JPS5928554A - Ultra-plastic aluminum alloy and preparation thereof - Google Patents
Ultra-plastic aluminum alloy and preparation thereofInfo
- Publication number
- JPS5928554A JPS5928554A JP13666582A JP13666582A JPS5928554A JP S5928554 A JPS5928554 A JP S5928554A JP 13666582 A JP13666582 A JP 13666582A JP 13666582 A JP13666582 A JP 13666582A JP S5928554 A JPS5928554 A JP S5928554A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- aluminum alloy
- rolling
- superplastic
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は超塑性アルミニウム合金の製造法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a superplastic aluminum alloy.
詳しくは、本発明は、超塑性アルミニウム合金を工業的
に容易に製造する方法に関するもの外部から材料に機械
的力を加えると、材料に局部的変形(くびれ)が発生す
ることなく、数百係から千チに達する異常な伸びが得ら
れる金属や合金は、超塑性金属または超塑性合金として
知られている。アルミニウムの超塑性合金には、再結晶
微細粒超塑性合金と共晶微細組織超塑性合金の2種類が
知られている。再結晶微細粒超塑性合金は、冷間圧延さ
れた合金板を焼鈍することにより新たに生ずる再結晶粒
を、微細になるように制御したものである。また、共晶
微細組織超塑性合金は、鋳造時に微細になるように制御
した共晶(混合相)組織を、圧延にまで持ち来たしたも
のである。これらいずれの超塑性合金においても、その
組織は直径o、sミクロンないしそれ以下から最大10
ミクロンの微細な結晶粒からなり、円滑な粒界移動また
はすべりが起ることにより、材料の塑性変形が容易に行
なわれる。再結晶微細粒超塑性合金では、結晶粒の粗大
化を阻止するために特殊な元素を添加することが必要で
ある。多くの場合、このような効果を示す添加元素とし
ては、遷移元素が用いられている。また、超塑イテト合
金に引続き変形を生じさせると、結晶粒内で加工硬化が
起り、ついには塑性変形が田な(Lとなる。このような
加工硬化を低減させるため、上記元素に加えて更に鋼、
マグネシウム、亜鉛等を加えることも知られている。こ
れらの元素(−i、動的再−結晶、すなわち材料の変形
と同時に再結晶を起こし、常に変形前の材料の組織を再
生する作用を有する。Specifically, the present invention relates to a method for industrially easily manufacturing superplastic aluminum alloys. When mechanical force is applied to the material from the outside, the material can be deformed by several hundred moduli without causing local deformation (constriction). Metals and alloys that exhibit extraordinary elongation ranging from 1,000 cm to 1,000 cm are known as superplastic metals or superplastic alloys. Two types of aluminum superplastic alloys are known: recrystallized fine-grained superplastic alloys and eutectic microstructured superplastic alloys. A recrystallized fine-grained superplastic alloy is one in which recrystallized grains newly generated by annealing a cold-rolled alloy plate are controlled to be fine. In addition, a eutectic microstructure superplastic alloy is one in which the eutectic (mixed phase) structure is controlled to be fine during casting and is carried through to rolling. In any of these superplastic alloys, the structure ranges from a diameter of o, s microns or less to a maximum of 10
Composed of micron-sized crystal grains, smooth grain boundary movement or sliding occurs, allowing the material to easily undergo plastic deformation. In recrystallized fine-grained superplastic alloys, it is necessary to add special elements to prevent grain coarsening. In many cases, transition elements are used as additive elements that exhibit such effects. In addition, when a superplastic tetite alloy is continuously deformed, work hardening occurs within the crystal grains, and finally the plastic deformation becomes L. In order to reduce such work hardening, in addition to the above elements, Furthermore, steel,
It is also known to add magnesium, zinc, etc. These elements (-i) have the effect of dynamic recrystallization, that is, causing recrystallization simultaneously with the deformation of the material, and constantly regenerating the structure of the material before deformation.
本発明者らは、先に、マグネシウム、マンガンおよびク
ロムを含むアルミニウム合金浴湯を連続的に鋳造圧延し
て製造したアルミニウム合金板を、焼きなましたのち冷
間圧延することからなる、超塑性の著るしく向上したア
ルミニウム合金板の製造法を提案した(特願昭36−3
L萬gおよび!;b−//9ワOθ参照)本発明者らは
今般、上記の方法において合金中に少量の珪素を存在さ
せると、合金の特性が向上することを見出し、本発明を
達成した。The present inventors previously developed a method for producing superplastic properties by annealing and cold rolling an aluminum alloy sheet produced by continuously casting and rolling an aluminum alloy bath containing magnesium, manganese, and chromium. proposed a method for producing aluminum alloy sheets that was much improved
L million and! ;b-//9waOθ) The present inventors have now discovered that the presence of a small amount of silicon in the alloy in the above method improves the properties of the alloy, and has achieved the present invention.
すなわち本発明は、ダ、0〜1..0’%のマグネシウ
ム、0.q〜八へチのマンガン、o、o t −o、3
チのクロムおよび0.15%より多くかつ0.3チより
少ない量の珪素を含み、残部は実質的にアルミニウムよ
りなる超塑性アルミニウム合金、並びに上記組成の合金
溶湯を連続的に鋳造圧延して厚さ3〜20WMの帯状板
とし、これに1I20〜530cの温度で焼きなまし処
理を柳したのち前段冷間圧延と中間焼鈍を行ない、次い
で1.0%以上の圧延率に達するまで後段冷間圧延を行
なうことを特徴とする超塑性アルミニウム合金の製造法
を要旨とするものである。That is, the present invention provides Da, 0 to 1. .. 0'% magnesium, 0. q~eight manganese, o, o t -o, 3
A superplastic aluminum alloy containing more than 0.15% but less than 0.3% of silicon, and the remainder consisting essentially of aluminum, and a molten alloy having the above composition, which is continuously cast and rolled. A strip plate with a thickness of 3 to 20 WM is made, and after annealing at a temperature of 1I20 to 530 C, it is subjected to first-stage cold rolling and intermediate annealing, and then second-stage cold rolling until a rolling reduction of 1.0% or more is reached. The gist of this paper is a method for producing a superplastic aluminum alloy, which is characterized by carrying out the following steps.
本発明について更に詳細に説明すると、本発明に係る超
塑性アルミニウム合金は、タ、O−乙、θ918(重量
%、本明細書において合金組成はすべて重fA%である
)のマグネシウム、O0j〜/、S襲のマンガン、O1
θ5〜0.3%のクロムおよび0.15係より多くかつ
0.に%より少ない量の珪素を含み、残部は実質的にア
ルミニウムよりなっている。マグネシウムは、前述の如
く、動的再結晶ないし回復を牛じさせるのに有効な元素
である。マグネシウムは多いほど効果的であり、少くと
もり、θ%t−j必要である。しかし、6.θチよりも
多くなると、粗大化したβ相(Mg−Al化合物)が粒
界に晶出し、冷間甲延を困難にする。To explain the present invention in more detail, the superplastic aluminum alloy according to the present invention is composed of magnesium, O0j~/ , S attack manganese, O1
θ5~0.3% chromium and more than 0.15% and 0. % silicon, with the remainder consisting essentially of aluminum. As mentioned above, magnesium is an effective element for promoting dynamic recrystallization or recovery. The larger the amount of magnesium, the more effective it is, and at least θ%tj is necessary. However, 6. When the amount exceeds θ, coarsened β phase (Mg-Al compound) crystallizes at grain boundaries, making cold rolling difficult.
マンガンとクロムとは再結晶粒の粗大化を阻止する作用
を有する。マンガンはへS%以下、すなわち鋳造時にほ
ぼ固溶しイυる範囲で添加する。Manganese and chromium have the effect of inhibiting coarsening of recrystallized grains. Manganese is added in an amount of S% or less, that is, in a range where it is almost dissolved in solid solution during casting.
しかし0.17%未満ではその添加効果は少ない。However, if it is less than 0.17%, the effect of its addition is small.
鋳造時に固溶し得る以上のマンガンを添加すると、鋳造
時に粗大な晶出物を生ずる。この晶出物id再結晶粒の
微細化に寄与しないばかりでなく、冷間圧延に悪影響を
及はす。同様にクロムも、その添加量が多くなると、マ
ンガンと粗大な化合物をつくり易くなり、マンガンおよ
びクロムの微細化効果を失なわせるので、その上限は0
.3%、好ましくは0.2チである。また、その添加量
が0.OS係未満では添加効果が少ない。If more manganese is added than can be solid-dissolved during casting, coarse crystallized substances will be produced during casting. This crystallized material id not only does not contribute to the refinement of recrystallized grains, but also has an adverse effect on cold rolling. Similarly, when chromium is added in a large amount, it becomes easier to form coarse compounds with manganese, which causes the refinement effect of manganese and chromium to be lost, so the upper limit is 0.
.. 3%, preferably 0.2%. Moreover, the amount added is 0. If it is less than the OS level, the effect of addition is small.
珪素はアルミニウムの不可避不純物であるが、通常の展
伸用に用いられている地金中に存在している量では、超
塑性に寄与しない。しかし、その存在量がある程度以上
になると、マグネシウムと同じく動的再結晶に寄与する
。また、珪素はマグネシウムと反応して金属間化合物(
MgtSl) を形成するが、このものは微細な粒子
であり、これ自体超塑性の発現に寄与する。Silicon is an inevitable impurity in aluminum, but the amount present in the base metal used for normal drawing does not contribute to superplasticity. However, when its abundance exceeds a certain level, it contributes to dynamic recrystallization like magnesium. In addition, silicon reacts with magnesium to form an intermetallic compound (
MgtSl) is formed in the form of fine particles, which itself contributes to the development of superplasticity.
さらに珪素は鋳造時の溶湯の流動性をよくする効果もあ
る。このような効果を発揮させるため、珪素は溶湯中に
θ:/!r%より多くかつ0.!; %より少ない量と
なるように存在させる。珪素の存在量が多過ぎると、鋳
造によシ得られる帯状板の表面に偏析がおこりやすい。Furthermore, silicon has the effect of improving the fluidity of molten metal during casting. In order to achieve this effect, silicon is added to the molten metal θ:/! more than r% and 0. ! ; be present in an amount less than %. If the amount of silicon present is too large, segregation tends to occur on the surface of the strip plate obtained by casting.
珪素の好適な存在針は0.2に−0,グ左係である。The preferred presence of silicon is 0.2 to -0.
本発明に係る超塑性アルミニウム合金には、さらに上記
の添加元素と作用してその効果を低減させることのない
他の遷移元素、例えばジルコニウム、を加えてもよ・い
。また常法によりチタンおよび硼素を微量添加して結晶
の微細化を図ってもよい。さらに一般のアルミニウム合
金中に含有される鉄、銅等の不純物については、通常の
合金中に許容される範囲、すなわち鉄0.70%以下、
特に0.20係1臥下、銅0./θ係以下であれば、存
在していても差しつかえない。The superplastic aluminum alloy according to the present invention may further contain other transition elements, such as zirconium, which interact with the above additive elements and do not reduce their effects. Further, small amounts of titanium and boron may be added by a conventional method to make the crystals finer. Furthermore, impurities such as iron and copper contained in general aluminum alloys are within the allowable range for normal alloys, that is, 0.70% iron or less.
Particularly 0.20 ratio 1 under, copper 0. /θ or less, there is no problem even if it exists.
従って本発明に係る超塑性アルミニウム合金を製造する
には、純度q q、q o%以上(JIS /種)の
アルミニウムに、マグネシウム、マンガン、クロムおよ
び珪素を添加して、所定の組成の合金溶湯を調製するの
が好ましい。次いで、との溶湯を、連続的に鋳造圧延し
て、直接に3〜20mTn、好ましくはダ〜/!;mm
の厚さの帯状板を製造する。連続鋳造圧延法は公知であ
り、ハンター法、30法々といくつかの方法が知られて
いる。これらの連続鋳造圧・処決によれば、2個の回転
する鋳造用ロールで構成される鋳型間にノズルを配置し
、このノズルを経て合金溶湯を鋳型内に導入し、鋳型で
冷却しながら同時に圧延することにより帯状板が製造さ
れる。この方法によれば、鋳造時にマンガンおよびクロ
ムの固溶量が増加するため、前記したマンガンおよびク
ロムの添加量範囲内ではマンガン、り法では、冷間圧延
中に加工硬化が進行するので、圧延率が高くなると圧延
が漸次困難になる。従って、冷間圧延を前段と後段とに
分けて行ない、中間で焼鈍を行なうのが好寸しい。中間
焼鈍により、前段の冷間圧延中に生じた加工硬化が除去
されて、後段の冷間圧延が容易になる。中間焼鈍におい
ては、焼鈍温度の上昇と共に軟化が進行するが、特に2
00’Q−2!;0υにおいて軟化が著るしく進行する
。軟化は2SθCでほぼ飽和に達し、それ以上の高温に
加熱しても軟化度の向上は比較的小さい。捷た、過度に
高温にすると、合金板中の析出物が粗大化して製品の超
塑性特性が損なわれる。従って中間焼鈍は通常、2に0
−1IOθCで行なうのが好ましい。Therefore, in order to produce the superplastic aluminum alloy according to the present invention, magnesium, manganese, chromium, and silicon are added to aluminum with a purity of q q, q 0% or more (JIS / species), and a molten alloy of a predetermined composition is prepared. It is preferable to prepare Then, the molten metal is continuously cast and rolled to directly reach 3 to 20 mTn, preferably da~/! ;mm
Manufacture strips with a thickness of . Continuous casting and rolling methods are well known, and several methods such as the Hunter method and the 30 method are known. According to these continuous casting pressures and treatments, a nozzle is placed between a mold made up of two rotating casting rolls, and the molten alloy is introduced into the mold through this nozzle, and is then cooled in the mold. A strip plate is manufactured by rolling at the same time. According to this method, the solid solution amount of manganese and chromium increases during casting, so that manganese can be added within the range of manganese and chromium added. As the rate increases, rolling becomes progressively more difficult. Therefore, it is preferable to perform cold rolling separately in the first stage and second stage, and perform annealing in the middle. The intermediate annealing removes the work hardening that occurred during the cold rolling in the previous stage, making the cold rolling in the latter stage easier. In intermediate annealing, softening progresses as the annealing temperature increases, but especially at 2
00'Q-2! ; Softening progresses significantly at 0υ. Softening reaches almost saturation at 2SθC, and even if heated to a higher temperature, the improvement in the degree of softening is relatively small. If the temperature is too high, the precipitates in the alloy plate will become coarse and the superplastic properties of the product will be impaired. Therefore, intermediate annealing is usually
It is preferable to carry out at -1IOθC.
焼鈍時間も短い方が好ましく、通常7〜7時間である。The annealing time is also preferably short, and is usually 7 to 7 hours.
中間簗鈍を行なう場合には、後段の冷間圧延は圧延率が
60%以上に達するまで行なう。後段の圧延率がこれよ
りも小さいと、優れた超塑性特性を示す圧延板を得るの
が困難である。後段の好ましい圧延率はt、3%以上で
あり、一般に圧延率が高いほど圧延板の超塑性特性は良
好となる。しかし圧延率が高くkると再び加エイ便化に
より圧延が困幡となるので、圧延板に電求される超塑性
特性全考慮して適当々後段圧延率を決定する。一般に後
段圧延率はgo係以下が適尚である。When intermediate dulling is performed, the subsequent cold rolling is performed until the rolling reduction reaches 60% or more. If the rolling ratio in the subsequent stage is smaller than this, it is difficult to obtain a rolled sheet exhibiting excellent superplastic properties. The preferred rolling rate in the latter stage is t, 3% or more, and generally the higher the rolling rate, the better the superplastic properties of the rolled plate. However, if the rolling rate is high, rolling becomes difficult again due to the increased stress, so the subsequent rolling rate is appropriately determined in consideration of all the superplastic properties required of the rolled plate. In general, it is appropriate that the rolling rate in the second stage is less than the go coefficient.
全体の圧延率をK、後段の圧延率に2とすると前段の圧
延率に1は下記式で与えられる。When the overall rolling rate is K and the rolling rate of the latter stage is 2, the rolling rate of the first stage is given by the following formula.
通常は前段圧延率は30%以上である。前段圧延率がこ
れよりも小さいと、中間焼鈍の効果が小さい。好適な前
段圧延率は3O−40%である。1111段圧延率がこ
れよりも大きくなるときには、前段圧延の途中で付加的
な中間焼鈍を施して加工硬化を除去したのち、さらに前
段圧延を行なうのが好寸しい。前段、後段ともに圧延自
体は常法によシ行なわれる。Usually, the rolling reduction in the first stage is 30% or more. If the pre-rolling ratio is smaller than this, the effect of intermediate annealing will be small. A suitable first stage rolling ratio is 3O-40%. When the 1111-stage rolling ratio is higher than this, it is preferable to perform additional intermediate annealing during the first stage rolling to remove work hardening, and then further perform the first stage rolling. The rolling itself in both the first and second stages is carried out in a conventional manner.
本発明に係る超塑性アルミニウム合金は、300(以上
、特にqoo’6以上の温度で優れた超塑性特性をπす
。従って、この特性を利用して、一般の超塑性材料に適
用される各種の加工法により成形加工することができる
。その代表的なものは、雌型を使用し、流体圧により材
料を雌型に密着させる真空成形およびバルヂ加工である
。加工時のひずみ速度は通常/×10’″3〜t×10
−”7秒の範囲で、また単軸伸びは100〜500%の
範囲で行なうのが好ましい。The superplastic aluminum alloy according to the present invention exhibits excellent superplastic properties at temperatures of 300 π or higher, particularly qoo'6 or higher. Therefore, by utilizing this property, various types of superplastic materials applied to general superplastic materials can be used. Typical examples include vacuum forming and bulge processing, in which a female mold is used and the material is brought into close contact with the female mold using fluid pressure.The strain rate during processing is usually / ×10'″3~t×10
- It is preferable to carry out the elongation in the range of 7 seconds and the uniaxial elongation in the range of 100 to 500%.
次に実施例によシ本発明を更に具体的に説明するが、本
発明はその要旨を超えない限り、以下の実施例に限定さ
れるものではない。Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.
実施例/
表/に示す組成の合金(不純物として鉄o、iダチ、銅
θ、0 / %以下を含み、他の不純物は合計でθ、θ
2チ以下である)をガス炉で溶解し、溶湯温度をりso
Cとして十分に脱ガスした。この溶湯にチタンS%、硼
素/q6を含むアルミニウム母合金を、チタン含有量が
0.03%となるように添加した。直径30Cmのコ個
の水冷ロールで構成された駆動鋳型を用い、上記の溶湯
を730Cで/θ00n/分の鋳造速度で連続的に鋳造
圧延して、厚さ4.Amの帯状板を製造した。Example / Alloy with the composition shown in Table / (contains less than 0% of iron, i, copper θ, 0 / % as impurities, other impurities total θ, θ
2 inches or less) in a gas furnace, and the temperature of the molten metal is so
It was fully degassed as C. An aluminum master alloy containing S% titanium and boron/q6 was added to this molten metal so that the titanium content was 0.03%. Using a driving mold consisting of water-cooled rolls with a diameter of 30 cm, the above molten metal was continuously cast and rolled at 730 C and a casting speed of /θ00 n/min to a thickness of 4.0 cm. A strip of Am was manufactured.
この帯状板を1I70〜qgθCで7:1時間焼きなま
したのち、冷間圧延して厚さ3.3喘の合金板とした(
圧延率50係)。これを35Oυで2時間中間焼鈍した
のち、再び冷間圧延にかけ厚さ八〇wn(全圧延率ざり
係、後段圧延率70係)まで圧延した。このようにして
製造した圧延板から、JIB Z 22θ/「金属側斜
引張試験片」に準拠して引張り試験片(平行部長さ2!
間、平行部巾/ Om)を切り出した。この試験片につ
l、JIB Zユコttt 「引張り試験法」に準拠し
て、標点間距離23mn、試験温度5OOCおよびS2
θC1初期の歪速度/、3 X /θ−3/秒で引張り
試験を行なった。結果を表コに示す。This strip plate was annealed at 1I70~qgθC for 7:1 hours, and then cold rolled into an alloy plate with a thickness of 3.3mm (
rolling ratio 50). This was intermediately annealed for 2 hours at 35Oυ, and then cold rolled again to a thickness of 80wn (total rolling ratio: 70%). A tensile test piece (parallel length 2!
The parallel part width/Om) was cut out. This test piece was tested in accordance with the JIB Zyukottt "Tensile Test Method" with a gauge length of 23 mm, a test temperature of 5OOC, and S2
A tensile test was conducted at an initial strain rate of θC1/, 3X/θ-3/sec. The results are shown in the table below.
Claims (1)
〜/、5%のマンガン、θ、θ夕〜0.3係のクロムお
よびθ、15チよシ多くかつ0.5%より少ない量の珪
素を含み、残部は実質的にアルミニウムよりなる超塑性
アルミニウム合金。 (2) +’、θ〜4.0チのマグネシウム、0.’
l−/、、!iチのマンガン、O,O!r〜θ、3チの
クロムおよびo、ls %より多くかつ0.左%より少
ない量の珪素を含むアルミニウム合金溶湯を、連続的に
鋳造圧延して厚さ3〜2ONNの帯状板とし、これにl
IIO2−130Cの温度で焼きな 3まし処理を施
したのち前段冷間圧延と中間焼鈍を行ない、次いで60
チ以上の圧延率に達するまで後段冷間圧延を行なうこと
を特徴とする超塑性アルミニウム合金の製造法。 うことを特徴とする特許請求の範囲第一項記載の製造法
。 (4)中間焼鈍をコSθ〜ダ。ocで行なうことを特徴
とする特許請求の範囲第一項または第3項記載の製造法
。 (5)純度タデ、7%以上のアルミニウムにマグネシウ
ム、マンガン、クロムおよび珪素を添加して、り、0〜
6.0%のマグネシウム、o、l/、〜/、!r%のマ
ンガン、O,OS〜0.3%のクロムおよび0./ 、
!!−%より多くがっo、、t%より少ない量の珪素を
含むアルミニウム合金溶湯を調製し、これを鋳造圧延す
ることを特徴とする特許請求の範囲第一項ないし第9項
のいずれかに記載の製造法。[Claims] ro < z, θ ~ 4.0 ti magnesium, o, lI
A superplastic material containing up to 5% manganese, 0.3% chromium and 0.3% chromium and 15% silicon in an amount less than 0.5%, the remainder consisting essentially of aluminium. Aluminum alloy. (2) +', θ~4.0mm magnesium, 0. '
l-/,,! Manganese, O, O! r~θ, 3% chromium and o,ls more than % and 0. A molten aluminum alloy containing silicon in an amount less than
After annealing at a temperature of IIO2-130C, pre-stage cold rolling and intermediate annealing were performed, followed by 60°C.
1. A method for producing a superplastic aluminum alloy, which comprises performing post-stage cold rolling until a rolling reduction of 1 or more is reached. A manufacturing method according to claim 1, characterized in that: (4) Intermediate annealing Sθ~da. The manufacturing method according to claim 1 or 3, characterized in that the manufacturing method is carried out in oc. (5) Pure knotweed, made by adding magnesium, manganese, chromium and silicon to aluminum with a purity of 7% or more.
6.0% magnesium, o, l/, ~/,! r% manganese, O,OS~0.3% chromium and 0. / ,
! ! According to any one of claims 1 to 9, the method comprises preparing a molten aluminum alloy containing silicon in an amount of more than -%, less than t%, and casting and rolling the molten aluminum alloy. Manufacturing method described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13666582A JPS5928554A (en) | 1982-08-05 | 1982-08-05 | Ultra-plastic aluminum alloy and preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13666582A JPS5928554A (en) | 1982-08-05 | 1982-08-05 | Ultra-plastic aluminum alloy and preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5928554A true JPS5928554A (en) | 1984-02-15 |
JPH0329860B2 JPH0329860B2 (en) | 1991-04-25 |
Family
ID=15180627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13666582A Granted JPS5928554A (en) | 1982-08-05 | 1982-08-05 | Ultra-plastic aluminum alloy and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5928554A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5540791A (en) * | 1993-07-12 | 1996-07-30 | Sky Aluminum Co., Ltd. | Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same |
US6261391B1 (en) | 1994-05-11 | 2001-07-17 | Honda Giken Kogyo Kabushiki Kaisha | Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same |
US7789975B2 (en) | 2003-04-18 | 2010-09-07 | Versitech Limited | Shape memory material and method of making the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828310A (en) * | 1971-07-20 | 1973-04-14 |
-
1982
- 1982-08-05 JP JP13666582A patent/JPS5928554A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828310A (en) * | 1971-07-20 | 1973-04-14 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5540791A (en) * | 1993-07-12 | 1996-07-30 | Sky Aluminum Co., Ltd. | Preformable aluminum-alloy rolled sheet adapted for superplastic forming and method for producing the same |
US6261391B1 (en) | 1994-05-11 | 2001-07-17 | Honda Giken Kogyo Kabushiki Kaisha | Aluminum alloy plate for super plastic molding capable of cold pre-molding, and production method for the same |
US7789975B2 (en) | 2003-04-18 | 2010-09-07 | Versitech Limited | Shape memory material and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0329860B2 (en) | 1991-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100509648B1 (en) | High formability the Magnesium alloy and manufacture method of the Magnesium alloy product thereof | |
JPS5822363A (en) | Preparation of ultra-plastic aluminum alloy plate | |
JPS62284045A (en) | Superplastic molding of aluminum alloy | |
JPS6357492B2 (en) | ||
JPS608300B2 (en) | Manufacturing method of metal products | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JP2008308703A (en) | Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material | |
JP4099395B2 (en) | Method for producing high-strength aluminum alloy foil | |
US4619712A (en) | Superplastic aluminum alloy strips and process for producing the same | |
JPS63235454A (en) | Prodution of flat rolled product of aluminum base alloy | |
JPS5928554A (en) | Ultra-plastic aluminum alloy and preparation thereof | |
JP2001131666A (en) | Al-Mn-Mg ALLOY PLATE FOR FORMING CASE, AND ITS MANUFACTURING METHOD | |
KR101170453B1 (en) | The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip | |
JPS6357491B2 (en) | ||
JPS6365402B2 (en) | ||
JPH09272938A (en) | Aluminum foil and its production | |
JPH10259464A (en) | Production of aluminum alloy sheet for forming | |
JPH07116567B2 (en) | Method for producing A1-Cu-Li-Zr superplastic plate | |
JPS63125645A (en) | Production of aluminum alloy material having fine crystal grain | |
JPH0585630B2 (en) | ||
JPH0978168A (en) | Aluminum alloy sheet | |
JPS5911651B2 (en) | Superplastic aluminum alloy and its manufacturing method | |
JPS63161148A (en) | Manufacture of aluminum foil excellent in strength and workability | |
JPS6320437A (en) | Aluminum alloy sheet having superior press workability and its manufacture | |
JPH0534423B2 (en) |