JPH0457621B2 - - Google Patents

Info

Publication number
JPH0457621B2
JPH0457621B2 JP59113198A JP11319884A JPH0457621B2 JP H0457621 B2 JPH0457621 B2 JP H0457621B2 JP 59113198 A JP59113198 A JP 59113198A JP 11319884 A JP11319884 A JP 11319884A JP H0457621 B2 JPH0457621 B2 JP H0457621B2
Authority
JP
Japan
Prior art keywords
burner
base material
glass
gas
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113198A
Other languages
Japanese (ja)
Other versions
JPS60260431A (en
Inventor
Hiroshi Yokota
Toshio Danzuka
Yoichi Ishiguro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP11319884A priority Critical patent/JPS60260431A/en
Publication of JPS60260431A publication Critical patent/JPS60260431A/en
Publication of JPH0457621B2 publication Critical patent/JPH0457621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/0148Means for heating preforms during or immediately prior to deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements
    • C03B2207/54Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔質光フアイバ用母材(以下多孔
質母材という)の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a porous optical fiber base material (hereinafter referred to as porous base material).

(従来の技術) 石英系光フアイバ母材の製造方法としては、内
付CVD法、外付(CVD)法、VAD法等が知られ
ている。
(Prior Art) Known methods for manufacturing silica-based optical fiber base materials include an internal CVD method, an external CVD method, and a VAD method.

例えば、VAD法は、低損失で半径方向に任意
の屈折率分布を有しそして円周方向及び長さ方向
に均一な組成を有する、光伝送用フアイバを作る
ための素材を安価に得ようとする場合に好適な製
造方法である。
For example, the VAD method aims to obtain low-cost materials for making optical transmission fibers that have low loss, arbitrary refractive index distribution in the radial direction, and uniform composition in the circumferential and longitudinal directions. This is a suitable manufacturing method when

第4図に従来のVAD法による石英系光フアイ
バ母材の製造の1例を示す。図中10は回転出発
部材、11は多孔質母材、12はスート流、13
は酸水素炎バーナ、14は排気管をあらわす。こ
こで酸水素バーナ13として、例えば第2図に示
すような断面をもつ多重管バーナを使用して、例
えば、中心の第1ポート1及び第2ポート2から
ガラス原料ガスを噴出させ、一方、その周りの第
3ポート3、第4ポート4及び第5ポート5から
それぞれ水素ガス、アルゴンガス、酸素ガスを噴
出させて、酸水素炎中でガラス原料を加水分解反
応させて生成されたガラス微粒子を、回転出発部
材10例えば回転ガラス棒に堆積させて軸方向に
成長させ、円柱状ガラス微粒子塊、すなわち多孔
質母材11をつくる。そのあと、その多孔質母材
11を加熱溶融して光フアイバ製造用母材(プリ
フオーム母材)とする。
Figure 4 shows an example of manufacturing a silica-based optical fiber base material using the conventional VAD method. In the figure, 10 is a rotation starting member, 11 is a porous base material, 12 is a soot flow, and 13
1 represents an oxyhydrogen flame burner, and 14 represents an exhaust pipe. Here, as the oxyhydrogen burner 13, for example, a multi-tube burner having a cross section as shown in FIG. Glass particles are generated by blowing out hydrogen gas, argon gas, and oxygen gas from the surrounding third port 3, fourth port 4, and fifth port 5, respectively, and causing a hydrolysis reaction of the glass raw material in an oxyhydrogen flame. is deposited on a rotating starting member 10, for example, a rotating glass rod, and grown in the axial direction to form a cylindrical glass fine particle mass, that is, a porous base material 11. Thereafter, the porous base material 11 is heated and melted to form a base material for manufacturing an optical fiber (preform base material).

上記のようなVAD法、は大型母材の製造が容
易で、量産性に優れており、工業的に広く利用さ
れている。
The VAD method described above is easy to manufacture large base materials, has excellent mass productivity, and is widely used industrially.

(発明が解決しようとする問題点) しかしながら、上記したような従来のVAD法
においては、多孔質母材11に堆積させるガラス
微粒子の堆積速度を高めるために、中心の第1ポ
ート1及び第2ポート2から噴出させるガラス原
料ガスの量を単純に増加させても、堆積ガラス微
粒子の量はそれに比例して増加しないことが、困
難な問題であつた。
(Problems to be Solved by the Invention) However, in the conventional VAD method as described above, in order to increase the deposition rate of glass particles deposited on the porous base material 11, A difficult problem has been that even if the amount of frit gas ejected from port 2 is simply increased, the amount of deposited glass particles does not increase proportionally.

第5図は、sicl4投入量(g/分)とガラス微粒
子の付着効率〔堆積sio2量/投入sio2量×100
(%)〕の関係を示すグラフである。すなわち、第
5図中実線ロに示すように、供給ガラス原料ガラ
ス原料ガスの量を増加させても、付着効率が低下
してゆくために、堆積速度が原料投入量に比例し
て増加しない。また、多量の未反応原料が排ガス
処理系に流れ込むと、それに応じて処理費用が高
くなる。
Figure 5 shows the amount of sicl 4 input (g/min) and the adhesion efficiency of glass particles [deposition sio 2 amount/input sio 2 amount x 100
(%)]. That is, as shown by the solid line (b) in FIG. 5, even if the amount of the frit gas supplied is increased, the deposition efficiency decreases, so the deposition rate does not increase in proportion to the amount of raw material input. Furthermore, if a large amount of unreacted raw materials flows into the exhaust gas treatment system, treatment costs will increase accordingly.

また、ガラス原料ガスの供給量を増大させて
も、多孔質母材の製造速度が上昇しない上記した
問題は、心棒上に半径方向に多孔質ガラスを堆積
させて膨径成長させる外付(CVD)法において
も同様に起きている。
In addition, the above-mentioned problem in which the production speed of the porous base material does not increase even if the supply amount of frit gas is increased can be solved by external CVD (CVD), which deposits porous glass in the radial direction on the mandrel and grows it in diameter. ) The same thing is happening in law.

本発明は上記の問題点を解決して、効率よくガ
ラス微粒子を多孔質母材の表面に付着させ、高い
堆積速度および高原料収率で、多孔質母材を経済
的に製造する方法を提供せんとするものである。
The present invention solves the above-mentioned problems and provides a method for efficiently attaching glass particles to the surface of a porous base material and economically producing the porous base material at a high deposition rate and high raw material yield. This is what I am trying to do.

(問題点を解決する手段) 本発明は、ガラス原料ガスを酸水素炎バーナか
ら噴出させて火炎加水分解し、それによつて生成
するガラス微粒子を回転する出発部材の上に堆積
させ、軸方向に成長させることにより多孔質光フ
アイバ用母材を作製する方法において、原料ガス
を含まない酸水素炎を形成するバーナを用いて、
ガラス微粒子の堆積する多孔質ガラス母材表面に
沿つて流れるスート形成流の下側面を加熱するこ
とを特徴とする多孔質光フアイバ用母材の製造方
法に関するものである。
(Means for Solving the Problems) The present invention involves flame hydrolysis of frit gas by ejecting it from an oxyhydrogen flame burner, and thereby depositing the resulting glass fine particles on a rotating starting member. In a method for producing a porous optical fiber base material by growing, using a burner that forms an oxyhydrogen flame that does not contain a raw material gas,
The present invention relates to a method for manufacturing a porous optical fiber preform, which is characterized by heating the lower side of a soot-forming flow flowing along the surface of the porous glass preform on which glass fine particles are deposited.

本発明者らが、VAD法の欠陥を詳細に検討し
たところ、付着効率の低下の原因は、第4図の酸
水素バーナ13に投入する原料ガスを増加させて
いくと、スート形成流12と多孔質母材11表面
との温度勾配が小さくなり、いわゆるサーモホレ
シス効果による、多孔質母材11表面方向へのガ
ラス微粒子を移動させる熱的な力が小さくなつて
いるためであることが判明した。
The inventors of the present invention have investigated the defects of the VAD method in detail and found that the cause of the decrease in adhesion efficiency is that as the raw material gas input to the oxyhydrogen burner 13 in FIG. It has been found that this is because the temperature gradient with the surface of the porous base material 11 has become smaller, and the thermal force that moves the glass particles toward the surface of the porous base material 11 due to the so-called thermophoresis effect has become smaller.

そこで、温度勾配を増加するための方法を種々
検討したところ、ガラス原料を投入し、火炎加水
分解反応によりガラス微粒子を発生させ、スート
流12を形成する酸水素炎バーナ13の下方に、
原料ガスを含まない酸水素炎を形成するバーナを
配置し、スート形成流12の下側面を加熱する方
法が有効であると見出した。
Therefore, we investigated various methods to increase the temperature gradient, and found that a glass raw material is introduced, glass particles are generated by a flame hydrolysis reaction, and a soot stream 12 is formed below the oxyhydrogen flame burner 13.
It has been found that a method of heating the lower side of the soot-forming stream 12 by disposing a burner that forms an oxyhydrogen flame containing no raw material gas is effective.

第1図は本発明の方法の1実施態様を説明する
図である。図中、10は回転出発部材、11は多
孔質母材、12はスート形成流、13は原料投入
用酸水素バーナ、14は排気管であり、15は加
熱用バーナであつて、原料投入用酸水素バーナ1
3の下方に設けられ、スート形成流12の下側面
を加熱する。
FIG. 1 is a diagram illustrating one embodiment of the method of the present invention. In the figure, 10 is a rotation starting member, 11 is a porous base material, 12 is a soot forming flow, 13 is an oxyhydrogen burner for inputting raw materials, 14 is an exhaust pipe, and 15 is a heating burner for inputting raw materials. Oxygen hydrogen burner 1
3 and heats the lower side of the soot forming stream 12.

スート形成流12の温度は、加熱用バーナ15
による加熱も加わつて、上昇するため、多孔質母
材11の表面とスート形成流12との温度勾配
は、従来法による場合よりも大きくなる。従つて
多孔質母材表面へガラス微粒子を移動させる熱的
な力がより大きくなり、付着効率が高くなる。原
料投入用酸水素バーナ13としては例えば第2図
の構成のもの、また加熱用バーナとしては同様に
多重管バーナを用いることができる。
The temperature of the soot forming stream 12 is determined by the heating burner 15.
The temperature gradient between the surface of the porous base material 11 and the soot-forming flow 12 becomes larger than that in the conventional method. Therefore, the thermal force that moves the glass particles to the surface of the porous base material becomes larger, and the adhesion efficiency becomes higher. As the raw material input oxyhydrogen burner 13, for example, one having the configuration shown in FIG. 2 can be used, and as the heating burner, a multi-tube burner can be used.

以上の説明では、原料投入用酸水素バーナと加
熱用バーナが各1本ずつ計2本のバーナの場合を
例に挙げたが、原料投入用酸水素バーナあるいは
加熱用バーナが2つ以上の構成によつても同様の
効果が得られる。
In the above explanation, an example is given in which there are two burners, one oxyhydrogen burner for raw material input and one heating burner, but a configuration with two or more oxyhydrogen burners for raw material input or heating burners is used. A similar effect can be obtained by

また、さらに、第3図に示すような、原料投入
用酸水素バーナと、加熱用バーナとを組み合せて
1本のバーナとした構成をとつても、加熱用バー
ナ部が、原料投入用酸水素バーナの下方に配置さ
れ、スート形成流の下側面を加熱するようになつ
ておれば、同様の効果を得ることは言うまでもな
い。第3図のバーナでは例えば21に原料I、22に
原料と水素ガス、23にアルゴンガス、24に水素
ガス、25にアルゴンガス、26に酸素ガスのように
各ガスを導入する。
Furthermore, even if the oxyhydrogen burner for raw material input and the heating burner are combined into one burner as shown in FIG. 3, the heating burner part is It goes without saying that a similar effect can be obtained if the burner is placed below the burner and heats the lower side of the soot forming stream. In the burner shown in FIG. 3, various gases are introduced, for example, raw material I at 21, raw material and hydrogen gas at 22, argon gas at 23, hydrogen gas at 24, argon gas at 25, and oxygen gas at 26.

(発明の効果) 第5図に、本発明の方法により多孔質母材を製
造した場合のsicl4投入量と付着効率の関係(図
中、点線イ)を、従来法(図中、実線ロ)と対比
して示す。図からも明らかなように、本発明の方
法によれば、ガラス微粒子の付着効率が大きく改
善される。
(Effect of the invention) Figure 5 shows the relationship between the amount of SiCl 4 input and the adhesion efficiency (dotted line A in the figure) when a porous base material is manufactured by the method of the present invention, and the relationship between the conventional method (solid line R in the figure). ). As is clear from the figure, according to the method of the present invention, the adhesion efficiency of glass fine particles is greatly improved.

したがつて、本発明の方法は、高い堆積速度お
よび高い原料収率で、経済的に多孔質母材を得ら
れるに加え、装置、構成上も簡単、容易な変更で
すむ優れた方法である。
Therefore, the method of the present invention is an excellent method that can economically obtain a porous base material with a high deposition rate and high raw material yield, and also requires simple and easy modification of the equipment and configuration. .

(実施例) 実施例 1 第1図に示す構成の装置を用い、原料投入用酸
水素バーナ13としては5重管バーナを、また加
熱用バーナ15としては3重管バーナを用いた。
(Examples) Example 1 Using an apparatus having the configuration shown in FIG. 1, a five-tube burner was used as the raw material input oxyhydrogen burner 13, and a triple-tube burner was used as the heating burner 15.

酸水素バーナ13の第1ポート1は、sicl4
350cc/分、GeCl4を40cc/分、アルゴンキヤリ
アガスを310cc/分供給し、第2ポート2には、
sicl4300cc/分、GeCl4を10cc/分、アルゴンキ
ヤリアガスを250cc/分を供給する。第3ポート
には、水素ガスを12/分供給し、第4ポート4
にはアルゴンガスをシールガスとして2.5/分
供給し、第5ポート5には酸素ガスを12/分供
給する。またこの酸水素バーナ13の下方に配置
されたスート形成流加熱用バーナ15の第1〜3
ポートにそれぞれ、水素ガス5/分、アルゴン
ガス1.5/分、酸素ガス8/分を供給し、ス
ート流の下側面が加熱されるように調整した。
The first port 1 of the oxyhydrogen burner 13 is sicl 4
350cc/min, GeCl 4 is supplied at 40cc/min, argon carrier gas is supplied at 310cc/min, and the second port 2 is
Supply SiCl 4 at 300 cc/min, GeCl 4 at 10 cc/min, and argon carrier gas at 250 cc/min. Hydrogen gas is supplied to the third port at 12/min, and the fourth port
Argon gas is supplied as a sealing gas at a rate of 2.5/min, and oxygen gas is supplied to the fifth port 5 at a rate of 12/min. Also, the first to third burners 15 for heating the soot forming flow are arranged below the oxyhydrogen burner 13.
Hydrogen gas, argon gas, and oxygen gas were supplied at 5/min, 1.5/min, and oxygen gas at 8/min to each port, respectively, so that the lower side of the soot flow was heated.

このような条件で、多孔質母材を480mm成長さ
せ、投入原料総重量と多孔質母材の重量とから付
着効率を求めたところ、付着効率は74%であつ
た。
Under these conditions, the porous base material was grown to a thickness of 480 mm, and the adhesion efficiency was determined from the total weight of the input raw materials and the weight of the porous base material, and the adhesion efficiency was 74%.

以上のように作成した多孔質母材をカーボン抵
抗炉によりヘリウムガス雰囲気下で加熱して、透
明ガラス化し焼結ロツドとした。その後さらに、
該焼結ロツドを直径10mmに延伸した後、外径26mm
の市販の石英管に挿入して、酸水素火炎で外部加
熱してプリフオーム母材にした。そして、そのプ
リフオーム母材を線引炉でフアイバ化して、伝送
損失を測定したところ、光の波長2=1.3μmで
1dB/Km以下の低損失であつた。
The porous base material prepared as described above was heated in a helium gas atmosphere in a carbon resistance furnace to make it transparent and vitrified into a sintered rod. After that, further
After stretching the sintered rod to a diameter of 10 mm, the outer diameter is 26 mm.
It was inserted into a commercially available quartz tube and externally heated with an oxyhydrogen flame to form a preform base material. Then, when we turned the preform base material into fiber in a drawing furnace and measured the transmission loss, we found that at light wavelength 2 = 1.3 μm,
The loss was low, less than 1dB/Km.

比較例 1 本発明の効果を確認するため、実施例1におい
て、スート流加熱用バーナ15の水素ガスの供給
を停止した以外はすべて同条件で多孔質母材を
480mm成長させ、同様に、投入原料総重量と多孔
質母材の重量とから付着効率を求めたところ、付
着効率は49%であつた。これにより、本発明の方
法は、付着効率を大幅に改善できることが確認さ
れた。
Comparative Example 1 In order to confirm the effect of the present invention, a porous base material was prepared under the same conditions as in Example 1 except that the supply of hydrogen gas to the soot flow heating burner 15 was stopped.
When the film was grown to 480 mm and the adhesion efficiency was similarly determined from the total weight of the input raw materials and the weight of the porous base material, the adhesion efficiency was 49%. This confirmed that the method of the present invention can significantly improve the deposition efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施態様の概略説明図、第
2図は多重管酸水素バーナーの説明図、第3図は
本発明に用いる原料投入用酸水素バーナと下方の
加熱用バーナを組合せて1バーナとして構成した
バーナの説明図、第4図は従来方法の概略説明
図、第5図は本発明方法と従来方法との、sicl4
入量(g/分)に対するガラス微粒子付着効率
(%)の比較を示すグラフである。
Fig. 1 is a schematic explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of a multi-tube oxyhydrogen burner, and Fig. 3 is a combination of the oxyhydrogen burner for raw material input and the lower heating burner used in the present invention. Fig. 4 is a schematic illustration of the conventional method, and Fig. 5 shows the glass particle adhesion efficiency (in relation to SiCl 4 input amount (g/min)) of the method of the present invention and the conventional method. %) is a graph showing a comparison.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス原料ガスを酸水素炎バーナから噴出さ
せて火炎加水分解し、それによつて生成するガラ
ス微粒子を回転する出発部材の上に堆積させ、軸
方向に成長させることにより多孔質光フアイバ用
母材を作製する方法において、原料ガスを含まな
い酸水素炎を形成するバーナを用いて、ガラス微
粒子の堆積する多孔質ガラス母材表面に沿つて流
れるスート形成流の下側面を加熱することを特徴
とする多孔質光フアイバ用母材の製造方法。
1. Glass raw material gas is ejected from an oxyhydrogen flame burner to undergo flame hydrolysis, and the resulting glass fine particles are deposited on a rotating starting member and grown in the axial direction to produce a porous optical fiber base material. The method for producing a soot-forming flow is characterized by heating the lower side of a soot-forming flow flowing along the surface of a porous glass base material on which glass particles are deposited using a burner that forms an oxyhydrogen flame containing no raw material gas. A method for producing a porous optical fiber base material.
JP11319884A 1984-06-04 1984-06-04 Manufacture of porous base material for optical fiber Granted JPS60260431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11319884A JPS60260431A (en) 1984-06-04 1984-06-04 Manufacture of porous base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11319884A JPS60260431A (en) 1984-06-04 1984-06-04 Manufacture of porous base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS60260431A JPS60260431A (en) 1985-12-23
JPH0457621B2 true JPH0457621B2 (en) 1992-09-14

Family

ID=14606035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11319884A Granted JPS60260431A (en) 1984-06-04 1984-06-04 Manufacture of porous base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS60260431A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221335A (en) * 1984-04-18 1985-11-06 Nippon Sheet Glass Co Ltd Preparation of parent material for optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221335A (en) * 1984-04-18 1985-11-06 Nippon Sheet Glass Co Ltd Preparation of parent material for optical fiber

Also Published As

Publication number Publication date
JPS60260431A (en) 1985-12-23

Similar Documents

Publication Publication Date Title
US4217027A (en) Optical fiber fabrication and resulting product
US4909816A (en) Optical fiber fabrication and resulting product
US4334903A (en) Optical fiber fabrication
US4235616A (en) Optical waveguide manufacturing process and article
US4257797A (en) Optical fiber fabrication process
JPH0463018B2 (en)
US4504299A (en) Optical fiber fabrication method
JPH0457621B2 (en)
JP5678467B2 (en) Glass base material manufacturing method
JP3133392B2 (en) Manufacturing method of soot base material for optical fiber
JPH04231336A (en) Production of optical fiber preform
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
EP0023209B1 (en) Improved optical fiber fabrication process
AU643451B2 (en) Method for producing porous glass preform for optical fiber
JPS62108748A (en) Preparation of glass fiber base material
JPS6259063B2 (en)
JPH10330129A (en) Production of porous glass body for optical fiber
JPS591222B2 (en) Optical fiber manufacturing method
JPS59454B2 (en) Manufacturing method of fiber base material for optical transmission
Schultz Vapor phase materials and processes for glass optical waveguides
JPS5924093B2 (en) Manufacturing method of glass fiber base material for optical transmission
JP3169503B2 (en) Method for producing porous glass preform for optical fiber
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPH0733467A (en) Production of porous glass preform for optical fiber
JPH02304B2 (en)