JPH045736B2 - - Google Patents

Info

Publication number
JPH045736B2
JPH045736B2 JP1254083A JP1254083A JPH045736B2 JP H045736 B2 JPH045736 B2 JP H045736B2 JP 1254083 A JP1254083 A JP 1254083A JP 1254083 A JP1254083 A JP 1254083A JP H045736 B2 JPH045736 B2 JP H045736B2
Authority
JP
Japan
Prior art keywords
superplastic
rolled
aluminum alloy
rolling
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1254083A
Other languages
Japanese (ja)
Other versions
JPS59140345A (en
Inventor
Nobuyuki Matsuzoe
Ryoji Mishima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1254083A priority Critical patent/JPS59140345A/en
Publication of JPS59140345A publication Critical patent/JPS59140345A/en
Publication of JPH045736B2 publication Critical patent/JPH045736B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は超塑性アルミニウム合金およびその製
法に関するものである。 外部から機械的力を加えると、局部的変形(く
びれ)が発生することなく数百%から千%ないし
はそれ以上にも達する異常な伸びが得られる金属
や合金は、超塑性金属または超塑性合金として知
られている。アルミニウムベースの超塑性合金に
は、典型的なものとして再結晶微細粒超塑性合金
と共晶微細組織超塑性合金との2種類が知られて
いる。再結晶微細粒超塑性合金は、圧延板を超塑
性加工の温度条件下にさらした際に生成する再結
晶粒が微細になるようにしたものであり、共晶微
細組織超塑性合金は鋳造時に生じた微細な共晶組
織を製品としての圧延板にまで持ちきたしたもの
である。これらいずれの超塑性合金においても、
その組織は直径が0.5μないしはそれ以下から最大
でも10μ程度の微細な結晶粒からなり、円滑な粒
界移動または滑りが起こることにより材料の塑性
変形が容易に行なわれる。 本発明は再結晶微細粒超塑性と共晶微細組織超
塑性とを兼ねそなえていると考えられるアルミニ
ウムベースの超塑性合金およびその製造を提供す
るものである。 すなわち本発明は、3.0〜6.0%のNi,1.0〜3.5
%のMg,0.5〜1.0%のMn,0.05〜0.3%のCrおよ
び0.05〜0.50%のSiを含み、残余は実質的に不純
物とAlからなる超塑性アルミニウム合金、並び
にこの組成の合金溶湯を連続的に鋳造圧延して厚
さ3〜20mmの帯状板とし、これに420〜530℃の温
度で焼きなまし処理を施したのち、熱間圧延する
ことなく70%以上の圧延率に達するまで冷間圧延
を行なうことを特徴とする超塑性アルミニウム合
金板の製造法を要旨とするものである。 本発明について更に詳細に説明すると、本発明
に係る超塑性アルミニウム合金は、3.0〜6.0%の
Ni,1.0から3.5%のMg,0.5〜1.0%のMn、0.05
〜0.3%のCrおよび0.05〜0.50%のSiを含有してい
る。NiはAlと共晶をなし、微細な共晶化合物
(NiAl3)を生成する。Al−Niの共晶組成はAl−
5.5%Niであり、Niの含有量が6%をこえると、
粗大な初晶が生じて超塑性能を劣化させると共に
圧延性も低下する。また、Niの含有量が3.0%よ
り少なくなると、共晶化合物の生成量が少なくな
り過ぎて超塑性が低下する。 Mgは動的再結晶、すなわち超塑性合金板の塑
性変形に際し変形と同時に再結晶を起し、常に変
形前の組織を再生して、加工硬化を低減し、超塑
性変形を円滑に行なわせる効果を発揮する。Mg
の含有量が1.0%未満ではこの効果は少なく、逆
に3.5%より多くなると粗大なβ相(Al−Mg化合
物)が帯状板の中央部に晶出し、超塑性能を劣化
させるばかりでなく、冷間圧延を困難にする。
MnおよびCrは結晶粒を微細化し、かつ安定化す
る作用を有する。Mnは1.0%以下、すなわち鋳造
時にほぼ固溶する範囲でなければならない。固溶
量以上のMnが存在すると、鋳造時に粗大な晶出
物を生ずる。この晶出物は超塑性能に寄与しない
ばかりでなく、冷間圧延に悪影響を及ぼす。Cr
も多すぎるとMnと粗大な化合物をつくり易くな
り、MnおよびCrの微細化効果を失なわせるの
で、その量は0.3%以下でなければならない。Mn
およびCrの含有量の下限はそれぞれ0.5%および
0.05%であり、これよりも少量ではその効果が十
分に発現しない。0.50%のSiを存在させると、帯
状板の中央部に生ずるMgの偏析が抑制される。
またSiはMgと反応して金属間化合物(Mg2Si)
を形成するが、このものは微細な粒子であり、こ
れ自体が超塑性の発現に寄与する。Siの存在量が
0.15%未満ではこれらの効果は小さく、また0.50
%を超えるとSiと反応するMgが多くなつてMg
の効果が失なわれる。さらに一般のアルミニウム
合金中に含有される不純物については、通常の合
金中に許容される範囲、すなわちFe 0.40%以下、
好ましくは0.20%以下、Cu 0.10%以下であれば
存在していても差支えない。従つて本発明に係る
超塑性アルミニウム合金のベースとしては、純度
99.70%以上(JIS1種)のアルミニウム地金を用
いるのが好ましい。 本発明に係る超塑性アルミニウム合金を製造す
るには、先ず上記の組成のアルミニウム合金溶湯
を連続的に鋳造圧延して、直接に3〜20mm、好ま
しくは4〜15mmの厚さの帯状板を製造する。連続
鋳造圧延法は公知であり、ハンター法、3C法な
どいくつかの方法が知られている。その代表的な
方法によれば、2個の回転する鋳造用ロールで構
成される鋳型間にノズルを配置し、このノズルを
経て合金溶湯を鋳型内に導入し、鋳型で冷却しな
がら同時に圧延することにより帯状板が製造され
る。鋳造用ロール内には冷却水が流通しており、
溶湯は通常100℃/秒以上の冷却速度で冷却され
るため微細な結晶を生成させることができる。ま
た、この方法によれば、本発明で用いる組成の範
囲内では、MnおよびCrは固溶してしまい、金属
間化合物として晶出することは殆どない。 このようにして得られた帯状板は、420〜530℃
で焼きなまし処理を施す。この焼きなましによ
り、鋳造時に晶出した共晶化合物(NiAl3)が少
なくとも部分的に粒状化して、界面でのすべりが
円滑となり、超塑性能が向上する。また、過飽和
に固溶したMnおよびCrが再結晶粒界の移動の阻
止に有効な均一微細な析出物として析出する。焼
きなまし温度が530℃よりも高くなると共晶化合
物(NiAl3)が粗大化し、かつMnおよびCrの析
出物も粗大化するので超塑性能が劣化する。また
420℃よりも低い温度ては共晶化合物(NiAl3
が十分に粒状化せず、かつMnおよびCrの析出も
不十分となる。好適な焼きなまし温度は450〜500
℃である。焼きなまし時間は6〜24時間が適当で
ある。温度が低い場合には時間を長くし、高い場
合には時間を短くすることは、一般の熱処理と同
様である。 焼きまなした帯状板は次いで熱間圧延を行なう
ことなく、冷間圧延する。若し熱間圧延を行なう
と、超塑性特性が損なわれる。 冷間圧延は70%以上、好ましくは80%以上の圧
延率に達するまで行なう。圧延率がこれよりも小
さいと、得られる合金板に十分な超塑性能を付与
することはできない。なお、冷間圧延と共に加工
硬化が進行するので、圧延率が高くなると圧延が
漸次困難になる。この困難は途中で1回ないし数
回の中間焼鈍を行なうことにより解消することが
できる。中間焼鈍は200〜400℃、特に250〜350℃
で行なうのが好ましい。すなわち加工硬化した圧
延板を焼鈍すると温度の上昇と共に軟化するが、
特に200〜250℃において著しく軟化が進行する。
軟化は250℃でほぼ飽和に達し、さらに高温に加
熱しても軟化度の向上は比較的小さい。400℃よ
りも高温で圧延板中の析出物が粗大化して超塑性
能を阻害する。中間焼鈍に要する時間は通常1〜
4時間である。中間焼鈍を行なつた場合には、最
終の中間焼鈍後に圧延率が60%以上、特に65%以
上に達するまでさらに冷間圧延することが必要で
ある。全体の圧延率が70%以上であつても中間焼
鈍後の圧延率がこれよりも小さいと、優れた超塑
性能を示す圧延板を得ることは困難である。中間
焼鈍がない場合と同じく、中間焼鈍がある場合に
は最終中間焼鈍後の圧延率が大きいほど圧延板の
超塑性能は良好となる。 本発明に係る超塑性アルミニウム合金は、300
℃以上、特に400℃以上の温度で優れた超塑性能
を示す。従つて、この特性を利用して一般の超塑
性材料に適用される各種の加工法により成形加工
することができる。その代表的なものは真空成形
およびバルジ加工である。加工時のひずみ速度は
通常1×10-3〜1×10-1/秒の範囲であり、また
単軸伸びは300〜1000%の範囲が好ましい。 次に実施例により本発明をさらに具体的に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。 実施例 第1表に示す組成の合金溶湯(不純物として
Fe0.14%,Cu0.01%以下を含み、他の不純物は合
計で0.02%以下である)を750℃に保持して十分
に脱ガスした。 直径30cmの2個の水冷ロールで構成された駆動
鋳型を用い、上記の溶湯を鋳込温度700℃、鋳造
速度100cm/分で連続的に鋳造圧延して厚さ6.0〜
6.8mmの帯状板を製造した。この帯状板を470〜
480℃で12時間焼きなましたのち、冷間圧延して
厚さ1.0mmの圧延板とした。 (超塑性能の測定) 上記の圧延板から150×150mmの大きさの試料片
を切り出し、第1図に示す金型を用いてふくらま
し試験を行なつた。圧空の圧力は0.5Kg/cm2Gか
ら逐次上昇させ、試料片が破断するときの高さ
(バルヂ高さ)を測定した。結果を第2表に示す。
The present invention relates to a superplastic aluminum alloy and a method for producing the same. Metals and alloys that can exhibit abnormal elongation of several hundred to 1,000% or more without local deformation (constriction) when external mechanical force is applied are called superplastic metals or superplastic alloys. known as. Two typical types of aluminum-based superplastic alloys are known: recrystallized fine-grained superplastic alloys and eutectic microstructured superplastic alloys. A recrystallized fine-grained superplastic alloy is one in which the recrystallized grains that are generated when a rolled plate is exposed to the temperature conditions of superplastic working are made fine, and a eutectic fine-structured superplastic alloy is one in which the recrystallized grains that are generated when a rolled plate is exposed to the temperature conditions of superplastic working are made fine. The resulting fine eutectic structure was carried over to the rolled plate as a product. In any of these superplastic alloys,
The structure consists of fine crystal grains with diameters ranging from 0.5 μm or less to around 10 μm at most, and the smooth movement or sliding of grain boundaries facilitates plastic deformation of the material. The present invention provides an aluminum-based superplastic alloy that is believed to have both recrystallized fine-grained superplasticity and eutectic microstructured superplasticity, and the production thereof. That is, the present invention uses 3.0 to 6.0% Ni, 1.0 to 3.5%
% Mg, 0.5-1.0% Mn, 0.05-0.3% Cr and 0.05-0.50% Si, with the remainder consisting essentially of impurities and Al, as well as continuous molten alloys of this composition. It is then cast and rolled into a strip with a thickness of 3 to 20 mm, annealed at a temperature of 420 to 530°C, and then cold rolled without hot rolling until a rolling reduction of 70% or more is reached. The gist of the present invention is a method for manufacturing a superplastic aluminum alloy plate, which is characterized by carrying out the following steps. To explain the present invention in more detail, the superplastic aluminum alloy according to the present invention has a content of 3.0 to 6.0%.
Ni, 1.0 to 3.5% Mg, 0.5 to 1.0% Mn, 0.05
Contains ~0.3% Cr and 0.05-0.50% Si. Ni forms a eutectic with Al, producing a fine eutectic compound (NiAl 3 ). The eutectic composition of Al−Ni is Al−
5.5%Ni, and if the Ni content exceeds 6%,
Coarse primary crystals are formed, which deteriorates superplastic performance and also reduces rollability. Furthermore, when the Ni content is less than 3.0%, the amount of eutectic compounds produced becomes too small, resulting in a decrease in superplasticity. Mg causes dynamic recrystallization, that is, recrystallization occurs simultaneously with plastic deformation of a superplastic alloy plate, constantly regenerating the structure before deformation, reducing work hardening, and facilitating superplastic deformation. demonstrate. Mg
If the content is less than 1.0%, this effect will be small, and if it is more than 3.5%, coarse β phase (Al-Mg compound) will crystallize in the center of the strip, which will not only deteriorate the superplastic performance. Makes cold rolling difficult.
Mn and Cr have the effect of refining and stabilizing crystal grains. Mn must be 1.0% or less, that is, within a range where it is almost dissolved in solid solution during casting. If Mn is present in an amount exceeding the solid solution amount, coarse crystallized substances will be produced during casting. This crystallized material not only does not contribute to superplastic performance, but also has a negative effect on cold rolling. Cr
If it is too large, coarse compounds with Mn are likely to be formed, and the finer refinement effect of Mn and Cr is lost, so its amount must be 0.3% or less. Mn
The lower limit of Cr content is 0.5% and Cr content, respectively.
The amount is 0.05%, and if the amount is less than this, the effect will not be fully expressed. The presence of 0.50% Si suppresses the segregation of Mg that occurs in the center of the strip.
Also, Si reacts with Mg to form an intermetallic compound (Mg2Si).
However, these particles are fine particles, which themselves contribute to the development of superplasticity. The amount of Si
These effects are small below 0.15%, and below 0.50
%, more Mg reacts with Si and Mg
effect is lost. Furthermore, impurities contained in general aluminum alloys are within the allowable range in normal alloys, that is, Fe 0.40% or less,
Preferably Cu is 0.20% or less, and Cu may be present as long as it is 0.10% or less. Therefore, as a base for the superplastic aluminum alloy according to the present invention, purity
It is preferable to use an aluminum base metal of 99.70% or more (JIS Class 1). To produce the superplastic aluminum alloy according to the present invention, first, a molten aluminum alloy having the above composition is continuously cast and rolled to directly produce a strip plate with a thickness of 3 to 20 mm, preferably 4 to 15 mm. do. Continuous casting and rolling methods are well known, and several methods such as the Hunter method and the 3C method are known. According to the typical method, a nozzle is placed between a mold made up of two rotating casting rolls, and the molten alloy is introduced into the mold through this nozzle and simultaneously rolled while being cooled in the mold. This produces a strip. Cooling water flows inside the casting roll,
Since the molten metal is normally cooled at a cooling rate of 100°C/second or more, fine crystals can be generated. Furthermore, according to this method, within the composition range used in the present invention, Mn and Cr are dissolved in solid solution and are hardly crystallized as intermetallic compounds. The thus obtained strip plate can be heated to 420-530℃.
Apply annealing treatment. Through this annealing, the eutectic compound (NiAl 3 ) crystallized during casting becomes at least partially granular, smoothing the sliding at the interface and improving superplastic performance. Furthermore, supersaturated solid solution Mn and Cr precipitate as uniform fine precipitates that are effective in inhibiting movement of recrystallized grain boundaries. When the annealing temperature is higher than 530°C, the eutectic compound (NiAl 3 ) becomes coarse and the Mn and Cr precipitates also become coarse, resulting in deterioration of superplastic performance. Also
At temperatures below 420°C, eutectic compounds (NiAl 3 )
is not sufficiently granulated, and precipitation of Mn and Cr is also insufficient. Suitable annealing temperature is 450-500
It is ℃. An appropriate annealing time is 6 to 24 hours. As with general heat treatment, the time is increased when the temperature is low, and the time is shortened when the temperature is high. The annealed strip is then cold rolled without hot rolling. If hot rolling is performed, the superplastic properties will be impaired. Cold rolling is carried out until a rolling reduction of 70% or more, preferably 80% or more is reached. If the rolling rate is smaller than this, sufficient superplastic performance cannot be imparted to the obtained alloy plate. Note that since work hardening progresses with cold rolling, rolling becomes progressively more difficult as the rolling rate increases. This difficulty can be overcome by performing intermediate annealing once or several times during the process. Intermediate annealing is 200-400℃, especially 250-350℃
It is preferable to do so. In other words, when a work-hardened rolled plate is annealed, it softens as the temperature rises, but
In particular, softening progresses significantly at 200 to 250°C.
Softening reaches almost saturation at 250°C, and even if heated to even higher temperatures, the improvement in softening degree is relatively small. At temperatures higher than 400°C, precipitates in the rolled sheet become coarse and inhibit superplastic performance. The time required for intermediate annealing is usually 1~
It is 4 hours. When intermediate annealing is performed, it is necessary to further cold-roll after the final intermediate annealing until the rolling reduction reaches 60% or more, particularly 65% or more. Even if the overall rolling reduction is 70% or more, if the rolling reduction after intermediate annealing is smaller than this, it is difficult to obtain a rolled sheet exhibiting excellent superplastic performance. As in the case without intermediate annealing, when there is intermediate annealing, the higher the rolling ratio after the final intermediate annealing, the better the superplastic performance of the rolled plate becomes. The superplastic aluminum alloy according to the present invention has a
It exhibits excellent superplastic performance at temperatures above ℃, especially above 400℃. Therefore, by utilizing this property, it can be formed by various processing methods applied to general superplastic materials. Typical examples are vacuum forming and bulge processing. The strain rate during processing is usually in the range of 1 x 10 -3 to 1 x 10 -1 /sec, and the uniaxial elongation is preferably in the range of 300 to 1000%. Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Example Molten alloy having the composition shown in Table 1 (as impurities)
(Containing 0.14% Fe, 0.01% Cu or less, and other impurities totaling 0.02% or less) was maintained at 750°C and sufficiently degassed. Using a driven mold consisting of two water-cooled rolls with a diameter of 30 cm, the above molten metal was continuously cast and rolled at a casting temperature of 700°C and a casting speed of 100 cm/min to a thickness of 6.0 to 6.0 cm.
A 6.8 mm strip was manufactured. This strip plate starts from 470
After annealing at 480°C for 12 hours, it was cold rolled into a rolled plate with a thickness of 1.0 mm. (Measurement of superplastic performance) A sample piece with a size of 150 x 150 mm was cut out from the above-mentioned rolled plate, and an expansion test was conducted using the mold shown in FIG. The pressure of the compressed air was gradually increased from 0.5 Kg/cm 2 G, and the height at which the sample piece broke (bulge height) was measured. The results are shown in Table 2.

【表】 * 比較例
[Table] * Comparative example

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において用いたバルヂ
試験用金型の模式的断面図である。Aは試験片を
金型に取付けた状態を示し、Bは試験片が圧空に
よりふくれた状態を示す。 1……下金型、2……上金型、3……試験片、
4……圧空導入管、l……バルヂ高さ。
FIG. 1 is a schematic cross-sectional view of a bulge test mold used in an example of the present invention. A shows the state in which the test piece is attached to the mold, and B shows the state in which the test piece is swollen by compressed air. 1...Lower mold, 2...Upper mold, 3...Test piece,
4...Compressed air introduction pipe, l...Bulge height.

Claims (1)

【特許請求の範囲】 1 3.0〜6.0%のNi,1.0〜3.5%のMg,0.5〜1.0
%のMn、0.05〜0.3%のCrおよび0.05〜0.50%の
Siを含み、残余は実質的に不純物とAlとからな
る超塑性アルミニウム合金。 2 3.0〜6.0%のNi、1.0〜3.5%のMg、0.5〜1.0
%のMn、0.05〜0.3%のCrおよび0.05〜0.50%の
Siを含み、残余は実質的に不純物とAlとからな
るアルミニウム合金溶湯を連続的に鋳造圧延して
厚さ3〜20mmの帯状板とし、これに420〜530℃の
温度で焼きなまし処理を施したのち、熱間圧延す
ることなく70%以上の圧延率に達するまで冷間圧
延を行なうことを特徴とする超塑性アルミニウム
合金板の製造法。
[Claims] 1 3.0-6.0% Ni, 1.0-3.5% Mg, 0.5-1.0
% Mn, 0.05-0.3% Cr and 0.05-0.50%
A superplastic aluminum alloy that contains Si, with the remainder essentially consisting of impurities and Al. 2 3.0-6.0% Ni, 1.0-3.5% Mg, 0.5-1.0
% Mn, 0.05-0.3% Cr and 0.05-0.50%
A molten aluminum alloy containing Si, with the remainder being essentially impurities and Al, was continuously cast and rolled into a strip plate with a thickness of 3 to 20 mm, which was then annealed at a temperature of 420 to 530°C. A method for producing a superplastic aluminum alloy sheet, which is then cold rolled without hot rolling until a rolling reduction of 70% or more is reached.
JP1254083A 1983-01-28 1983-01-28 Superplastic aluminum alloy and its manufacture Granted JPS59140345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254083A JPS59140345A (en) 1983-01-28 1983-01-28 Superplastic aluminum alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254083A JPS59140345A (en) 1983-01-28 1983-01-28 Superplastic aluminum alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS59140345A JPS59140345A (en) 1984-08-11
JPH045736B2 true JPH045736B2 (en) 1992-02-03

Family

ID=11808155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254083A Granted JPS59140345A (en) 1983-01-28 1983-01-28 Superplastic aluminum alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS59140345A (en)

Also Published As

Publication number Publication date
JPS59140345A (en) 1984-08-11

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
US4531977A (en) Process for producing superplastic aluminum alloy strips
JPS6357492B2 (en)
EP1737995A1 (en) Al-mg alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
US4619712A (en) Superplastic aluminum alloy strips and process for producing the same
JPH05195171A (en) Production of aluminum hard plate excellent in formability and low in earing rate
JP2004522585A (en) Manufacturing method of high strength aluminum alloy foil
US5019188A (en) Process for forming an aluminum alloy thin sheet by hot and cold rolling
JPS626740B2 (en)
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3161141B2 (en) Manufacturing method of aluminum alloy sheet
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JPS6357491B2 (en)
JPS6365402B2 (en)
JPH045736B2 (en)
JPH07116567B2 (en) Method for producing A1-Cu-Li-Zr superplastic plate
JPS6254183B2 (en)
JP2011144410A (en) METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET
JP4164206B2 (en) High-strength, high-formability aluminum alloy sheet with excellent recrystallization grain refinement during high-temperature annealing
JPH0585630B2 (en)
JPS5928554A (en) Ultra-plastic aluminum alloy and preparation thereof
JPS5911651B2 (en) Superplastic aluminum alloy and its manufacturing method
JPH09176805A (en) Production of aluminum fin material
JPH05222497A (en) Production of hard aluminum alloy sheet reduced in edge rate
JPH0463140B2 (en)