
る回転子コアの周囲に生じる回転磁界との間に位相差を
生じさせる電圧移相装置とにより構成した。 また、前記一相当り2つの巻線のそれぞれの中間点間に
入力した直流励磁電圧にかえて交流電圧を入力すること
、あるいは直流励磁電圧にかえて固定子巻線に入力する
電圧の相回転とは逆の相回転となる交流電圧を入力する
ことも有効な手段となる。 更に本発明によると、電圧移相装置を一方の固定子巻線
の端子をスイッチによって逆極性に切換えるよう構成す
ることにより前記課題を解決するための手段とした。
In order to solve the above problem, a first rotor core having two rotor cores arranged at an arbitrary interval on the same rotation axis, and each of the two rotor cores having an arbitrary number of poles. a rotor winding and a second rotor winding having a number of poles that is an integral multiple of the number of poles of the first rotor winding;
a rotor having rotor windings and having respective windings connected between the two rotor cores, and two stator cores disposed around the two rotor cores facing each other. and a stator winding in which each of the two stator cores is provided with two windings having a number of poles equal to the number of poles of the first rotor winding and connected in parallel. a stator, in which an excitation voltage is input between intermediate points of each of the two windings per stator, and a connecting portion of the first and second rotor windings to the second rotor; a rectifier circuit connected to rectify the output voltage of the winding and input it to the first rotor winding; and rotation occurring around a rotor core facing a particular stator of the two stators; It is constructed by a voltage phase shifter that creates a phase difference between the magnetic field and the rotating magnetic field generated around the rotor core that faces other stators. In addition, inputting an AC voltage instead of the DC excitation voltage input between the midpoints of each of the two windings per unit, or phase rotation of the voltage input to the stator winding instead of the DC excitation voltage. It is also an effective means to input an AC voltage that has a phase rotation opposite to that of the above. Further, according to the present invention, the above problem is solved by configuring the voltage phase shifter so that the terminals of one stator winding are switched to opposite polarity by a switch.

【作 用】[For use]

複数固定子誘導電動機とその電圧移相装置の作用につい
て本出願人は特願昭61−128314号においてその
詳細を説明している。 ただし、本発明の場合、電圧移相装置は、起動時に位相
差0°、同期運転時に位相差180゜となるよう作用す
る場合を説明している。 本発明は、先ず第1の回転子巻線と該第1の回転子巻線
の整数倍の極数をもつ第2の回転子巻線、また第1の回
転子巻線と同極数の固定子巻線とは互いに同一極数にし
た固定子と回転子間のみで作用し合い、この場合固定子
巻線の回転磁界が極数の異なる第2の回転子巻線に作用
することはないという公知の理論に基づいている。 まず第1の発明によると、起動時には固定子巻線の作る
回転磁界によって極数の異なる第2の回転子巻線には関
係なく同極数の第1の回転子巻線に電圧が誘起され回転
子は回転を始める。 この時電圧移相装置は2個の回転子コアのそれぞれに巻
装された第1の回転子巻線に誘起される電圧が同相にな
るように、すなわち2個の回転子コアのそれぞれに巻装
された第1の回転子巻線に、環流する電流が流れるよう
に作動させて、一般の誘導電動機として起動する。 起動後、回転子の回転速度が上昇して回転磁界の回転速
度すなわち同期速度に近づくと、回転磁界による第1回
転子巻線の誘起電圧は小さくなる。ここまでは誘導電動
機としての動作であるが、すベリSがS=0.05に近
づいた時に同期運転に入る。これは次のようにして行う
。 まず2個の固定子のうち一方の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と他方の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180°の位相差を生じさせるように電圧移相装置を
作動させる。 このようにすると今まで2個の回転子コアのそれぞれに
設けた第1の回転子巻線を環流して流れていた電流は流
れなくなり、前記第1と第2の回転子巻線の接続部分に
設けた整流回路に電流が流れるようになる。 この位相差180°の回転磁界によって第1の回転子巻
線に流れる電流は回転子が同期速度になるとすべりが零
になるので流れなくなるが、先の電圧移相装置と同時に
、固定子巻線の一相当り2つの巻線のそれぞれの中間点
間に直流励磁電圧を入力し作用させると、この直流励磁
電圧によって前記固定子巻線の極数の2倍の極数を有す
る静止磁界が重畳する。 この静止磁界は回転子の第2の回転子巻線と同極数とな
るから、極数の異なる第1の回転子巻線に関係なく第2
の回転子巻線はこの静止磁界と鎖交して交流の電圧を誘
起するようになる。 この交流電圧は回転子の回転速度が大になるほど大きく
なる。 また前述のように回転磁界に位相差180°を設けであ
るので誘起した交流電圧により2個の回転子コアのそれ
ぞれに巻装した第2の回転子巻線を環流せず、前記第1
と第2の回転子巻線の接続部分に設けた整流回路に電流
が流れるようになる。 この整流回路で整流された電流を整流回路の出力として
第1の回転子巻線に入力することにより第1の回転子巻
線は磁極を形成し同極数の固定子巻線の回転磁界に引張
られて回転子は同期速度で回転するようになる。 この時、第2の回転子巻線は同極数の直流励磁電圧の直
流磁界の作用を受け、第1の回転子巻線は同極数の固定
子巻線の作用を受けており、互いに異極数量は干渉しな
いことは明らかである。 ここで同期トルクを考察してみるに、2個の固定子のう
ち特定の固定子が作る回転磁界の位相が他の固定子が作
る回転磁界のそれよりも180°移相されるが、前記直
流励磁電圧の静止磁界によって一方の固定子と対峙する
回転子コアの第2の回転子巻線に流れる電流の方向と他
方の固定子と対峙する回転子コアの第2の回転子巻線の
それとは逆方向になるが共に整流回路に電流が流れ込ん
で第1の回転子巻線に4極の磁極を生じ、その極性が回
転磁界のそれと一致することになる。したがって2個の
回転子のトルクが加わるので本発明の誘導同期電動機は
2固定子ではあるがその合計の容量は、従来のブラシを
有する誘導同期電動機と同等である。 以上のように、第1の発明の2固定子誘導同期電動機は
、起動時には第1の回転子巻線により従来の誘導電動機
の原理で起動するから起動トルクが大きく、従って他の
特別の起動機を必要としない。また同期速度においては
第1の回転子巻線が、直流励磁電圧と第2の回転子巻線
との発電作用と、整流回路の作用を受けて磁極を形成す
るので同期トルクが大きく、ブラシなどの保守を必要と
しない同期電動機を提供することが可能となった。 次に第2の発明の詳細な説明するが、起動時は同じ作用
となるので説明は省略し、同期運転に入るところから説
明する。 まず2個の固定子のうち一方の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と他方の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180°の位相差を生じさせるように電圧移相装置を
作動させる。 このようにすると今まで2個の回転子コアのそれぞれに
設けた第1の回転子巻線を環流して流れていた電流は流
れなくなり、前記第1と第2の回転子巻線の接続部分に
設けた整流回路に電流が流れるようになる。 この位相差1800の回転磁界によって第1の回転子巻
線に流れる電流は回転子が同期速度になるとすべりが零
になるので流れなくなるが、先の電圧移相装置と同時に
、固定子巻線の一相当り2つの巻線もそれぞれの中間点
間に交流電圧を入力し作用させると、この交流電圧によ
って前記固定子巻線の極数の2倍の極数の第2の回転磁
界が重畳する。 この第2の回転磁界は回転子の第2の回転子巻線と同極
数になるから、極数の異なる第1の回転子巻線に関係な
く第2の回転子巻線に作用する。 ここで第2の回転子巻線は第1の回転子巻線と固定子巻
線との誘導作用により回転しているから、4極の回転磁
界を基準に第2の回転磁界を見るとすべりSは5=(1
,5であり、第2の回転子巻線は第2の回転磁界と鎖交
して発電作用を有するものとなり交流の電圧を誘起する
ようになる。 また前述のように回転磁界に位相差180°を設けであ
るので誘起した交流電圧により2個の回転子コアのそれ
ぞれに巻装した第2の回転子巻線を環流せず、前記第1
と第2の回転子巻線の接続部分に設けた整流回路に電流
が流れるようになる。 この整流回路で整流された電流を整流回路に出力として
第1の回転子巻線に入力することにより第1の回転子巻
線は磁極を形成し同極数の固定子巻線の回転磁界に引張
られて回転子は同期速度で回転するようになる。 この時、第2の回転子巻線は同極数の交流電圧による第
2の回転磁界の作用を受け、第1の回転子巻線は同極数
の固定子巻線の作用を受けており、互いに異極数量は干
渉しないことは明らかである。 以上のように第2の発明の2固定子誘導同期電動機は、
起動時には第1の回転子巻線により従来の誘導電動機の
原理で起動するから起動トルクが大きく、他の特別の起
動機を必要としない。また同期速度においては第1の回
転子巻線が第2の回転磁界と第2の回転子巻線との発電
作用と整流回路との作用を受けて磁極を形成するので同
期トルクが大きく、ブラシなどの保守を必要としない同
期電動機を提供することが可能となった。 次に第3の発明の作用について説明するが、起動時は同
じ作用となるので説明は省略し、同期運転に入るところ
から説明する。 まず2個の固定子のうち一方の固定子がこれに対峙する
回転子コアの周囲に生じる回転磁界と他方の固定子がこ
れに対峙する回転子コアの周囲に生じる回転磁界との間
に180°の位相差を生じさせるように電圧移相装置を
作動される。 このようにすると今まで2個の回転子コアのそれぞれに
設けた第1の回転子巻線を環流して流れていた電流は流
れなくなり、前記第1と第2の回転子巻線の接続部分に
設けた整流回路に電流が流れるようになる。 この位相差1800の回転磁界によって第1の回転子巻
線に流れる電流は回転子が同期速度になるとすべりが零
になるのにで流れなくなるが、先の電圧移相装置と同時
に、固定子巻線の一相当り2つの巻線のそれぞれの中間
点間に、前記固定子巻線に入力する電圧の相回転とは逆
の相回転となる交流電圧を入力すると、この交流電圧に
よって前記固定子巻線の極数の2倍の極数で且つ相回転
が逆の第2の回転磁界を重畳する。 この第2の回転磁界は、回転子の第2の回転子巻線と同
極数になるから、極数の異なる第1の回転子巻線に関係
なく第2の回転子巻線に作用する。 ここで、第2の回転子巻線は第1の回転子巻線と同回転
であると共に第2の回転磁界の相回転が逆方向であるか
ら、4極の回転磁界を基準に第2の回転磁界を見るとす
ベリSは5=15となり第2の回転子巻線は第2の回転
磁界と鎖交して発電作用を有するものとなり交流の電圧
を誘起するようになる。 また前述のように回転磁界に位相差180°を設けであ
るので誘起した交流電圧により2個の回転子コアのそれ
ぞれに巻装した第2の回転子巻線を環流せず、前記第1
と第2の回転子巻線を環流せず、前記第1と第2の回転
子巻線の接続部分に設けた整流回路に電流か流れるよう
にになる。 この整流回路で整流された電流を整流回路の出力として
第1の回転子巻線に入力することにより第1の回転子巻
線は磁極を形成し同極数の固定子巻線の回転磁界に引張
られて回転子は同期速度で回転するようになる。 この時、第2の回転子巻線は同極数の交流電圧による第
2の回転磁界の作用を受け、第1の回転子巻線は同極数
の固定子巻線の作用を受けており、互いに異極数量は干
渉しないことは明らかである。 なお、電圧移相装置としては本出願人が特願昭61−1
28’314号において固定子の位置を回転軸のまわり
に機械的に回動させることによって変える方法と、固定
子巻線の接続をスイッチによって切換えて行う方法の2
つを説明している。 同期電動機の場合、起動から同期速度に引き入れる時、
本発明は2つの固定子の回転磁界の位相差を0°から1
800に切換えることが主要であり、その切換えは瞬時
であることが好ましく、固定子巻線の一相当り2つの巻
線のそれぞれの中間点間に前記第1から第3の発明によ
るいずれかの励磁電圧を入力することと、前記位相差の
切換えとを切換スイッチにより同時に行うことで、同期
速度への引き入れが容易となる。 ところで前記固定子巻線の一相当り2つの巻線のそれぞ
れの中間点間に前記第1から第3のいずれかの発明によ
り励磁電圧を入力するが、2個の固定子のそれぞれの回
転磁界の位相差を180°とするため、つまり一方の固
定子の一相当り2つの巻線のそれぞれの中間点間に入力
する励磁電圧の位相と、他方の固定子の一相当り2つの
巻線のそれぞれの中間点間に入力する励磁電圧の位相と
、他方の固定子の一相当り2つの巻線のそれぞれの中間
点間に入力する励磁電圧の位相との間に位相差1800
 とするため、あらかじめ一方の励磁電圧と他方の励磁
電圧の入力が位相差180°となるように接続しておく
とよい。 以上のような構成によって、起動トルクが大きく、さら
に同期トルクも大きく、シかもブラシを必要とせず、保
守点検が容易で構造が簡単で専用の起動機を必要としな
い同期電動機を提供することが可能となった。 ところで、前記固定子巻線を励磁する電源は、商用周波
数の交流電源かまたはインバーターを利用した可変周波
数電源を利用できる。また単相においても多相において
も利用できるものである。上記可変周波数電源を利用す
ると、同期速度の変更が容易に可能となり、その場合で
も通常の誘導電動機の始動トルクで起動可能であり、利
用分野は大きく拡大し、安価な同期電動機の提供が可能
となった。
The details of the operation of a multi-stator induction motor and its voltage phase shifting device have been described by the present applicant in Japanese Patent Application No. 128314/1983. However, in the case of the present invention, a case is described in which the voltage phase shift device operates so that the phase difference is 0° at startup and 180° during synchronous operation. The present invention first provides a first rotor winding, a second rotor winding having an integral multiple of the number of poles of the first rotor winding, and a second rotor winding having the same number of poles as the first rotor winding. Stator windings interact only between the stator and rotor, which have the same number of poles, and in this case, the rotating magnetic field of the stator winding does not act on the second rotor winding, which has a different number of poles. It is based on the well-known theory that there is no such thing. According to the first invention, at startup, a voltage is induced in the first rotor winding with the same number of poles by the rotating magnetic field created by the stator winding, regardless of the second rotor winding with a different number of poles. The rotor starts rotating. At this time, the voltage phase shifting device adjusts the windings around each of the two rotor cores so that the voltages induced in the first rotor windings wound around each of the two rotor cores are in phase. The first rotor winding is operated so that a circulating current flows, and the motor is started as a general induction motor. After startup, when the rotational speed of the rotor increases and approaches the rotational speed of the rotating magnetic field, that is, the synchronous speed, the voltage induced in the first rotor winding by the rotating magnetic field becomes smaller. Up to this point, the motor is operating as an induction motor, but when the slip S approaches S=0.05, it enters synchronous operation. This is done as follows. First, there is a difference of 180 degrees between the rotating magnetic field generated around the rotor core that one stator faces of the two stators and the rotating magnetic field generated around the rotor core that the other stator faces. Activate the voltage phase shifter to create a phase difference of °. In this way, the current that had previously been circulating through the first rotor windings provided in each of the two rotor cores will no longer flow, and the current will no longer flow through the connection portion between the first and second rotor windings. Current begins to flow through the rectifier circuit installed in the The current flowing in the first rotor winding due to this rotating magnetic field with a phase difference of 180° stops flowing because the slip becomes zero when the rotor reaches synchronous speed. When a DC excitation voltage is input and applied between the midpoints of each of the two windings per unit, a stationary magnetic field having twice the number of poles as the number of poles of the stator winding is superimposed by this DC excitation voltage. do. This static magnetic field has the same number of poles as the second rotor winding of the rotor, so regardless of the first rotor winding having a different number of poles, the second
The rotor windings interlink with this stationary magnetic field and induce an alternating current voltage. This AC voltage increases as the rotational speed of the rotor increases. Further, as mentioned above, since the rotating magnetic field has a phase difference of 180°, the induced AC voltage does not circulate through the second rotor windings wound around each of the two rotor cores, and the first
Current begins to flow through the rectifier circuit provided at the connection portion of the second rotor winding. By inputting the current rectified by this rectifier circuit to the first rotor winding as the output of the rectifier circuit, the first rotor winding forms magnetic poles and is applied to the rotating magnetic field of the stator winding having the same number of poles. The tension causes the rotor to rotate at a synchronous speed. At this time, the second rotor winding is affected by the DC magnetic field of the DC excitation voltage with the same number of poles, and the first rotor winding is affected by the stator winding with the same number of poles. It is clear that different polar quantities do not interfere. Considering the synchronous torque here, the phase of the rotating magnetic field generated by a particular stator out of the two stators is shifted by 180 degrees from that of the rotating magnetic field generated by the other stator. The direction of current flowing in the second rotor winding of the rotor core facing one stator due to the static magnetic field of the DC excitation voltage and the direction of the current flowing in the second rotor winding of the rotor core facing the other stator Current flows into the rectifier circuit in the opposite direction, producing four magnetic poles in the first rotor winding, the polarity of which coincides with that of the rotating magnetic field. Therefore, since the torque of two rotors is applied, the induction synchronous motor of the present invention has two stators, but its total capacity is equivalent to that of a conventional induction synchronous motor having brushes. As described above, the two-stator induction synchronous motor of the first invention has a large starting torque because it is started using the principle of a conventional induction motor using the first rotor winding at the time of starting. does not require. In addition, at synchronous speed, the first rotor winding forms magnetic poles under the power generation action of the DC excitation voltage and the second rotor winding, and the action of the rectifier circuit, so the synchronous torque is large, and the brushes etc. It has become possible to provide a synchronous motor that does not require maintenance. Next, the second invention will be explained in detail, but since the same effect occurs at the time of startup, the explanation will be omitted, and the explanation will start from the start of synchronous operation. First, there is a difference of 180 degrees between the rotating magnetic field generated around the rotor core that one of the two stators faces and the rotating magnetic field generated around the rotor core that the other stator faces. Activate the voltage phase shifter to create a phase difference of °. By doing this, the current that had previously been circulating through the first rotor windings provided in each of the two rotor cores will no longer flow, and the current will no longer flow through the connecting portions of the first and second rotor windings. Current begins to flow through the rectifier circuit installed in the The current flowing in the first rotor winding due to the rotating magnetic field with a phase difference of 1800 will stop flowing because the slip becomes zero when the rotor reaches synchronous speed. When an alternating current voltage is input and applied between the intermediate points of two windings per coil, this alternating voltage causes a second rotating magnetic field having twice the number of poles of the stator winding to be superimposed. . Since this second rotating magnetic field has the same number of poles as the second rotor winding of the rotor, it acts on the second rotor winding regardless of the first rotor winding having a different number of poles. Here, the second rotor winding is rotating due to the induction effect between the first rotor winding and the stator winding, so when looking at the second rotating magnetic field with reference to the four-pole rotating magnetic field, there is no slippage. S is 5=(1
, 5, and the second rotor winding interlinks with the second rotating magnetic field to have a power generation effect and induce an alternating current voltage. Further, as mentioned above, since the rotating magnetic field has a phase difference of 180°, the induced AC voltage does not circulate through the second rotor windings wound around each of the two rotor cores, and the first
Current begins to flow through the rectifier circuit provided at the connection portion of the second rotor winding. The current rectified by this rectifier circuit is outputted to the rectifier circuit and inputted to the first rotor winding, so that the first rotor winding forms magnetic poles and is connected to the rotating magnetic field of the stator winding with the same number of poles. The tension causes the rotor to rotate at a synchronous speed. At this time, the second rotor winding is affected by the second rotating magnetic field caused by the alternating voltage with the same number of poles, and the first rotor winding is affected by the stator winding with the same number of poles. , it is clear that quantities of different polarities do not interfere with each other. As described above, the two-stator induction synchronous motor of the second invention is
When starting, the first rotor winding starts using the principle of a conventional induction motor, so the starting torque is large and no other special starter is required. Furthermore, at synchronous speed, the first rotor winding receives the second rotating magnetic field, the power generation action of the second rotor winding, and the action of the rectifier circuit to form magnetic poles, so the synchronous torque is large and the brush It has now become possible to provide a synchronous motor that does not require maintenance. Next, the operation of the third invention will be explained, but since the operation is the same at the time of startup, the explanation will be omitted, and the explanation will start from the start of synchronous operation. First, there is a difference of 180 degrees between the rotating magnetic field generated around the rotor core that one stator faces of the two stators and the rotating magnetic field generated around the rotor core that the other stator faces. The voltage phase shifter is actuated to create a phase difference of . In this way, the current that had previously been circulating through the first rotor windings provided in each of the two rotor cores will no longer flow, and the current will no longer flow through the connection portion between the first and second rotor windings. Current begins to flow through the rectifier circuit installed in the The current flowing in the first rotor winding due to this rotating magnetic field with a phase difference of 1800 degrees stops flowing because the slip becomes zero when the rotor reaches synchronous speed. When an AC voltage is input between the respective midpoints of two windings per wire, the phase rotation of which is opposite to the phase rotation of the voltage input to the stator winding, this AC voltage causes the stator to rotate. A second rotating magnetic field having twice the number of poles of the winding and having an opposite phase rotation is superimposed. Since this second rotating magnetic field has the same number of poles as the second rotor winding of the rotor, it acts on the second rotor winding regardless of the first rotor winding having a different number of poles. . Here, since the second rotor winding rotates the same as the first rotor winding and the phase rotation of the second rotating magnetic field is in the opposite direction, the second rotor winding is When looking at the rotating magnetic field, Veri S is 5=15, and the second rotor winding interlinks with the second rotating magnetic field to have a power generating effect and induces an alternating current voltage. Further, as mentioned above, since the rotating magnetic field has a phase difference of 180°, the induced AC voltage does not circulate through the second rotor windings wound around each of the two rotor cores, and the first
In this case, the current does not flow back through the second rotor winding, but rather flows through the rectifier circuit provided at the connecting portion between the first and second rotor windings. By inputting the current rectified by this rectifier circuit to the first rotor winding as the output of the rectifier circuit, the first rotor winding forms magnetic poles and is applied to the rotating magnetic field of the stator winding having the same number of poles. The tension causes the rotor to rotate at a synchronous speed. At this time, the second rotor winding is affected by the second rotating magnetic field caused by the alternating voltage with the same number of poles, and the first rotor winding is affected by the stator winding with the same number of poles. , it is clear that quantities of different polarities do not interfere with each other. The voltage phase shift device was developed by the applicant in Japanese Patent Application No. 1986-1.
No. 28'314 discloses two methods: one is to change the position of the stator by mechanically rotating it around the rotation axis, and the other is to change the stator winding connection using a switch.
It explains one thing. In the case of a synchronous motor, when pulling from startup to synchronous speed,
The present invention reduces the phase difference between the rotating magnetic fields of two stators from 0° to 1°.
800, and the switching is preferably instantaneous, and the switching is preferably instantaneous, and the switching is preferably instantaneous, and the switching between each of the two windings per one stator winding is carried out between the midpoints of each of the two windings according to the first to third inventions. By inputting the excitation voltage and switching the phase difference at the same time using a changeover switch, it becomes easy to achieve synchronous speed. By the way, according to any one of the first to third inventions, the excitation voltage is input between the respective intermediate points of two windings per one stator winding, but the rotating magnetic field of each of the two stators is In order to make the phase difference of 180°, that is, the phase of the excitation voltage input between the respective midpoints of the two windings per one stator, and the two windings per one stator on the other stator. There is a phase difference of 1800 between the phase of the excitation voltage input between the respective midpoints of the stator and the phase of the excitation voltage input between the respective midpoints of the two windings per one stator on the other
Therefore, it is preferable to connect the inputs of one excitation voltage and the other excitation voltage in advance so that the phase difference is 180°. With the above configuration, it is possible to provide a synchronous motor that has a large starting torque, a large synchronous torque, does not require any brushes, is easy to maintain and inspect, has a simple structure, and does not require a dedicated starter. It has become possible. By the way, the power source for exciting the stator winding can be a commercial frequency AC power source or a variable frequency power source using an inverter. Moreover, it can be used in both single phase and polyphase. By using the variable frequency power supply mentioned above, the synchronous speed can be easily changed, and even in that case, it can be started with the starting torque of a normal induction motor, greatly expanding the field of use and making it possible to provide inexpensive synchronous motors. became.

【実施例】【Example】

本発明は主として2固定子誘導同期電動機を主構成とし
て詳細を説明するが、固定子数はこれに限定されないこ
とは言うまでもない。また固定子巻線の結線も並列、直
列、スター結線、デルタ結線のいずれでもよい。さらに
2相、3相、多相のどちらでもよい。また回転子巻線も
同様である。 すでに本出願人は、特願昭61−128314号として
本発明の構成の一部である複数固定子からなる誘導電動
機の構成、作用の詳細な説明を行っている。 つまり、電圧移相装置によって、複数個の固定子のうち
特定の固定子がこれに対峙する回転子の周囲に生じる回
転磁界と他の固定子がこれに対峙する回転子の周囲に生
じる回転磁界との間の位相差を、たとえば同相すなわち
電気角で00 とした場合、回転子導体に流れる電流は
回転子導体を環流し、たとえば電気角で1800とした
場合、回転子導体に流れる電流は回転子導体を環流せず
回転子コア間で回転子導体間を連結した連結材を通じて
流れることなどを詳説している。 更に電圧移相装置の構成については、固定子を回動させ
るものや、固定子巻線の結線の切換えを行うものなどを
示しているが、本発明において、特に固定子巻線の結線
の切換を行って電圧移相装置を構成すると、前期電気角
の08から180°への切換は瞬時に行えるため同期速
度への引き込みは容易となる。また回転速度を検出する
センサーと、直流励磁回路と、電圧移相装置の制御装置
とを設けて連絡すると、同期速度への引き込みが自動化
できると共に、万−税調した場合でも、回転速度を検出
するセンサーの信号により即座に同期運転から誘導電動
機の運転に切換え可能であり、一般の同期電動機のよう
に税調から急激に停止することがなく事故防止が簡単に
できるものとなる。 第1図により本発明の第1の実施例を説明する。まず符
号20は2固定子誘導同期電動機の固定子側を示す。ま
た符号40は同じく回転子側を示す。 固定子側20は、2つの固定子コアのそれぞれに固定子
巻線21.22が設けられて、それらが直列Y結線され
て3相交流電源R,S、 Tに接続されている。 ここで固定子巻線21.22は1相当り2つの巻線23
.24及び25.26を設けてそれぞれ並列に接続しで
ある。 さらに前記1相当り2つの巻線23.24及び25.2
6のそれぞれの中間点間に励磁電圧Ea及び−Eaを入
力するように構成してあり他相についても励磁電圧Eb
、Ecを同様に入力するようにしである。 この励磁電圧は一例として整流ブリッジ51゜52.5
3を3相交流電源R,S、 Tに接続してその出力とな
る直流電圧を入力するようにしである。また前記整流ブ
リッジと3相交流電源は開閉器T、を介して接続しであ
る。 更に前記固定子巻線の一方22の巻線25゜26は、固
定子巻線21に対し位相差角θをθ−1800に切換え
る切換器T2を設けである。 一方、回転子側40の同一回転軸上に設けた2個の回転
子コアのそれぞれに第1の回転子巻線41.42が設け
られて、それらか並列に接続されている。さらに回転子
側40には、2つの回転子コアのそれぞれに第2の回転
子巻線43.44が設けられて、それらが並列に接続さ
れている。 ここで第1の回転子巻線41.42の極数と固定子巻線
21.22の極数は共に4極で一致させ、更に第2の回
転子巻線43.44の極数と固定子巻線21.22の1
相当りの2つの巻線23.24及びの極数は共に8極で
一致させてあり他相についても同様である。 更に2つの回転子コア間の回転子巻線の接続部分におい
て、第2の回転子巻線43.44の出力を整流回路45
によって整流し、その直流側出力端子をダイオード46
を介して第1の回転子巻線41.42に接続しである。 ここで固定子巻線21に対峙する第1の回転子巻線41
に誘起する電圧を図示の方向にEとし、同じく第2の回
転子巻線43に誘起する電圧を図示の方向にeとする。 また固定子巻線22に対峙する第1の回転子巻線42に
誘起する電圧を図示の方向にEεJ6とし、同じく第2
の回転子巻線44に誘起する電圧を図示の方向にeεJ
6とする。ここでθは電圧の位相差角である。 以上の構成による作用を説明する。まず起動時には、第
1の回転子巻線41.42の誘導電圧の位相差角θがθ
−0°になるように固定子巻線21.22が結線された
状態で3相交流電源R,S、 Tに投入して起動する。 このとき開閉器T1は開放しである。 このようにすると固定子巻線21.22に3相交流電源
から3相交流電流が流れてそれぞれ同相の4極の回転磁
界を生じ、第1の回転子巻線41.42に電圧E、Eε
j8が誘起される。 この場合の誘起電圧の位相差角θはθ=06であるから
、第1の回転子巻線41.42に流れる電流は両巻線を
環流するように流れ、回転子は誘導電動機の原理で起動
する(第2図)。 ここで第2の回転子巻線43.44の極数は8極で、固
定子巻線21.22の極数は4極であるから、相互干渉
はなく、従って固定子巻線21.22の作る回転磁界に
よっては第2の回転子巻線43.44には電圧を誘起し
ない。従って起動時には第2の回転子巻線43.44は
関与しない。つまり起動は従来の誘導電動機と同じ特性
で行われ、起動トルクは大きく、別個の起動機を必要と
しない。 起動後、回転子の回転速度が上昇して固定子巻線21.
22の作る4極の回転磁界の回転速度すなわち4極の同
期速度に近づくと、すベリSが小さくなるので第1の回
転子巻線41,42の誘起電圧Eは小さくなる。ここま
では誘導電動機としての動作であるが、すベリSがSo
、05に近づいた時に同期運転に引き入れる。これは次
のようにして行う。 先ず電圧移相装置によって2つの固定子巻線21.22
の一方例えば固定子巻線22の極性を切換器T2により
切り換えて、2つの固定子巻線21.22の作る2つの
回転磁界の位相差角θがθ=180°になるようにする
。このようにすると、第1の回転子巻線41.42の誘
起電圧の位相差角θがθ=180°となり、EεJe=
−Eとなるので、今まで回転子巻線41から回転子巻線
42へ環流していた電流が流れなくなって誘導電動機と
しての作用はなくなる。 そこで切換器T2と同時に8極の磁界を作用させる。す
なわち開閉器T、を閉じて1相当り2つの巻線を設けて
並列に接続した固定子巻線のそれぞれの巻線の中間点間
に励磁電圧Ea。 Eb、Ec、−Ea、−Eb、−Ecを印加すると、こ
れらの電圧は直流電圧であるから8極の静止磁界ができ
る。 ここで回転磁界の位相差θがθ−180°になるように
、各固定子巻線のそれぞれに印加した電圧Ea、Eb、
Ecと−Ea、 −Eb、 −ECとは極性を逆極性と
しであるので第2の回転子巻線43.44に誘起する交
流電圧の位相差角θもθ=180°となり、eEje=
−eになる。 従って第2の回転子巻線43.44に流れる電流は整流
回路45に向って流れて、この電流が整流されてダイオ
ード46を介して第1の回転子巻線41.42に流れて
、この直流分電流によって回転子巻線41.42に4極
の磁極を生じて、これと固定子巻線21..22の作る
4極の回転磁界によって同期トルクを生じて、回転子は
同期運転に入る。 ここで第1の回転子巻線41.42の極数と静止磁界の
極数は異なるので両者の相互干渉はなく、また固定子巻
線21.22の回転磁界と静止磁界の極数も異なるので
両者の相互干渉もなく、回転子は純粋の4極の同期電動
機として運転されることになり、従って同期トルクも大
きい。 同一の固定子巻線によって同時に極数の異なる2つの磁
界を作ることについては、特公平2−18038号公報
に詳述されている。 本発明の誘導同期電動機は極数の異なる2つの磁界を作
る方法において前記公報のものを流用しているが、該公
報の同期電動機において不可能であった高トルクの誘導
機起動が本発明の2固定子誘導同期電動機において可能
となったことに本発明の新規の作用効果を有するものと
なる。 次に脱調した場合を考察してみる。脱調した時は、固定
子巻線21.22の作る4極の回転磁界による第1の回
転子巻線41.42の誘導電圧E、  −Eが大きくな
り、この電圧によってダイオード46と整流回路45を
介して第1の回転子巻線41.42に整流された電流が
流れ、税調を防ぐ作用が発生する。 更に同期トルクを考察してみるに、同期運転時には電圧
位相装置によって固定子巻線22の作る回転磁界の位相
が固定子巻線21のそれに対して180°移相されてい
るので、前記8極の作る静止磁界によって第2の回転子
巻線4344、整流回路45、ダイオード46を介して
流れる直流分電流による第1の回転子巻線41゜42に
形成される磁極の極性と極性の位置関係が4極の回転磁
界のそれに等しくなり、同期トルクは2つの回転子コア
において同一の方向となり、同期トルクは加算されるこ
とになって、本発明の誘導同期電動機は2固定子ではあ
るが、その合計の容量は従来のブラシを有する誘導同期
電動機と同等である。 以上のように、本発明の2固定子誘導同期電動機は、起
動時には従来の誘導電動機の原理で起動するから起動ト
ルクが大きく、従って他の特別の起動機を必要とない。 また同期運転においては固定子巻線の作る回転磁界と干
渉しない静止磁界を利用するので同期トルクが大きく、
ブラシなどの保守を必要としない同期電動機を提供する
ことが可能となった。 次に第3図により本発明の第2の実施例を説明する。た
だし回転子側40は前記第1の実施例と同様であるので
省略する。 固定子側20は、2つの固定子コアのそれぞれに固定子
巻線21.22が設けられて、それらが直列Y結線され
て3相交流電源R,S、 Tに接続されている。 また固定子巻線21.22は1相当り2つの巻線23.
24および25.26を設けてそれぞれ並列に接続しで
ある。 さらに前記1相当り2つの巻線23.24および25.
26のそれぞれの中間点間に4極の回転磁界と同じ相回
転の交流電圧EaおよびEa−を入力するように構成し
てあり他相についても交流電圧Eb、Eb−,Ec、E
c−を同様に入力するようにしである。 この交流電圧は一例としてトランス61,62.63を
3相電源R,S、 Tに接続してその出力となる交流電
圧を入力するようにしである。 また前記トランスと3相交流電源は開閉器T1を介して
接続しである。 更に前記固定子巻線の一方22の巻線25゜26は、固
定子巻線21に対し位相差角θをθ−180’に切換え
る切換器T2を設けである。 回転子側40は前記第1の実施例と同様とする。ここで
回転子巻線41.42の極数と固定子巻線21.22の
極数は共に4極で一致させ、第2の回転子巻線43.4
4の極数と固定子巻線21.22の1相当りの2つの巻
線23,24および25.26のそれぞれの中間点間か
らの励磁による場合の極数は共に8極で一致させてあり
他相についても同様である。 以上の構成による作用を説明する。まず開閉器T1は開
放して、切換器T2は第1の回転子巻線41.42の誘
導電圧の位相差角θがθ=0°になるように切換えて起
動する。このときの起動に関する説明は第1の実施例と
同様とし同期運転に引き入れるところから説明する。 まず電圧移相装置によって2つの固定子巻線21.22
の一方例えば固定子巻線22の極性を切換器T2により
切り換えて、2つの固定子巻線21.22の作る2つの
回転磁界の位相差θがθ= 180’になるようにする
。このようにすると、第1の回転子巻線41.42の誘
起電圧の位相差角61=lH°トナリ、Eεje=−E
となるので今まで回転子巻線41から回転子巻線42へ
環流していた電流が流れなくなって誘導電動機としての
作用はなくなる。 そこで切換器T2と同時に8極の磁界を作用させる。す
なわち開閉器T1を閉じて1相当り2つの巻線を設けて
並列に接続した固定子巻線のそれぞれの巻線の中間点間
に交流電圧Ea。 Eb、Ec、 −Ea−−Eb−−Ec−を入力し、こ
れらの電圧は同相の交流電圧であるから8極の第2の回
転磁界を生じる。ここでEaと−Ea−は位相差θをθ
=180°となっていることを示している。 第2の回転子巻線43.44は第1の回転子巻線41.
42の4極の回転数で回転しながら速度の異なる8極の
第2の回転磁界と鎖交することになり、8極の第2の回
転磁界により第2の回転子巻線43.44には交流電圧
を生じる。 この第2の回転子巻線43.44のそれぞれに誘起する
交流電圧の位相差角θもθ−180゜となる。 従って第2の回転子巻線43.44に流れる電流は整流
回路45に向って流れて、この電流が整流されてダイオ
ード46を介して第1の回転子巻線41.42に流れて
、この直流電流によって回転子巻線41.42に4極の
磁極を生じて、これと固定子巻線21.22の作る4極
の回転磁界によって同期トルクを生じ、回転子は同期運
転に入る。 先の第2の回転子巻線43.44は第4図に示すように
、8極の同期速度となるが、4極のすべりS=0近傍で
4極の回転子巻線と同様に回転しているから、本来、4
極の同期速度を基準にしたすベリS=G、5近傍で回転
すべき回転子巻線43.44は発電作用を有する。 ここで、すベリSは4極の同期速度に対する回転子のす
べりを示している。 次に第5図により本発明の第3の実施例を説明するが、
第2の実施例と異なる部分のみ説明する。 前記第2の実施例では固定子巻線23. 24および2
5.26を並列に接続し前記1相当り2つの巻線23.
24および25.26のそれぞれの中間点間に4極の回
転磁界と同じ相回転の交流電圧を入力するものを示した
が、第3の実施例では4極の回転磁界とは逆の相回転の
交流電圧を入力するものを示す。 第5図に示すように、トランス61,62゜63の出力
側の交流電圧Ea、Eb、Ecを入力する巻線を入れ替
えて4極の回転磁界の相回転と逆の相回転となるように
入力してあり本実施例では交流電圧EbとEcおよび−
Eb−と−Ec−とを入れ変えである。 この場合、交流電圧Ea、 Eb、  Ec、 −Ea
 =、  −Eb −、−Ec −の入力により発生す
る第2の回転磁界は8極となる。 第4図によりさらに説明すると、4極の同期速度に対す
る回転子のすべりSは、8極で且っ4極の回転磁界の相
回転と逆の相回転であるからすベリSはS=1.5とな
る。 したがって前述の第2の実施例に対し、4極の同期速度
に対するすべりが大きく、第2の回転子巻線43.44
と8極の回転磁界との鎖交数が多くなり、その結果発電
作用も向上する。 回転子巻線43.44の誘起電圧が太きくなると、回転
子巻線41.42に生じる4極の磁極も強力となり同期
トルクも大きくなる。 さて本実施例では、回転子巻線の誘起電圧に位相差を設
ける電圧移相装置として、固定子巻線の結線変更すなわ
ち固定子巻線の両端子を入換えて逆極性に結線すること
によって電気的に位相差角θをθ=0°からθ=180
°に切換えている。 また、本実施例では、回転磁界と静止磁界の相互干渉を
防ぐために、4極と8極の組合せを記載したが、2極と
6極の組合せ等も考えられ、これに限定されものではな
い。 また本実施例では、電源として商用電源を用いる方法を
記載したが、インバータのような可変周波数電源を用い
ることによって任意の同期速度で運転することも可能で
ある。
Although the present invention will be described in detail mainly with a two-stator induction synchronous motor as its main configuration, it goes without saying that the number of stators is not limited to this. Furthermore, the stator windings may be connected in parallel, in series, in star connection, or in delta connection. Furthermore, it may be 2-phase, 3-phase, or polyphase. The same applies to the rotor winding. The present applicant has already provided a detailed explanation of the structure and operation of an induction motor comprising a plurality of stators, which is a part of the structure of the present invention, in Japanese Patent Application No. 128314/1982. In other words, due to the voltage phase shift device, a rotating magnetic field is generated around the rotor that a specific stator faces from among multiple stators, and a rotating magnetic field is generated around the rotor that faces the other stators. For example, if the phase difference between the It explains in detail that the flow does not flow through the child conductors, but instead flows through the connecting material that connects the rotor conductors between the rotor cores. Further, regarding the configuration of the voltage phase shift device, one that rotates the stator and one that switches the wiring connection of the stator winding are shown, but in the present invention, in particular, the configuration of the voltage phase shift device is When a voltage phase shifter is configured by performing the above, the electrical angle can be instantly switched from 08° to 180°, and therefore it is easy to bring the speed to the synchronous speed. In addition, by installing and communicating a sensor that detects the rotation speed, a DC excitation circuit, and a control device for the voltage phase shifter, it is possible to automate the pull-in to the synchronous speed, and even in the event of a tax adjustment, the rotation speed can be detected. It is possible to immediately switch from synchronous operation to induction motor operation based on a sensor signal, and unlike general synchronous motors, there is no sudden stop due to tax adjustment, making it easy to prevent accidents. A first embodiment of the present invention will be explained with reference to FIG. First, reference numeral 20 indicates the stator side of a two-stator induction synchronous motor. Further, the reference numeral 40 similarly indicates the rotor side. On the stator side 20, stator windings 21 and 22 are provided on each of the two stator cores, and these are connected in series Y-connection to three-phase AC power supplies R, S, and T. Here, the stator windings 21 and 22 are two windings 23 per one stator winding.
.. 24, 25, and 26 are provided and connected in parallel. Furthermore, two windings 23.24 and 25.2 per said one
6, the excitation voltage Ea and -Ea are input between the intermediate points of each phase, and the excitation voltage Eb is also input for the other phases.
, Ec are input in the same way. This excitation voltage is, for example, a rectifier bridge 51°52.5
3 is connected to three-phase AC power supplies R, S, and T, and the output DC voltage is input. Further, the rectifying bridge and the three-phase AC power source are connected via a switch T. Further, windings 25 and 26 of one of the stator windings 22 are provided with a switch T2 for switching the phase difference angle θ to θ-1800 with respect to the stator winding 21. On the other hand, first rotor windings 41 and 42 are provided on each of the two rotor cores provided on the same rotating shaft on the rotor side 40, and these are connected in parallel. Furthermore, on the rotor side 40, second rotor windings 43, 44 are provided for each of the two rotor cores and are connected in parallel. Here, the number of poles of the first rotor winding 41, 42 and the number of poles of the stator winding 21, 22 are both set to 4, and are fixed to the number of poles of the second rotor winding 43, 44. Child winding 21.22-1
The number of poles of the corresponding two windings 23, 24 and 24 are both 8 poles, and the same is true for the other phases. Furthermore, at the connecting portion of the rotor windings between the two rotor cores, the outputs of the second rotor windings 43 and 44 are connected to a rectifier circuit 45.
The DC side output terminal is connected to the diode 46.
It is connected to the first rotor winding 41,42 via. Here, the first rotor winding 41 facing the stator winding 21
Let the voltage induced in the second rotor winding 43 be E in the direction shown in the drawing, and let the voltage induced in the second rotor winding 43 be e in the direction shown in the drawing. Further, the voltage induced in the first rotor winding 42 facing the stator winding 22 is set to EεJ6 in the direction shown in the figure, and the voltage induced in the first rotor winding 42 facing the stator winding 22 is
The voltage induced in the rotor winding 44 of eεJ is
Set it to 6. Here, θ is the voltage phase difference angle. The effect of the above configuration will be explained. First, at startup, the phase difference angle θ of the induced voltage in the first rotor winding 41 and 42 is θ
With the stator windings 21 and 22 connected so that the angle is -0°, turn on the three-phase AC power supplies R, S, and T to start. At this time, the switch T1 is open. In this way, three-phase AC current flows from the three-phase AC power source into the stator windings 21 and 22, producing four rotating magnetic fields of the same phase, and voltages E and Eε are applied to the first rotor windings 41 and 42.
j8 is induced. Since the phase difference angle θ of the induced voltage in this case is θ=06, the current flowing in the first rotor winding 41 and 42 flows in a circular manner through both windings, and the rotor operates according to the principle of an induction motor. Start it up (Figure 2). Here, the number of poles of the second rotor winding 43, 44 is 8, and the number of poles of the stator winding 21, 22 is 4, so there is no mutual interference, and therefore the stator winding 21, 22 No voltage is induced in the second rotor windings 43, 44 by the rotating magnetic field created by the rotor. The second rotor winding 43, 44 is therefore not involved during start-up. This means that starting occurs with the same characteristics as a conventional induction motor, the starting torque is high, and a separate starter is not required. After starting, the rotational speed of the rotor increases and the stator winding 21.
When the rotational speed of the rotating magnetic field of the four poles created by the rotor 22 approaches the synchronous speed of the four poles, the slide S becomes smaller and the induced voltage E in the first rotor windings 41 and 42 becomes smaller. Up to this point, it is operating as an induction motor, but Suberi S is So
, 05, it will be brought into synchronous operation. This is done as follows. First, the two stator windings 21,22 are connected by a voltage phase shifter.
For example, the polarity of the stator winding 22 is switched by the switch T2 so that the phase difference angle θ between the two rotating magnetic fields produced by the two stator windings 21 and 22 becomes θ=180°. In this way, the phase difference angle θ of the induced voltage of the first rotor winding 41, 42 becomes θ=180°, and EεJe=
-E, the current that has been circulating from the rotor winding 41 to the rotor winding 42 stops flowing, and the induction motor no longer functions as an induction motor. Therefore, an eight-pole magnetic field is applied simultaneously to the switch T2. That is, when the switch T is closed, the excitation voltage Ea is applied between the midpoints of the respective windings of the stator windings, which are connected in parallel with two windings per switch. When Eb, Ec, -Ea, -Eb, and -Ec are applied, an 8-pole stationary magnetic field is created since these voltages are DC voltages. Here, the voltages Ea, Eb,
Since Ec, -Ea, -Eb, and -EC have opposite polarities, the phase difference angle θ of the AC voltage induced in the second rotor winding 43, 44 is also θ=180°, and eEje=
- becomes e. Therefore, the current flowing in the second rotor winding 43.44 flows toward the rectifier circuit 45, and this current is rectified and flows through the diode 46 to the first rotor winding 41.42. The direct current component produces four magnetic poles in the rotor windings 41, 42, and the stator windings 21, 42. .. A synchronous torque is generated by the four-pole rotating magnetic field created by the rotor 22, and the rotor enters synchronous operation. Here, the number of poles of the first rotor winding 41, 42 and the number of poles of the static magnetic field are different, so there is no mutual interference between the two, and the number of poles of the rotating magnetic field and the static magnetic field of the stator winding 21, 22 are also different. Therefore, there is no mutual interference between the two, and the rotor is operated as a pure four-pole synchronous motor, so the synchronous torque is also large. The method of simultaneously creating two magnetic fields with different numbers of poles using the same stator winding is detailed in Japanese Patent Publication No. 2-18038. The induction synchronous motor of the present invention uses the method of creating two magnetic fields with different numbers of poles from the above-mentioned publication, but the present invention enables high-torque induction motor starting, which was impossible with the synchronous motor of the publication. The present invention has novel effects that have been made possible in a two-stator induction synchronous motor. Next, let's consider the case of loss of synchronization. When the step out occurs, the induced voltages E and -E in the first rotor winding 41.42 due to the four-pole rotating magnetic field created by the stator winding 21.22 increase, and this voltage causes the diode 46 and the rectifier circuit to A rectified current flows through the first rotor windings 41 and 42 through the rotor windings 41 and 45, thereby producing an effect of preventing tax adjustment. Further considering the synchronous torque, during synchronous operation, the phase of the rotating magnetic field created by the stator winding 22 is shifted by 180° with respect to that of the stator winding 21 by the voltage phase device, so the 8-pole The polarity of the magnetic poles formed in the first rotor winding 41 and 42 by the direct current flowing through the second rotor winding 4344, the rectifier circuit 45, and the diode 46 due to the static magnetic field created by the is equal to that of the four-pole rotating magnetic field, the synchronous torques are in the same direction in the two rotor cores, and the synchronous torques are added.Although the induction synchronous motor of the present invention has two stators, Its total capacity is comparable to an induction synchronous motor with conventional brushes. As described above, since the two-stator induction synchronous motor of the present invention is started based on the principle of a conventional induction motor, the starting torque is large, and therefore no other special starter is required. In addition, in synchronous operation, a static magnetic field that does not interfere with the rotating magnetic field created by the stator winding is used, so the synchronous torque is large.
It has become possible to provide a synchronous motor that does not require maintenance such as brushes. Next, a second embodiment of the present invention will be explained with reference to FIG. However, since the rotor side 40 is the same as that of the first embodiment, the description thereof will be omitted. On the stator side 20, stator windings 21 and 22 are provided on each of the two stator cores, and these are connected in series Y-connection to three-phase AC power supplies R, S, and T. Moreover, the stator windings 21, 22 are divided into two windings 23.
24, 25, and 26 are provided and connected in parallel. Furthermore, two windings 23, 24 and 25.
The configuration is such that alternating current voltages Ea and Ea- of the same phase rotation as the rotating magnetic field of the four poles are input between the intermediate points of each of the 26, and the alternating current voltages Eb, Eb-, Ec, E
Enter c- in the same way. For example, transformers 61, 62, and 63 are connected to three-phase power supplies R, S, and T, and the output AC voltage is inputted. Further, the transformer and the three-phase AC power source are connected via a switch T1. Further, the windings 25 and 26 of one of the stator windings 22 are provided with a switch T2 for switching the phase difference angle θ to θ-180' with respect to the stator winding 21. The rotor side 40 is the same as in the first embodiment. Here, the number of poles of the rotor winding 41.42 and the number of poles of the stator winding 21.22 are both 4 poles, and the number of poles of the rotor winding 41.42 is the same as that of the second rotor winding 43.4.
4 poles and the number of poles in the case of excitation from between the respective midpoints of the two windings 23, 24 and 25.26 corresponding to 1 of the stator winding 21.22 is 8 poles. The same applies to other phases. The effect of the above configuration will be explained. First, the switch T1 is opened, and the switch T2 is activated by switching so that the phase difference angle θ of the induced voltage of the first rotor winding 41, 42 becomes θ=0°. The explanation regarding the start-up at this time is the same as that in the first embodiment, and will be explained from the point where the system is brought into synchronous operation. Firstly, the two stator windings 21.22 are
For example, the polarity of the stator winding 22 is switched by the switch T2 so that the phase difference θ between the two rotating magnetic fields produced by the two stator windings 21 and 22 becomes θ=180'. In this way, the phase difference angle 61 of the induced voltage of the first rotor winding 41, 42 = lH°, Eεje = -E
Therefore, the current that has been circulating from the rotor winding 41 to the rotor winding 42 stops flowing, and the motor no longer functions as an induction motor. Therefore, an eight-pole magnetic field is applied simultaneously to the switch T2. That is, when the switch T1 is closed, an alternating current voltage Ea is generated between the midpoints of the respective windings of the stator windings, which are connected in parallel with two windings per one winding. Eb, Ec, -Ea--Eb--Ec- are input, and since these voltages are AC voltages of the same phase, a second rotating magnetic field of eight poles is generated. Here, Ea and -Ea- are the phase difference θ
=180°. The second rotor winding 43.44 is connected to the first rotor winding 41.
While rotating at the rotation speed of 42 poles, it interlinks with the second rotating magnetic field of 8 poles at different speeds, and the second rotating magnetic field of 8 poles causes the second rotor winding 43. produces an alternating voltage. The phase difference angle θ of the AC voltage induced in each of the second rotor windings 43 and 44 is also θ-180°. Therefore, the current flowing in the second rotor winding 43.44 flows toward the rectifier circuit 45, and this current is rectified and flows through the diode 46 to the first rotor winding 41.42. Four magnetic poles are generated in the rotor windings 41, 42 by the direct current, and a synchronous torque is generated by this and the four-pole rotating magnetic field created by the stator windings 21, 22, and the rotor enters synchronous operation. As shown in Fig. 4, the second rotor windings 43 and 44 have a synchronous speed of 8 poles, but they rotate in the same way as the 4-pole rotor windings when the 4-pole slip S = 0. Because it is, originally 4
The rotor windings 43 and 44, which should rotate in the vicinity of S=G, 5, based on the synchronous speed of the poles, have a power generation function. Here, slip S indicates the slip of the rotor with respect to the synchronous speed of the four poles. Next, a third embodiment of the present invention will be explained with reference to FIG.
Only the parts different from the second embodiment will be explained. In the second embodiment, the stator winding 23. 24 and 2
5.26 are connected in parallel and two windings 23.
24, 25, and 26, the AC voltage with the same phase rotation as the four-pole rotating magnetic field is input, but in the third embodiment, the phase rotation is opposite to the four-pole rotating magnetic field. This shows what inputs the AC voltage. As shown in Fig. 5, the windings that input the AC voltages Ea, Eb, and Ec on the output side of the transformers 61, 62, and 63 are replaced so that the phase rotation is opposite to that of the four-pole rotating magnetic field. In this example, AC voltages Eb, Ec and -
Eb- and -Ec- are exchanged. In this case, the AC voltages Ea, Eb, Ec, -Ea
The second rotating magnetic field generated by the input of =, -Eb -, -Ec - has eight poles. To further explain with reference to FIG. 4, the slip S of the rotor with respect to the synchronous speed of the four poles is S=1. It becomes 5. Therefore, compared to the second embodiment described above, the slip with respect to the synchronous speed of the four poles is large, and the second rotor winding 43.44
The number of linkages between the 8-pole rotating magnetic field and the 8-pole rotating magnetic field increases, and as a result, the power generation effect also improves. When the induced voltage in the rotor windings 43, 44 becomes thicker, the four magnetic poles generated in the rotor windings 41, 42 also become stronger, and the synchronous torque also becomes larger. In this embodiment, the voltage phase shift device creates a phase difference in the induced voltage of the rotor winding by changing the connection of the stator winding, that is, by swapping both terminals of the stator winding and connecting them to opposite polarities. Electrically change the phase difference angle θ from θ=0° to θ=180
Switching to °. In addition, in this embodiment, a combination of 4 poles and 8 poles is described in order to prevent mutual interference between the rotating magnetic field and the stationary magnetic field, but a combination of 2 poles and 6 poles is also possible, and the present invention is not limited to this. . Further, in this embodiment, a method using a commercial power source as a power source has been described, but it is also possible to operate at any synchronous speed by using a variable frequency power source such as an inverter.

【効 果】【effect】

以上の構成から本発明の2固定子誘導同期電動機は、起
動時は従来の誘導電動機と同様のトルク特性で行い、す
ベリSがたとえばS=  [105付近から同期速度に
移行して同期電動機のトルク特性で運転するものである
。この2固定子誘導同期電動機は、起動機やブラシを必
要としないからその構造、構成が簡単となるだけでなく
、従来の誘導電動機と同様のトルク特性で起動できるの
で重負荷がかかったままで起動と同期運転が可能となる
。 ところで、本発明の2固定子誘導同期電動機は、誘導電
動機と同期電動機との両方のトルク特性を備えるから、
どちらの電動機のトルク特性でも使用可能である。この
ことは、同期速度で運転中、何らかの原因で脱調した場
合でも、同期電動機トルク特性から誘導電動機のトルク
特性に切換え可能であるから、一般の同期電動機のよう
に電動機が急激に停止することがない。 以上のようにブラシがなく複雑な構成を必要としないか
ら保守点検も容易であり、起動トルクが大きく同期トル
クも大きい同期電動機の提供が可能となった。
From the above configuration, the two-stator induction synchronous motor of the present invention performs startup with the same torque characteristics as a conventional induction motor, and shifts to the synchronous speed from around S = [105, for example, when the synchronous motor It operates using torque characteristics. This two-stator induction synchronous motor does not require a starter or brushes, so it has a simple structure and configuration, and it can be started with the same torque characteristics as a conventional induction motor, so it can be started with a heavy load applied. Synchronous operation is possible. By the way, since the two-stator induction synchronous motor of the present invention has the torque characteristics of both an induction motor and a synchronous motor,
Either motor torque characteristic can be used. This means that even if the motor loses synchronization for some reason while operating at synchronous speed, it is possible to switch from the synchronous motor torque characteristic to the induction motor torque characteristic, so the motor will not suddenly stop like a general synchronous motor. There is no. As described above, since there are no brushes and no complicated configuration is required, maintenance and inspection are easy, and it has become possible to provide a synchronous motor with a large starting torque and a large synchronous torque.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す固定子巻線側と回転子巻
線側の簡略な構成図、第2図は本発明の同期電動機のト
ルク特性の一例を示す図、第3図は本発明の第2の実施
例を示す固定子巻線側の簡略な構成図、第4図は4極の
同期速度に対するすべりを示す図、第5図は本発明の第
3の実施例を示す固定子巻線側の簡略な構成図である。 20・・・固定子側、21・・・固定子巻線、22・・
・固定子巻線、23.24・・・巻線、25.26・・
・巻線、40・・・回転子側、41.42・・・第1の
回転子巻線、43.44・・・第2の回転子巻線、45
・・・整流回路、46・・・ダイオード、51.52゜
53・・・整流ブリッジ、61,62.63・・・トラ
ンス、R,S、 T・・・3相交流電源。
FIG. 1 is a simplified configuration diagram of the stator winding side and rotor winding side showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the torque characteristics of the synchronous motor of the present invention, and FIG. 3 is a diagram showing an example of the torque characteristics of the synchronous motor of the present invention. A simple configuration diagram of the stator winding side showing the second embodiment of the present invention, Fig. 4 is a diagram showing the slip with respect to the synchronous speed of the four poles, and Fig. 5 shows the third embodiment of the present invention. FIG. 3 is a simple configuration diagram of the stator winding side. 20... Stator side, 21... Stator winding, 22...
・Stator winding, 23.24... Winding, 25.26...
- Winding, 40... Rotor side, 41.42... First rotor winding, 43.44... Second rotor winding, 45
... Rectifier circuit, 46... Diode, 51.52゜53... Rectifier bridge, 61, 62.63... Transformer, R, S, T... 3-phase AC power supply.

Claims (4)

【特許請求の範囲】[Claims] (1)同一回転軸上に任意間隔を置いて設けた2個の回
転子コアのそれぞれに任意の極数を持つ第1の回転子巻
線と該第1の回転子巻線の極数の整数倍の極数をもつ第
2の回転子巻線とを有し、前記2個の回転子コア間でそ
れぞれの巻線を接続した回転子と、前記2個の回転子コ
アにそれぞれ対向して周設した2個の固定子コアのそれ
ぞれに前記第1の回転子巻線の極数に等しい極数をもつ
一相当り2つの巻線を設けて並列に接続した固定子巻線
を設け、前記一相当り2つの巻線のそれぞれの中間点間
に直流励磁電圧を入力するようにした固定子と、前記第
1と第2の回転子巻線の接続部分で前記第2の回転子巻
線の出力電圧を整流し前記第1の回転子巻線に入力する
よう連絡した整流回路及び前記2個の固定子のうち特定
の固定子がこれに対峙する回転子コアの周囲に生じる回
転磁界と他の固定子がこれに対峙する回転子コアの周囲
に生じる回転磁界との間に位相差を生じさせる電圧移相
装置とにより構成したことを特徴とする2固定子誘導同
期電動機。
(1) A first rotor winding having an arbitrary number of poles on each of two rotor cores provided at an arbitrary interval on the same rotating shaft; a rotor having a second rotor winding having an integral multiple of the number of poles, each winding being connected between the two rotor cores; Two stator windings each having a number of poles equal to the number of poles of the first rotor winding and connected in parallel are provided on each of the two stator cores disposed around the first rotor winding. , a stator in which a DC excitation voltage is input between the intermediate points of each of the two windings per stator, and the second rotor at a connecting portion between the first and second rotor windings. a rectifier circuit connected to rectify the output voltage of the winding and input it to the first rotor winding; and rotation occurring around a rotor core facing a particular stator of the two stators; 1. A two-stator induction synchronous motor comprising: a voltage phase shift device that creates a phase difference between a magnetic field and a rotating magnetic field generated around a rotor core opposed by another stator.
(2)同一回転軸上に任意間隔を置いて設けた2個の回
転子コアのそれぞれに任意の極数を持つ第1の回転子巻
線と該第1の回転子巻線の極数の整数倍の極数をもつ第
2の回転子巻線とを有し、前記2個の回転子コア間でそ
れぞれの巻線を接続した回転子と、前記2個の回転子コ
アにそれぞれ対向して周設した2個の固定子コアのそれ
ぞれに前記第1の回転子巻線の極数に等しい極数をもつ
一相当り2つの巻線を設けて並列に接続した固定子巻線
を設け、前記一相当り2つの巻線のそれぞれの中間点間
に交流電圧を入力するようにした固定子と、前記第1と
第2の回転子巻線の接続部分で前記第2の回転子巻線の
出力電圧を整流し前記第1の回転子巻線に入力するよう
連絡した整流回路及び前記2個の固定子のうち特定の固
定子がこれに対峙する回転子コアの周囲に生じる回転磁
界と他の固定子がこれに対峙する回転子コアの周囲に生
じる回転磁界との間に位相差を生じさせる電圧移相装置
とにより構成したことを特徴とする2固定子誘導同期電
動機。
(2) A first rotor winding having an arbitrary number of poles on each of two rotor cores provided at an arbitrary interval on the same rotating shaft; a rotor having a second rotor winding having an integral multiple of the number of poles, each winding being connected between the two rotor cores; Two stator windings each having a number of poles equal to the number of poles of the first rotor winding and connected in parallel are provided on each of the two stator cores disposed around the first rotor winding. , a stator in which an alternating current voltage is input between the intermediate points of each of the two windings per unit, and the second rotor winding at a connecting portion between the first and second rotor windings. a rectifier circuit connected to rectify the line output voltage and input it to the first rotor winding; and a rotating magnetic field generated around a rotor core facing a particular stator of the two stators. 1. A two-stator induction synchronous motor, comprising: a voltage phase shifter for creating a phase difference between the rotor core and a rotating magnetic field generated around a rotor core opposed to the other stator;
(3)同一回転軸上に任意間隔を置いて設けた2個の回
転子コアのそれぞれに任意の極数を持つ第1の回転子巻
線と該第1の回転子巻線との極数の整数倍の極数をもつ
第2の回転子巻線を有し、前記2個の回転子コア間でそ
れぞれの巻線を接続した回転子と、前記2個の回転子コ
アにそれぞれ対向して周設した2個の固定子コアのそれ
ぞれに前記第1の回転子巻線の極数に等しい極数をもつ
一相当り2つの巻線を設けて並列に接続した固定子巻線
を設け、前記一相当り2つの巻線のそれぞれの中間点間
に、前記固定子巻線に入力する電圧の相回転とは逆の相
回転となる交流電圧を入力するようにした固定子と、前
記第1と第2の回転子巻線の接続部分で前記第2の回転
子巻線の出力電圧を整流し前記第1の回転子巻線に入力
するよう連絡した整流回路及び前記2個の固定子のうち
特定の固定子がこれに対峙する回転子コアの周囲に生じ
る回転磁界と他の固定子がこれに対峙する回転子コアの
周囲に生じる回転磁界との間に位相差を生じさせる電圧
移相装置とにより構成したことを特徴とする2固定子誘
導同期電動機。
(3) A first rotor winding having an arbitrary number of poles in each of two rotor cores provided at an arbitrary interval on the same rotating shaft, and the number of poles of the first rotor winding. A rotor having a second rotor winding having a number of poles that is an integral multiple of , and having each winding connected between the two rotor cores; Two stator windings each having a number of poles equal to the number of poles of the first rotor winding and connected in parallel are provided on each of the two stator cores disposed around the first rotor winding. , a stator in which an alternating current voltage having a phase rotation opposite to a phase rotation of the voltage input to the stator winding is input between the intermediate points of each of the two windings per one coil; A rectifier circuit connected to a connecting portion between the first and second rotor windings so as to rectify the output voltage of the second rotor winding and input it to the first rotor winding; and the two fixed rotor windings. Voltage that creates a phase difference between the rotating magnetic field generated around the rotor core facing a specific stator among the stators and the rotating magnetic field generated around the rotor core facing other stators. A two-stator induction synchronous motor characterized by comprising a phase shifter.
(4)前記請求項(1)から(3)のいずれかに記載の
2固定子誘導同期電動機であって、前記電圧移相装置は
一方の固定子巻線の端子をスイッチにより逆極性に切換
えるようにしたことを特徴とする2固定子誘導同期電動
機。
(4) The two-stator induction synchronous motor according to any one of claims (1) to (3), wherein the voltage phase shifter switches the terminals of one stator winding to opposite polarity by a switch. A two-stator induction synchronous motor characterized by:
JP2170470A 1990-05-26 1990-06-27 2 stator induction synchronous motor Expired - Fee Related JP2975400B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2170470A JP2975400B2 (en) 1990-06-27 1990-06-27 2 stator induction synchronous motor
CA002043208A CA2043208A1 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
EP91304765A EP0467517B1 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
FI912532A FI912532A (en) 1990-05-26 1991-05-24 SYNCHRONOUS MOTOR WITH DUBBELSTATOR.
DK91304765.0T DK0467517T3 (en) 1990-05-26 1991-05-24 Dobbeltstator-induction synchronous motor
DE91304765T DE69100430T2 (en) 1990-05-26 1991-05-24 Synchronous induction motor with double stator.
AU77297/91A AU643525B2 (en) 1990-05-26 1991-05-24 Dual-stator induction synchronous motor
KR1019910008579A KR100215534B1 (en) 1990-05-26 1991-05-25 Dual-stator induction synchronous motor
NO912024A NO303606B1 (en) 1990-05-26 1991-05-27 Double stator induction synchronous motor
US07/706,009 US5254894A (en) 1990-05-26 1991-05-28 Dual-stator induction synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2170470A JP2975400B2 (en) 1990-06-27 1990-06-27 2 stator induction synchronous motor

Publications (2)

Publication Number Publication Date
JPH0458750A true JPH0458750A (en) 1992-02-25
JP2975400B2 JP2975400B2 (en) 1999-11-10

Family

ID=15905540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2170470A Expired - Fee Related JP2975400B2 (en) 1990-05-26 1990-06-27 2 stator induction synchronous motor

Country Status (1)

Country Link
JP (1) JP2975400B2 (en)

Also Published As

Publication number Publication date
JP2975400B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
EP0467517B1 (en) Dual-stator induction synchronous motor
JPH04331448A (en) Synchronous motor
JP3033621B2 (en) Brushless induction synchronous motor
JP2015509697A (en) Synchronous electrical machine
US5796233A (en) Multiple-stator induction synchronous motor
JP2010028957A (en) Inductor and inductor pole-number switching system
JPH0458750A (en) Double stator synchronous induction motor
JP2001258224A (en) Synchronous motor and drive system using the same
JP2828319B2 (en) Two stator induction synchronous motor
JPH06335271A (en) Synchronous motor
JP3413816B2 (en) Synchronous motor
JP3358666B2 (en) Synchronous motor
JP2927855B2 (en) Multiple stator induction synchronous motor
JP2893352B2 (en) Two stator induction synchronous motor
JPH06245450A (en) Synchronous motor
JP3115310B2 (en) 2 stator induction synchronous motor
JP3062231B2 (en) Brushless single-phase induction synchronous motor
JP2893353B2 (en) Two stator induction synchronous motor
JP2989881B2 (en) 2 stator induction synchronous motor
JPH05344695A (en) Synchronous motor
JPH04217845A (en) Synchronous motor
JPS63186592A (en) Structure of rotary electric machine driven by single-phase power source
JPS58165648A (en) Single phase rotary electric machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees