JPH045769B2 - - Google Patents

Info

Publication number
JPH045769B2
JPH045769B2 JP60213325A JP21332585A JPH045769B2 JP H045769 B2 JPH045769 B2 JP H045769B2 JP 60213325 A JP60213325 A JP 60213325A JP 21332585 A JP21332585 A JP 21332585A JP H045769 B2 JPH045769 B2 JP H045769B2
Authority
JP
Japan
Prior art keywords
polyester
fibers
crimp
heat treatment
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60213325A
Other languages
Japanese (ja)
Other versions
JPS6278214A (en
Inventor
Michiaki Yokozawa
Seiichiro Okuda
Rikuo Funagayama
Ryokichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP21332585A priority Critical patent/JPS6278214A/en
Publication of JPS6278214A publication Critical patent/JPS6278214A/en
Publication of JPH045769B2 publication Critical patent/JPH045769B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、伸縮性、弾性回復性の優れた紡績糸
又は織編物もしくは中入綿用不織布を得るのに適
した優れた潜在捲縮能を有し、かつ機械捲縮の付
与されたポリエステル複合繊維からなる短繊維に
関するものである。 (従来の技術) ポリエステル繊維は、力学的性質、熱安定性、
ウオツシヤブル性等に優れているために、現在で
は極めて広い用途に使用されている。その中で、
スポーツ用衣料等の織編物あるいはスポーツ用衣
料の中入綿等の不織布等には機能性及びフイツト
性等の要求から伸縮性、弾性回復性に富んだ繊維
が求められている。 織編物等に伸縮性を付与する方法として、ゴム
あるいはスパンデツクス(ポリウレタン)繊維に
紡績糸等を合撚被覆した糸を混織、混編して用い
ることが行われているが、ゴムやスパンデイクス
繊維は高価であること、伸縮性が強すぎるために
フイツト性をコントロールすることが困難である
こと及びゴムやスパンデイツクス繊維は染色によ
る耐性が著しく低いこと等の欠点がある。 他の方法として高い熱収縮能を有する合成繊維
を紡績糸とした後に弛緩熱処理を施したものを使
用する方法が知られている。しかしながら、この
方法も紡績糸の撚りによる収束抵抗に勝る収縮能
を発揮することができなかつたり、よしんば収縮
能を保持している場合でも紡績糸の撚り止め熱処
理により収縮能が著しく減少する等で、十分な伸
縮性を有する織編物を提供するには至つていない
のが現状である。 また、スポーツ衣料用中入綿等として用いる不
織布も伸縮性、弾性回復性が求められており、不
織布に伸縮性を付与する方法として、スパイラル
捲縮を有する複合繊維を用いる方法が提案されて
いる。不織布に十分な伸縮性を付与するためには
繊維密度を高めた状態にして繊維間の抱合性を強
くし、しかも捲縮を多く、強固にすることが必要
である。そして、潜在捲縮性複合繊維に機械捲縮
を付与して、複合繊維のスパイラル捲縮を機械捲
縮で補い強固な捲縮を得ることも試みられている
(例えば特開昭52−53027号広報参照)。 しかし、原綿の製造工程でこのような多く、強
固な捲縮を有する原綿とすることは困難であるば
かりか、もし可能であつてもこのような原綿では
梳綿工程でネツプや未解繊部を発生することが必
至である。したがつて、梳綿機でウエブとした後
に、該ウエブを弛緩熱処理することにより、スパ
イラル捲縮を発現させる方法が望ましいが、この
場合には、原綿製造工程では熱履歴を極力抑える
のが一般的であり、そのために捲縮発現と同時に
然収縮が発生し、風合を硬くしたり、耐久性のな
い伸縮性しか得られないといつた問題があつた。 また、原綿がスパイラル捲縮を有する場合、比
較的粗い捲縮であつても梳綿工程でネツプや未開
繊部が発生しやすい。 (発明が解決しようとする問題点) 本発明は、梳綿工程でネツプや未開繊部が発生
せず、しかも伸縮性、弾性回復性の優れた紡績糸
又は織編物もしくは中入綿不織布を得るのに適し
たポリエステル短繊維を提供することを技術的課
題とするものである。 (問題点を解決するための手段) 本発明者らは、上記課題を解決するべく鋭意検
討の結果、特定の2種のポリエステルからなる高
スパイラル捲縮発現能を有する複合繊維に特定の
捲縮数を機械捲縮を付与することによりこの目的
が達成されることを見出し、本発明に到達した。 すなわち、本発明は、金属塩スルホネート基を
有する構成単位を3〜6モル%共重合したエチレ
ンテレフタレート単位主体の共重合ポリエステル
AとポリエチレンテレフタレートBとが偏心的に
接合した複合繊維からなる短繊維であつて、170
℃における自由収縮熱処理で実質的熱収縮率が10
%以下で、50個/25mm以下のスパイラル捲縮を発
現する潜在捲縮能を有し、かつ8〜18個/25mmの
機械捲縮が付与されていることを特徴とするポリ
エステル複合繊維を要旨とするものである。 本発明におけるポリエステルAは、ポリエチレ
ンテレフタレートを製造する際に、5−ナトリウ
ムスルホイソフタル酸、5−カリウムスルホイソ
フタル酸、5−リチウムスルホイソフタル酸、4
−ナトリウムスルホフタル酸、4−ナトリウムス
ルホ−2,6−ナフタレンジカルボン酸又はこれ
らのエステル形成性誘導体等の金属塩スルホネー
ト基を有するエステル形成性化合物を3〜6モル
%添加し、共重合させることにより得られる。
(必要に応じて、さらに他の成分を少量共重合し
てもよい。) ポリエステルBとしては、ポリエステルテレフ
タレート(実質的にポリエチレンテレフタレート
と認められるものを含む。)が用いられる。 本発明の繊維は、ポリエステルAとBとが偏心
的に接合した複合繊維であつて、弛緩熱処理によ
つてスパイラル捲縮を発現する潜在捲縮性繊維で
ある。複合形態は特に限定されないが、芯鞘型よ
りもサイドバイサイド型の方が捲縮発現能力が優
れている点で好ましい。 そして、ポリエステルAにおける金属塩スルホ
ネート基を有する構成単位の共重合割合は3〜6
モル%とすることが必要であり、3モル%未満で
は捲縮発現力が不十分であり、6モル%を超える
とポリエステルの融点低下及び繊維の強力低下が
著しく、一般の衣料用に適さなくなる。 また、伸縮性を有する織編物及び不織布を得る
ためには、捲縮を発現させたとき織編物及び不織
編を構成する繊維が、30個/25mm以上、望ましく
は40個/25mm以上のスパイラル捲縮を有するよう
にすることが必要で、そのためには原綿状態で50
個/25mm以上のスパイラル捲縮発現能を有するこ
とが必要である。 また、熱処理時の収縮率が大きいと織編物又は
不織布が著しく硬くなつたり、伸縮能の耐久性が
乏しくなつたりするので、熱収縮率を小さくする
必要があり、繊維を170℃で自由収縮熱処理した
ときの実質的熱収縮率が10%以下となるようにす
ることが必要である。 このような潜在捲縮能と熱収縮率とを有する繊
維は、ポリエステルAとBの極限粘度、ポリエス
テルAと金属塩スルホネート基を有する構成単位
の共重合割合、両ポリエステルの複合割合、紡糸
後、延伸する際の緊張熱処理条件等を適切に選定
することにより得られる。例えば、ポリエステル
Aとして5−ナトリウムスルホイソフタル酸
(SIP)成分を共重合したポリエチレンテレフタ
レート系共重合ポリエステル、ポリエステルBと
してポリエチレンテレフタレート(ホモポリマ
ー)を用い、複合割合1:1の複合繊維を製造す
る場合、ポリエステルAのSIP成分が4〜6モル
%のときはポリエステルAの極限粘度を0.40〜
0.50、ポリエステルBの極限粘度を0.50〜0.80と
し、緊張熱処理温度を145〜170℃程度とすること
が好ましく、ポリエステルAのSIP成分が3〜4
モル%のときはポリエステルAの極限粘度を0.45
〜0.55、ポリエステルBの極限粘度を0.45〜0.75
とし、緊張熱処理温度を120〜145℃程度とするこ
とが好ましい。 また、梳綿工程でネツプや未開繊部の発明しな
い原綿とする必要がある。一般にネツプや未開繊
部の発生は、捲縮数、捲縮形態と密接な関係にあ
り、機械捲縮の場合、捲縮数が8個/25mm未満で
は未開繊部が発生しやすく、18個/25mmを超える
とネツプが発生しやすい。また、梳綿工程以前で
スパイラル捲縮を発現させた場合、ネツプが発生
しやすく、ウエブの均斉度が悪くなるほか、ウエ
ブの素抜けが発生しやすい。したがつて、50個/
25mm以上のスパイラル捲縮発現能を有する潜在捲
縮性複合繊維に8〜18個/25mmの機械捲縮を付与
するのが好ましいのである。 機械捲縮を付与する方法としては、スタツフイ
ボツクス式、加熱ギヤー式等が採用できるが、短
繊維の製造には一般にスタツフイングボツクス式
が採用される。 なお、本発明の繊維は、艶消剤、光沢改良剤、
制電剤、難燃剤、柔軟平滑剤等の改質剤を含有し
ていてもよく、また、断面形状も円形に限らず、
三角断面その他の異形断面でもよい。 (作用) 本発明の繊維が良好な潜在捲縮能を示す理由は
明らかでないが、ポリエステルAの金属塩スルホ
ネート基を有する構成単位を共重合したポリエス
テルがある程度の架橋構造を有することと関連す
るものと推測される。 また、本発明の繊維は、適度の機械捲縮が付与
された潜在捲縮性繊維であるため、梳綿工程でネ
ツプや未解織部を発生することがなく、紡績糸又
は織編物もしくは不織布とした後に、弛緩熱処理
することにより強固なスパイラル捲縮を発現し、
高伸縮性、高弾性回復性を有する紡績糸又は織編
物もしくは不織布を与えるものである。 (実施例) 以下、実施例によつて本発明を詳しく説明す
る。 なお、実施例における特性値等の測定法は次の
とおりである。 (1) 極限粘度〔η〕 フエノールと四塩化エタンの等重量混合溶媒
中、20℃で測定。 (2) 捲縮数 JIS L−1015−7−12−1の方法により測
定。 (3) 織度 JIS L−1015−7−5−1Aの方法により測
定。 (4) 熱収縮率 JIS L−1015−7−15の方法により、デニー
ル当たり300mgの荷重で測定。 実施例1〜4、比較例1〜2 ポリエステルAとしてSIP成分を5.1モル%共重
合したポリエチレンテレフタレート系共重合ポリ
エステル、ポリエステルBとして〔η〕0.687の
ポリエチレンテレフタレートを用い、第1表の組
合せで複合重量比1:1のサイドバイサイド型複
合繊維を紡糸したイ、ロ、ハの3種類の未延伸糸
を得た。
(Industrial Application Field) The present invention has an excellent latent crimp ability suitable for obtaining spun yarns or woven or knitted fabrics or nonwoven fabrics for padding with excellent stretchability and elastic recovery properties, and is capable of being mechanically wound. This invention relates to short fibers made of compressed polyester composite fibers. (Conventional technology) Polyester fiber has mechanical properties, thermal stability,
Due to its excellent washability, it is currently used in a wide range of applications. among them,
BACKGROUND OF THE INVENTION Fibers with high stretchability and elastic recovery are required for woven and knitted fabrics such as sports clothing and nonwoven fabrics such as padded cotton for sports clothing due to requirements for functionality and fit. A method of imparting elasticity to woven or knitted fabrics is to use rubber or spandex (polyurethane) fibers mixed and knitted with spun yarn and other yarns. They have drawbacks such as being expensive, having too much stretchability making it difficult to control the fit, and rubber and spandex fibers having extremely low resistance to dyeing. Another known method is to use synthetic fibers with high heat shrinkability that are spun into yarn and then subjected to relaxation heat treatment. However, this method also fails to exhibit shrinkage ability that overcomes the convergence resistance due to the twisting of the spun yarn, and even if the shrinkage ability is maintained, the shrinkage ability is significantly reduced due to heat treatment to prevent twisting of the spun yarn. However, at present, it has not yet been possible to provide a woven or knitted fabric with sufficient stretchability. In addition, stretchability and elastic recovery are required for nonwoven fabrics used as padding for sports clothing, etc., and a method using composite fibers with spiral crimps has been proposed as a method of imparting stretchability to nonwoven fabrics. . In order to impart sufficient stretchability to a nonwoven fabric, it is necessary to increase the fiber density to strengthen the conjugation between the fibers, as well as to increase the number of crimps and make it strong. It has also been attempted to obtain a strong crimp by applying mechanical crimp to latent crimpable composite fibers and supplementing the spiral crimp of the composite fiber with mechanical crimp (for example, Japanese Patent Laid-Open No. 52-53027 (See public information). However, it is not only difficult to produce raw cotton with such many and strong crimps in the raw cotton manufacturing process, but even if it were possible, with such raw cotton, neps and unfibered parts are formed in the carding process. It is inevitable that this will occur. Therefore, it is desirable to create a spiral crimp by subjecting the web to a relaxing heat treatment after forming it into a web using a carding machine.In this case, however, it is common to suppress the thermal history as much as possible in the raw cotton manufacturing process. Therefore, there were problems such as spontaneous shrinkage occurring at the same time as crimping, resulting in a hard feel and poor elasticity. Further, when the raw cotton has spiral crimps, neps and unopened fiber portions are likely to occur during the carding process even if the crimps are relatively coarse. (Problems to be Solved by the Invention) The present invention provides spun yarns, woven and knitted fabrics, or padded cotton nonwoven fabrics that do not generate neps or unopened fibers during the carding process and have excellent stretchability and elastic recovery properties. The technical objective is to provide short polyester fibers suitable for (Means for Solving the Problems) As a result of intensive studies in order to solve the above problems, the present inventors have found that a composite fiber having a high spiral crimp ability made of two specific types of polyester has a specific crimp. It has been found that this object can be achieved by applying mechanical crimping to the fibers, and the present invention has been achieved. That is, the present invention provides short fibers consisting of composite fibers in which copolymerized polyester A mainly composed of ethylene terephthalate units and polyethylene terephthalate B, which are copolymerized with 3 to 6 mol% of structural units having metal salt sulfonate groups, are eccentrically joined. Atsushi, 170
Free shrinkage heat treatment at ℃ has an effective heat shrinkage rate of 10
% or less, has a latent crimp ability to express 50 spiral crimps/25 mm or less, and is characterized by being endowed with mechanical crimps of 8 to 18 crimps/25 mm. That is. Polyester A in the present invention includes 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, 5-lithium sulfoisophthalic acid, 4-lithium sulfoisophthalate, and
- Adding 3 to 6 mol% of an ester-forming compound having a metal salt sulfonate group such as sodium sulfophthalic acid, 4-sodium sulfophthalic acid, 4-sodium sulfo-2,6-naphthalene dicarboxylic acid, or an ester-forming derivative thereof, and copolymerizing it. It is obtained by
(If necessary, a small amount of other components may be copolymerized.) As the polyester B, polyester terephthalate (including those recognized as substantially polyethylene terephthalate) is used. The fiber of the present invention is a composite fiber in which polyesters A and B are eccentrically joined, and is a latent crimpable fiber that develops spiral crimp when subjected to relaxation heat treatment. Although the composite form is not particularly limited, the side-by-side type is preferable to the core-sheath type because it has a better ability to develop crimp. The copolymerization ratio of structural units having metal salt sulfonate groups in polyester A is 3 to 6.
If it is less than 3 mol%, crimp development power is insufficient, and if it exceeds 6 mol%, the melting point of the polyester and the strength of the fiber are significantly reduced, making it unsuitable for general clothing. . In addition, in order to obtain stretchable woven or knitted fabrics or non-woven fabrics, the number of fibers constituting the woven or knitted fabric or non-woven fabric when crimped is 30 pieces/25 mm or more, preferably 40 pieces/25 mm or more, in a spiral shape. It is necessary to have crimp, and for that purpose, the raw cotton must be 50
It is necessary to have the ability to develop spiral crimp of 25 mm or more. In addition, if the shrinkage rate during heat treatment is large, the woven or knitted fabric or non-woven fabric will become extremely hard, and the durability of its stretchability will be poor. It is necessary to ensure that the actual thermal shrinkage rate is 10% or less. Fibers with such latent crimp ability and heat shrinkage rate are determined by the intrinsic viscosity of polyesters A and B, the copolymerization ratio of polyester A and a structural unit having a metal salt sulfonate group, the composite ratio of both polyesters, after spinning, This can be obtained by appropriately selecting the tension heat treatment conditions during stretching. For example, when producing a composite fiber with a composite ratio of 1:1 using a polyethylene terephthalate copolymer polyester copolymerized with a 5-sodium sulfoisophthalate (SIP) component as polyester A and polyethylene terephthalate (homopolymer) as polyester B. , when the SIP component of polyester A is 4 to 6 mol%, the intrinsic viscosity of polyester A is 0.40 to
0.50, the intrinsic viscosity of polyester B is preferably 0.50 to 0.80, the tension heat treatment temperature is preferably about 145 to 170°C, and the SIP component of polyester A is 3 to 4.
When expressed as mol%, the intrinsic viscosity of polyester A is 0.45.
~0.55, the intrinsic viscosity of polyester B is 0.45~0.75
The tension heat treatment temperature is preferably about 120 to 145°C. In addition, it is necessary to use raw cotton that does not produce neps or unopened fibers during the carding process. In general, the occurrence of neps and unopened fibers is closely related to the number of crimps and the form of crimps.In the case of mechanical crimping, if the number of crimps is less than 8/25mm, unspread fibers are likely to occur; /If it exceeds 25 mm, neps are likely to occur. Furthermore, if spiral crimp occurs before the carding process, neps are likely to occur, resulting in poor web uniformity and web slippage. Therefore, 50 pieces/
It is preferable to impart mechanical crimps of 8 to 18 pieces/25 mm to a latent crimpable composite fiber having the ability to develop spiral crimps of 25 mm or more. As a method for imparting mechanical crimp, a stuffing box method, a heating gear method, etc. can be adopted, but the stuffing box method is generally adopted for producing staple fibers. In addition, the fiber of the present invention contains a matting agent, a gloss improver,
It may contain modifiers such as antistatic agents, flame retardants, softening and smoothing agents, and the cross-sectional shape is not limited to circular.
A triangular cross section or other irregularly shaped cross section may be used. (Function) The reason why the fiber of the present invention exhibits good latent crimp ability is not clear, but it is related to the fact that the polyester obtained by copolymerizing the structural unit having a metal salt sulfonate group of polyester A has a certain degree of crosslinked structure. It is assumed that. Furthermore, since the fibers of the present invention are latent crimpable fibers that have been given appropriate mechanical crimp, they do not generate neps or unwoven parts during the carding process, and can be used with spun yarn, woven or knitted fabrics, or non-woven fabrics. After that, it is subjected to relaxation heat treatment to develop strong spiral crimp.
This provides a spun yarn, woven or knitted fabric, or non-woven fabric that has high elasticity and high elastic recovery. (Example) Hereinafter, the present invention will be explained in detail with reference to Examples. In addition, the measuring method of characteristic values etc. in an Example is as follows. (1) Intrinsic viscosity [η] Measured at 20°C in a mixed solvent of equal weights of phenol and tetrachloroethane. (2) Number of crimp Measured by the method of JIS L-1015-7-12-1. (3) Weave Measured according to the method of JIS L-1015-7-5-1A. (4) Heat shrinkage rate Measured by the method of JIS L-1015-7-15 at a load of 300 mg per denier. Examples 1 to 4, Comparative Examples 1 to 2 Polyester A was a polyethylene terephthalate copolyester copolymerized with 5.1 mol% of the SIP component, polyester B was polyethylene terephthalate with [η] 0.687, and composites were prepared in the combinations shown in Table 1. Three types of undrawn yarns A, B, and C were obtained by spinning side-by-side composite fibers at a weight ratio of 1:1.

【表】 これら3種類の未延伸糸を第2表の条件で延伸
熱処理を行い、スタツフイングボツクスで機械捲
縮を付与した後、カツトして短繊維を得た。
[Table] These three types of undrawn yarns were subjected to drawing heat treatment under the conditions shown in Table 2, mechanically crimped in a stuffing box, and then cut to obtain short fibers.

【表】 実施例 5 ポリエステルAとして〔η〕0.536のSIP成分を
3.2モル%共重合したポリエチレンテレフタレー
ト系共重合ポリエステル、ポリエステルBとして
〔η〕0.553のポリエチレンテレフタレートを用
い、実施例1〜4と同様に紡糸して未延伸糸を得
た。次いで、緊張熱処理温度を130℃、延伸倍率
を2.6倍とし、その他は実施例1〜4と同じ条件
で延伸及び緊張燃処理を行い。次いでスタツフイ
ングボツクスにより機械捲縮を付与した後、カツ
トして短繊維を得た。 比較例 3 ポリエステルAとして〔η〕0.570のSIP成分を
2.5モル%共重合したポリエチレンテレフタレー
ト系共重合ポリエステルを用いたほかは、実施例
5と同様にして短繊維を得た。 比較例 4 〔η〕0.687のポリエチレンテレフタレートを
紡糸温度290℃で、紡糸口金孔数518、引取速度
800m/分、吐出量329g/分で紡糸し、次いで延
伸温70℃、延伸倍率4.0倍、緊張熱処理温度145℃
の条件で延伸熱処理し、次いでスタツフイングボ
ツクスにより機械捲縮を付与した後、カツト長51
mmでカツトして短繊維を得た。 比較例 5 ポリエステルAとして、SIP成分を3.2モル%共
重合した〔η〕0.461のポリエチレンテレフタレ
ート系共重合ポリエステル、ポリエステルBとし
て、SIP成分を3.2モル%共重合した〔η〕0.395
のポリエチレンテレフタレート系共重合ポリエス
テルを用い、実施例1〜4と同様に紡糸して未延
伸糸を得た。次いで、緊張熱処理温度を135℃、
延伸倍率を2.8倍とし、その他は実施例1〜4と
同じ条件で延伸及び緊張熱処理を行つた後、スタ
ツフイングボツクスにより機械捲縮を付与し、カ
ツトして短繊維を得た。 以上の各例で得られた繊維の性能を第3表に示
す。
[Table] Example 5 SIP component of [η] 0.536 as polyester A
Using polyethylene terephthalate having [η] 0.553 as polyester B, a polyethylene terephthalate copolymerized polyester copolymerized with 3.2 mol %, undrawn yarn was obtained by spinning in the same manner as in Examples 1 to 4. Next, stretching and tension treatment were carried out under the same conditions as in Examples 1 to 4, except that the tension heat treatment temperature was 130°C and the stretching ratio was 2.6 times. Next, the fibers were mechanically crimped using a stuffing box and then cut to obtain short fibers. Comparative example 3 SIP component of [η] 0.570 as polyester A
Short fibers were obtained in the same manner as in Example 5, except that 2.5 mol % copolymerized polyethylene terephthalate copolyester was used. Comparative Example 4 Polyethylene terephthalate with [η] 0.687 was spun at a temperature of 290°C, the number of spinneret holes was 518, and the take-up speed was
Spinning at 800 m/min, discharge rate 329 g/min, then stretching temperature 70°C, stretching ratio 4.0 times, tension heat treatment temperature 145°C
The cut length was 51 mm after being subjected to stretching heat treatment under the conditions of
Short fibers were obtained by cutting in mm. Comparative Example 5 Polyester A was a polyethylene terephthalate copolymerized polyester having a copolymerization of 3.2 mol% of the SIP component [η] 0.461, and polyester B was a polyethylene terephthalate copolymerized polyester of 3.2 mol% of the SIP component [η] 0.395.
Using the polyethylene terephthalate copolymerized polyester of 20%, undrawn yarns were obtained by spinning in the same manner as in Examples 1 to 4. Next, the tension heat treatment temperature was 135℃,
After stretching and tension heat treatment were carried out at a stretching ratio of 2.8 times and the other conditions were the same as in Examples 1 to 4, mechanical crimp was applied using a stuffing box and cutting was performed to obtain short fibers. Table 3 shows the performance of the fibers obtained in each of the above examples.

【表】 次に、前記各例で得られた短繊維にユニチカ株
式会社製の低融点ポリエステル繊維“メルテイ”
2d×51mmをおのおの15重量%の割合でオープナ
ーで混綿し、梳綿機でカーテイングして、35g/
m2の目付のウエブを作成した。 次いで、ウエブを表面温度115℃の熱ロールで
50秒間一次熱処理を行い、続いて160℃のオーブ
ン中で5分間自由収縮熱処理を行い不織布を得
た。 得られた不織布を幅25mmに裁断し、定速伸張型
引張試験機で、試料長100mm、引張速度100mm/分
で、伸度と弾性回復率とを求めた。 弾性回復率=B−C/B×100(%) (Bは不織布の伸度の80%の値、CはBの値まで
伸張した後、荷重を外し、1分間放置後の測定前
の試料長に対する伸度を示す。) 測定結果を熱処理後の不織布の目付とともに第
4表に示す。
[Table] Next, the short fibers obtained in each of the above examples were added to the low melting point polyester fiber “Meltei” manufactured by Unitika Co., Ltd.
Blend 2d x 51mm of cotton at a rate of 15% by weight with an opener, and curl it with a carding machine to make 35g/
A web with a basis weight of m2 was created. Next, the web is rolled with a heated roll with a surface temperature of 115℃.
A primary heat treatment was performed for 50 seconds, followed by a free shrink heat treatment for 5 minutes in an oven at 160°C to obtain a nonwoven fabric. The obtained nonwoven fabric was cut to a width of 25 mm, and the elongation and elastic recovery rate were determined using a constant speed extension type tensile tester at a sample length of 100 mm and a tensile speed of 100 mm/min. Elastic recovery rate = B - C / B × 100 (%) (B is the value of 80% of the elongation of the nonwoven fabric, C is the sample before measurement after being stretched to the value of B, removing the load, and leaving it for 1 minute. The measurement results are shown in Table 4 along with the basis weight of the nonwoven fabric after heat treatment.

【表】 また、前記実施例1、2及び比較例3で得られ
た短繊維をおのおの100%で20番手の紡績糸とし、
前述の不織布の場合に準じて、伸度と弾性回復率
とを求めた。 結果を第5表に示す。
[Table] In addition, the short fibers obtained in Examples 1 and 2 and Comparative Example 3 were each made into 100% spun yarn with a count of 20,
The elongation and elastic recovery rate were determined in the same manner as in the case of the nonwoven fabric described above. The results are shown in Table 5.

【表】 (発明の効果) 本発明によれば、梳綿工程でネツプや未開繊部
が発生せず、しかも伸縮性、弾性回復性の優れた
紡績糸又は織編物もしくは中入綿用不織布を得る
のに適したポリエステル繊維が提供される。 本発明の繊維を用いることにより極めて伸縮性
及び弾性回復性の優れた紡績糸や織編物もしくは
不織布を得ることができ、本発明は、特にスポー
ツ衣料用素材の性能アツプに寄与するところが大
である。
[Table] (Effects of the invention) According to the present invention, spun yarns, woven and knitted fabrics, or nonwoven fabrics for padding, which do not generate neps or unopened fibers in the carding process and have excellent stretchability and elastic recovery properties, can be produced. Polyester fibers suitable for obtaining are provided. By using the fibers of the present invention, spun yarns, woven or knitted fabrics, or non-woven fabrics with extremely excellent stretchability and elastic recovery properties can be obtained, and the present invention greatly contributes to improving the performance of materials for sports clothing in particular. .

Claims (1)

【特許請求の範囲】[Claims] 1 金属塩スルホネート基を有する構成単位を3
〜6モル%共重合したエチレンテレフタレート単
位主体の共重合ポリエステルAとポリエチレンテ
レフタレートBとが偏心的に接合した複合繊維か
らなる短繊維であつて、170℃における自由収縮
熱処理で実質的熱収縮率が10%以下で、50個/25
mm以下のスパイラル捲縮を発現する潜在捲縮能を
有し、かつ8〜18個/25mmの機械捲縮が付与され
ていることを特徴とするポリエステル複合繊維。
1 3 structural units having a metal salt sulfonate group
It is a short fiber consisting of a composite fiber in which copolymerized polyester A mainly composed of ethylene terephthalate units copolymerized with ~6 mol% and polyethylene terephthalate B is eccentrically joined, and the substantial heat shrinkage rate is Less than 10%, 50 pieces/25
A polyester composite fiber characterized by having a latent crimp ability to express spiral crimp of 8 to 18 pieces/25 mm and having mechanical crimp of 8 to 18 pieces/25 mm.
JP21332585A 1985-09-26 1985-09-26 Polyester conjugated yarn Granted JPS6278214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21332585A JPS6278214A (en) 1985-09-26 1985-09-26 Polyester conjugated yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21332585A JPS6278214A (en) 1985-09-26 1985-09-26 Polyester conjugated yarn

Publications (2)

Publication Number Publication Date
JPS6278214A JPS6278214A (en) 1987-04-10
JPH045769B2 true JPH045769B2 (en) 1992-02-03

Family

ID=16637281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21332585A Granted JPS6278214A (en) 1985-09-26 1985-09-26 Polyester conjugated yarn

Country Status (1)

Country Link
JP (1) JPS6278214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537701B2 (en) * 2003-12-26 2010-09-08 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655557B2 (en) * 1987-09-01 1997-09-24 日本エステル 株式会社 Polyester composite fiber
JP2581146B2 (en) * 1988-04-06 1997-02-12 東洋紡績株式会社 Fiber shape
JPH0284512A (en) * 1988-09-20 1990-03-26 Toyobo Co Ltd Polyester-based conjugated fiber
JPH02139414A (en) * 1988-11-18 1990-05-29 Kuraray Co Ltd Conjugate fiber, woven, knit or nonwoven fabric containing the same and production of nonwoven fabric
JP2555177B2 (en) * 1988-11-21 1996-11-20 株式会社クラレ Bulky paper and manufacturing method thereof
JP2882636B2 (en) * 1988-12-21 1999-04-12 株式会社クラレ Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JPH0319916A (en) * 1989-06-15 1991-01-29 Kuraray Co Ltd Hot-melt conjugate polyester fiber
JP2817276B2 (en) * 1989-11-13 1998-10-30 東レ株式会社 Latent crimped composite short fiber
US6896843B2 (en) * 2002-08-30 2005-05-24 Kimberly-Clark Worldwide, Inc. Method of making a web which is extensible in at least one direction
US7872168B2 (en) 2003-10-31 2011-01-18 Kimberely-Clark Worldwide, Inc. Stretchable absorbent article

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015886A (en) * 1973-05-08 1975-02-19
JPS5126324A (en) * 1974-08-23 1976-03-04 Asahi Chemical Ind HORIESUTERUKEIFUKUGOSENINO KENSHUKUHATSUGENHOHO
JPS5253026A (en) * 1975-10-03 1977-04-28 Carisbrook Ind Method and apparatus for elongating and winding yarn
JPS5322171A (en) * 1976-08-12 1978-03-01 Dainippon Toryo Co Ltd Production of pigment-attached fluorescent substance
JPS5725650A (en) * 1980-07-21 1982-02-10 Fujitsu Ltd Face discharge type gas discharge panel
JPS5846120A (en) * 1981-09-11 1983-03-17 Nippon Ester Co Ltd Polyester conjugated fiber and its production
JPS58136831A (en) * 1982-02-03 1983-08-15 Nippon Ester Co Ltd Polyester conjugated mixed yarn

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5015886A (en) * 1973-05-08 1975-02-19
JPS5126324A (en) * 1974-08-23 1976-03-04 Asahi Chemical Ind HORIESUTERUKEIFUKUGOSENINO KENSHUKUHATSUGENHOHO
JPS5253026A (en) * 1975-10-03 1977-04-28 Carisbrook Ind Method and apparatus for elongating and winding yarn
JPS5322171A (en) * 1976-08-12 1978-03-01 Dainippon Toryo Co Ltd Production of pigment-attached fluorescent substance
JPS5725650A (en) * 1980-07-21 1982-02-10 Fujitsu Ltd Face discharge type gas discharge panel
JPS5846120A (en) * 1981-09-11 1983-03-17 Nippon Ester Co Ltd Polyester conjugated fiber and its production
JPS58136831A (en) * 1982-02-03 1983-08-15 Nippon Ester Co Ltd Polyester conjugated mixed yarn

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537701B2 (en) * 2003-12-26 2010-09-08 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Also Published As

Publication number Publication date
JPS6278214A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JPH045769B2 (en)
JP2006214056A (en) Woven fabric
JPS6410605B2 (en)
JPS6221855A (en) Production of polyester nonwoven fabric
JP2000328382A (en) Elastic spun yarn
JP2703294B2 (en) Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric
JP2002054036A (en) Crimped polyester fiber and method for producing the same
JP3023896B2 (en) Method for producing stretchable peach-like knitted fabric
JP2655557B2 (en) Polyester composite fiber
JPH06101116A (en) Conjugate fiber
JP6591765B2 (en) Latent crimped composite fiber
JP3736886B2 (en) Spinned yarn made of fibers with latent crimping ability
JP3055381B2 (en) Woven fabric using stretchable spun yarn
JP2013209775A (en) Latent crimpable polyester conjugated staple fiber and nonwoven fabric prepared therewith
JP6004759B2 (en) Latent crimped composite fiber
JPH08170238A (en) Composite crimped yarn
JP3516754B2 (en) Polyester composite fiber
JP2656583B2 (en) Polyester composite staple fiber for elastic non-woven fabric
JPH01169000A (en) Conjugated polyester fiber for wet non-woven cloth
JP2007321319A (en) Filament-staple composite spun yarn and fabric comprising the same
JPH02300318A (en) Stretchable polyester conjugate fiber
JP2000328370A (en) Polyester composite fiber and nonwoven fabric including the same
JP3759236B2 (en) Spinned yarn containing latently crimped fibers
JP3276090B2 (en) Method for producing polyester-based fabric
JPS6170012A (en) Polyester conjugated yarn

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term