JPH045727B2 - - Google Patents

Info

Publication number
JPH045727B2
JPH045727B2 JP9906988A JP9906988A JPH045727B2 JP H045727 B2 JPH045727 B2 JP H045727B2 JP 9906988 A JP9906988 A JP 9906988A JP 9906988 A JP9906988 A JP 9906988A JP H045727 B2 JPH045727 B2 JP H045727B2
Authority
JP
Japan
Prior art keywords
cold rolling
rolling
annealing
longitudinal direction
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9906988A
Other languages
Japanese (ja)
Other versions
JPH01272718A (en
Inventor
Yozo Suga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9906988A priority Critical patent/JPH01272718A/en
Priority to EP88119808A priority patent/EP0318051B1/en
Priority to US07/276,856 priority patent/US4997493A/en
Priority to DE3853871T priority patent/DE3853871T2/en
Publication of JPH01272718A publication Critical patent/JPH01272718A/en
Publication of JPH045727B2 publication Critical patent/JPH045727B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鋼板(ストリツプ)長手方向ならび
に長手方向に直角な方向に磁化容易軸〈001〉方
位を有するとともに圧延面に{100}面が現れて
いる(ミラー指数で{100}〈001〉)結晶粒から構
成される、所謂二方向性電磁鋼板の製造法に関す
る。 (従来の技術) 従来、代表的には米国特許第1965559号明細書
記載の方法で、圧延方向(鋼板(ストリツプ)長
手方向)に特に磁化され易く(磁束密度が高い)、
鉄損値の低い一方向性電磁鋼板が製造されてい
る。この一方向性電磁鋼板は、圧延面に{100}
面が現れ、圧延方向(鋼板長手方向)にのみ磁化
容易軸である〈001〉方位を有する(ミラ−指数
で{100}〈001〉)結晶粒から構成されている。 圧延方向にのみ磁気特性が優れている一方向性
電磁鋼板(たとえば、圧延方向におけるB10値:
1.92Tesla,圧延方向に直角な方向におけるB10
値:1.45Tesla)に比し、二方向性電磁鋼板は、
鋼板(ストリツプ)長手方向ならびに鋼板(スト
リツプ)長手方向に直角な方向にともに磁化容易
軸を有し、二方向で磁気特性が優れているから、
特に大型回転機用の鉄芯材料として用いると有利
である。 一方、小型回転機の分野では、一般的に、磁化
容易軸に高度に集積していない冷間圧延無方向電
磁鋼板が用いられているが、この分野において
も、二方向性電磁鋼板を用いると、機器の小型
化、効率の面で極めて有効である。 上述の如く、二方向性電磁鋼板は、一方向性電
磁鋼板に比し優れた磁気特性を有している処か
ら、その製品化が待望されてきたにも拘わらず今
日まで工業製品として生産されるに至つていな
い。 実験室規模では、次の2種類の二方向性電磁鋼
板の製造方法が発表されているが、何れも工業的
規模の製造プロセスとしては問題がある。 先行技術の1つは、特公昭37−7110号公報に開
示されている技術である。 この技術は、極性ガス、たとえば硫化水素を含
む雰囲気中で高温焼鈍を材料に施し、{100}
〈001〉方位粒を選択的に成させる方法である。 しかしながら、この技術においては、鋼板表面
における雰囲気を厳密に制御する必要があり、大
量生産プロセスとしては不適である。 先行技術の他の1つは、田口悟等によつて特公
昭35−2657号公報に開示されている方法である。
この技術は、一方向に冷間圧延を行つた後、前記
圧延方向に直角な方向に冷間圧延を行う、所謂
「交叉冷間圧延法」である。この技術においては、
「交叉冷間圧延法」として、最初の冷間圧延を行
つた後にストリツプを一定の長さに切断して鋼板
(シート)とし、この状態で最初の冷間圧延方向
に交叉する方向に2回目の冷間圧延を行うか或
は、切断後のシートを、最初の冷間圧延を行うと
きのストリツプの両側縁端相互が衝合部となるよ
うに90°回転して溶接してストリツプとなし、第
2回目の冷間圧延を連続的に行うという手段を採
る。 しかしながら、これらの技術によるときは、製
造者側にとつては、工程が煩雑であり、均一な形
状の鋼板を得ることが困難であるという問題があ
る。 一方、使用者側にとつては、シートの形態で材
料が供給されるときは、打ち抜き加工作業が極め
て非能率であり、ストリツプコイルの形態で材料
が供給される場合、一定間隔で溶接箇所があり、
その部位の磁性が不良であるため、その部位を除
去する手間が必要となる。 上述の理由で、従来技術による二方向性電磁鋼
板は、工業製品として全く使用されていない。 上に述べた問題に加えて、特公昭35−2657号公
報に開示されている技術には、工業的に主流にな
り得ない大きな理由がある。即ち、この交叉冷間
圧延法によれば、比較的高い磁化特性(B10値)
が得られるけれども、その製造方法の煩雑さに起
因するコスト高に見合うだけの優れた磁気特性を
有しないため、従来の一方向性電磁鋼板に対抗で
きない。特に、最近の一方向性電磁鋼板の磁化特
性(B10値)は、特公昭40−15644号公報、特公
昭51−13469号公報に開示された技術が発明され
て以来急速に進歩し、B10≧1.89TeslaがJISでも
規格され、B10値として1.92Tesla前後の製品が市
販されている。 かかる状況下で、二方向性電磁鋼板において
も、前記一方向性電磁鋼板に匹敵する磁化特性を
有することが必要である。二方向性電磁鋼板の磁
化特性を向上せしめる手段として、特公昭38−
8213号公報に、熱間圧延材を焼鈍した後に相互に
直交する方向に冷間圧延する方法が提案された
が、この方法によつても得られる磁化特性は、必
ずしも十分なものとは言えない。 鉄芯材料としては、上記磁化特性の他に鉄損特
性が優れている。(鉄損値W/Kgが小さい)こと
が必要である。鉄損特性を良くするためには、
B10値を高くすること、製品板厚を薄くすること
が特に有効であり、一方向性電磁鋼板の分野では
0.23mm厚さまでJISによつて規格化されている。
然るに、このような板厚の薄い鋼板で{100}
〈001〉方位粒を得ることは極めて困難であり、特
公昭35−2657号公報、特公昭38−8213号公報に開
示された何れのプロセスにおいても、最終板厚は
0.30mmが限度である。そこで、改良技術として、
特公昭35−17208号公報に開示されている技術が
提案されたが、この技術においては、冷間圧延と
焼鈍が追加され、製造コストを著しく高いものに
している。加えて、得られる製品の磁化特性
(B10値)は1.85Tesla以下であり、最終板厚も
0.294mm止まりである。 (発明が解決しようとする課題) 本発明は、ストリツプの形態で一貫して製造で
きかつ、製品の磁化特性としてストリツプ長さ方
向に均一であり、即ち溶接部の存在に起因する磁
性の不均一部がない、厚みの均一性に優れるとと
もに形状(平坦さ)の優れた、鉄芯への加工に際
し能率良く連続抜き打ち加工が可能な、高い磁気
特性を有する二方向性電磁鋼板を製造する方法を
提供することを目的としてなされた。また、得ら
れる製品板厚として、0.30mm未満の薄いものであ
つて、しかも磁束密度の高いものを製造し得る方
法を提供することを目的とする。 (課題を解決するための手段) 本発明の特徴とする処は、 (1) 重量で、Si:0.8〜5.2%、酸可溶性Al:0.008
〜0.048%、残部:実質的にFeからなる鋼板に、
先ず、素材長手方向に40〜80%の圧下率を適用
する冷間圧延を施し、次いで前記冷間圧延にお
ける圧延方向に交叉する方向に30〜70%の圧下
率を適用するクロス冷間圧延を行いさらに、最
初の素材長手方向冷間圧延と同一方向に5〜33
%の圧下率を適用する冷間圧延を行つた後、
750〜1000℃の温度域で短時間焼鈍を施した後、
900〜1200℃の温度域で高温仕上焼鈍すること
を特徴とする長手方向に均一な磁気特性を有す
る高磁束密度二方向性電磁鋼板の製造法。 (2) 重量で、Si:0.8〜5.2%、酸可溶性Al:0.008
〜0.048%、残部:実質的にFeからなる鋼板に
750〜1200℃の温度域で30秒〜30分間の焼鈍を
施した後、先ず、素材長手方向に40〜80%の圧
下率を適用する冷間圧延を施し、次いで前記冷
間圧延における圧延方向に交叉する方向に30〜
70%の圧下率を適用するクロス冷間圧延を行い
さらに、最初の素材長手方向冷間圧延と同一方
向に5〜33%の圧下率を適用する冷間圧延を行
つた後、750〜1000℃の温度域で短時間焼鈍を
施した後、900〜1200℃の温度域で高温仕上げ
焼鈍することを特徴とする長手方向に均一な磁
気特性を有する高磁束密度二方向性電磁鋼板の
製造法。 (3) 冷間圧延完了後、750〜1000℃の温度域で短
時間焼鈍を施す過程または、900〜1200℃の温
度域で高温仕上焼鈍する過程におけるに二次再
結晶発現以前の昇温段階で、材料のN含有量の
増分がトータルN量表示で0.002〜0.06%とな
る如く鋼板(ストリツプ)を窒化処理する特許
請求の範囲第1項或は第2項記載の方法。 にある。 以下に、本発明を詳細に説明する。 本発明のプロセスにおいて、第1回目の冷間圧
延後に材料をストリツプの形態のままで第1回目
の冷間圧延方向に直角な方向に冷間圧延する手段
として、特公昭62−45007号公報に開示されてい
るクロス冷間圧延方法がある。この冷間圧延方法
によれば、比較的高い磁化特性(B10の値で表示
されるTesla)が得られるものの圧延後の材料
(ストリツプ)形状に問題があり。二方向性電磁
鋼板を製造するための冷間圧延法として実用化さ
れるに至つていない。即ち、第一に、この冷間圧
延方式では材料が間歇的に圧延されるから、その
各パス毎の境目における板厚が厚目になり、材料
長手方向に板厚不均一が生じ、積層鉄芯素材とし
ては問題がある。 第二に、材料幅方向応力をかけることにより、
材料が変形された部分と未だ変形されていない部
分の境目に材料平面内に曲げ応力が生じ、材料側
縁端にうねり(耳波)が生起し、積層鉄芯材料と
して形状(平坦さ)を確保することができない。 発明者等は、前記クロス冷間圧延後、その圧延
方向に直角な方向即ち、最初の冷間圧延方向と同
一方向に圧延ロール形式の連続圧延処理を行い、
しかもその圧下率を5〜33%に限定することによ
つて、材料長手方向における板厚を均一にできる
とともに圧延後の材料(ストリツプ)の形状(平
坦さ)を良好ならしめかつ、最終製品に得られる
磁束密度を改善できることを見出した。 C:0.053%,Si:3.2%、Mn:0.080%、S:
0.023%、Al:0.033%、N:0.0075%、残部:実
質的にFeからなる2.3mm厚さの熱延板に、1100℃
の温度で2分間の焼鈍を施した後、熱間圧延と同
一方向に1.1mm厚さまで圧延ロール形式の(たと
えば、通常の四段冷間圧延機による)連続冷間圧
延を行いストリツプコイルとし、次に、特公昭62
−45007号公報に開示されている手段で前記第1
回目の冷間圧延方向に直角な方向に0.55mm厚さま
で冷間圧延(クロス圧延)しストリツプコイルと
した。さらに、第1回目の冷間圧延方向と同一方
向に、第1回目の冷間圧延と同様の圧延ロール形
式の圧延機により、5〜50%の圧下率を適用する
連続冷間圧延を行つた。 尚、比較材として、前記5〜50%の圧下率を適
用する冷間圧延を行わない材料も冷間圧延後の処
理工程を消化した。 これら冷延板に、湿水素雰囲気中、820℃×5
分間の脱炭焼鈍を施した後MgOを塗布し、1200
℃×20時間の高温仕上焼鈍を施した。 得られた製品の磁束密度、長手方向における板
厚のバラツキ、形状(平坦さ)を、第1図に示
す。第1図から明らかな如く、クロス冷間圧延ま
まで後工程を消化したものは、製品長手方向にお
ける板厚のバラツキが大きくまた、製品両側縁部
のうねり(耳波)が消失しておらず商品とはなら
なかつた。 これに比し、本発明になるクロス冷間圧延後に
5%以上の、第1回目の冷間圧延方向と同一方向
の冷間圧延を施したものは、前記問題は全くな
い。しかし、クロス冷間圧延後の冷間圧延におい
て、33%を超える圧下率を適用すると、磁束密度
が急激に劣化していることが判る。 次に、本発明の1つの特徴は、クロス冷間圧延
およびそれに次ぐ第1回目の冷間圧延と同一方向
の5〜33%の圧下率を適用する冷間圧延を行つた
後、仕上焼鈍過程における{100}〈001〉方位粒
(二次再結晶)発現までの間において、鋼板表面
から一定量の窒素を侵入させることにより、
{100}〈001〉方位粒の優先成長を促し、高い磁束
密度を有する二方向性電磁鋼板を得るようにした
点にある。 最終冷間圧延後仕上焼鈍過程における{100}
〈001〉方位粒の発現までの間で鋼板表面から一定
量の窒素を侵入させる手段は、特に限定しない。
たとえば、最終冷間圧延後に行なわれる脱炭を目
的とした短時間焼鈍中に、窒化能のある雰囲気下
に鋼板を窒化処理する方法或は仕上焼鈍過程にお
ける{100}〈001〉方位粒の発現までの鋼板の昇
温を、窒化能のある雰囲気下に行う方法を適用す
ることができる。 前記仕上焼鈍の対象がストリツプコイルであつ
て、ストリツプコイルが大型である場合には、ス
トリツプの層間に窒素が侵入し難く鋼板が窒化が
不十分となる恐れがあるから、ストリツプの層間
隙を一定量以上確保するか或は仕上焼鈍に先立つ
てストリツプ表面に塗布する焼鈍分離剤中に、仕
上焼鈍過程で窒素を放出する金属窒化物、アンモ
ニア化物を添加する等の措置を採ることが望まし
い。 本発明において、鋼板中に侵入させた窒素は、
おそらくAlN,Si3N4、(Al,Si)N等の微細析
出物として{100}〈001〉方位粒結晶粒の優先成
長を促進しているものと考えられるが、その真は
明らかでない。 本発明を特徴づける鋼板中への窒素増量処理
は、前記脱炭焼鈍中或は脱炭焼鈍後の追加焼鈍
で、または、仕上焼鈍の昇温過程の何れかで行な
われる。 ここでは、脱炭焼鈍後の追加焼鈍を、アンモニ
ア含有雰囲気中で種々の時間行い、鋼板中の窒素
量を種々変化させたときの製品の磁束密度を示
す。そのときの処理プロセスは、以下の通りであ
つた。 C:0.055%,Si:3.23%、酸可溶性Al:0.028、
totalN:0.0073%、残部:Feおよび不可避的不
純物からなる1.65mm厚さの熱延板に、1000℃で2
分間の焼鈍を施した後、熱間圧延における同一方
向に65%の圧下率で冷間圧延しさらに、前記冷間
圧延方向に交叉する方向(実質的に直交方向)に
60%の圧下率を適用する冷間圧延を行ないさら
に、最初の冷間圧延方向と同一の方向に、最初の
冷間圧延と同様の圧延ロール形式の圧延機によつ
て0.20mmまで冷間圧延した。 かくして得られた冷延板に、湿水素雰囲気下、
810℃で90秒間の脱炭焼鈍を行つた。この脱炭焼
鈍後の材料の窒素含有量は、素材におけるそれと
同じ0.0075%であり、この段階では窒化していな
い。 脱炭焼鈍後の材料を、NH3:10%を含有する
雰囲気中、550℃で(10〜180)秒間追加焼鈍して
窒化した。 こうして得られた材料に、焼鈍分離剤として
MgOを塗布し乾燥した後(25%N2,75%H2)雰
囲気中で昇温し、100%H2雰囲気中で1200℃で20
時間の純化焼鈍を行つた。得られた製品のB10
と、仕上焼鈍前に行つて追加焼鈍(鋼板の窒化処
理)による窒素増量との関係を、第2図に示す。 第2図から明らかな如く、増窒素処理を行わな
いと、二次再結晶が起こらず磁束密度(B10値)
が低い。一方、窒素増量が多過ぎると、製品の結
晶粒が極めて大きくなつて、{100}〈001〉以外の
方位粒の出現頻度が高くなりB10値が低くなる。 窒素増量が0.002〜0.060%の範囲内で、製品板
厚が0.20mmと、今までに開示されない薄いもので
あるにも拘わらず、1.88Tesla以上の高いB10値を
もつ製品が得られ、窒素増量が0.0060〜0.0200%
の範囲で最も高い磁束密度を有する製品が得られ
る。 上記以外の窒素増量手段としては、焼鈍分離剤
中に、仕上焼鈍過程で分離して窒素を放出し鋼板
を窒化する、金属窒化物、アンモニア化物を添加
する方法或は脱炭焼純における雰囲気に窒化能を
持たせて材料を処理する方法を採り得るが、とく
にこだわらない。 しかしながら、冷間圧延前の材料に対して窒素
増量処理を行つてもその効果はなく、冷間圧延後
の焼鈍過程で窒素増量を行つたときのみ、効果が
ある。 次に、本発明の実施形態を説明する。 熱延板は、酸洗された後、その長手方向に、40
〜80%の圧下率を適用する冷間圧延を施され、次
いで前記最初の冷間圧延の方向に交叉する方向に
ストリツプの形態のまま、特公昭62−45007号公
報に開示されている方法によつてクロス冷間圧延
され、さらに、最初の冷間圧延の方向と同一方向
に通常の圧延ロールによる形式のミルで、5〜33
%の圧下率を適用する冷間圧延を施される。 熱延板に、750〜1200℃の温度域で30〜30分間
の短時間焼鈍を施すと、製品の磁束密度を高くす
ることができるけれども、製造コストを高くする
から、望む磁束密度の水準との兼ねあいによつて
前記短時間焼鈍の採否を決めるとよい。 熱延板の短時間焼鈍を行うプロセスの場合、短
時間焼鈍に引き続き上記最初の長手方向への冷間
圧延を行う。冷間圧延前の素材としては、通常の
珪素鋼熱延板を採用できる。 また、溶鋼を連続鋳造して得られる鋼板、たと
えば、1.5〜3.0mm厚さの連続鋳造薄帯を用いるこ
ともできる。 素材が含有する成分としては、Si:0.8〜5.2%、
酸可溶性Al:0.008〜0.048%、残部:Feおよび不
可避的不純物であり、これらを必須成分としてそ
れ以外は限定しない。Siは、含有量が5.2%を超
えると、冷間圧延時に材料が割れ易く圧延不可能
となる。一方、Si含有量は、少なければ少ないほ
ど製品の磁束密度を高める点で好ましいけれど
も、高温仕上げ焼鈍時に材料α→r変態を生じる
と、結晶の方向性を破壊するから、α→r変態の
生じない0.8%をSi含有量の下限とする。 酸可溶性Alは、0.008〜0.048%の範囲で添加す
ることにより、製品の磁束密度が高くなる。特
に、酸可溶性Al:0.018〜0.036%の範囲内で、後
述する窒素増量処理を施したものは、磁束密度
(B10値)が1.92Tesla以上の、今までにない高い
ものとなる。上記以外の残部は、Feおよび不可
避的不純物である。 上記成分からなる溶鋼は、鋳造→熱間圧延或
は、溶鋼を連続鋳造して直接的に薄帯とした後、
直ちに若しくは短時間焼鈍工程を経て冷間圧延を
行う。 冷間圧延後の材料に、通常、鋼中に含まれる微
少なCを除くために、湿水素雰囲気中、750〜
1000℃の温度域で短時間の脱炭焼鈍を施す。 次いで、前記脱炭焼鈍中或は脱炭焼鈍後の追加
焼鈍においてまたは、高温仕上焼鈍における昇温
過程の何れかにおいて、鋼板(ストリツプ)に
0.002〜0.060%の範囲で増窒素処理を行う。こう
して得られた材料に、焼鈍分離剤を塗布し乾燥し
た後、900〜1200℃の温度域で高温仕上焼鈍を施
す。 (実施例) 実施例 1 C:0.05%、Si:3.1%、Mn:0.08%、S:
0.018%、N:0.0072%を含み、酸可溶性Al:
0.005%および0.029%を含有する2種類の1.8mm厚
さの熱延板を、1070℃×2分間の短時間焼鈍した
後、素材の長手方向に0.68mmまで冷間圧延し、次
いでストリツプの形態のまま特公昭62−45007号
公報に開示されている圧延方法を用いて、前記最
初の冷間圧延の方向に直角な方向に、0.23mmの板
厚となるまで、クロス冷間圧延を行つた。然る
後、上記最初の冷間圧延の方向と同一方向に通常
の冷間圧延機によつて、0.20mmの板厚まで連続冷
間圧延を行つた。この冷延板を、湿水素雰囲気
中、810℃で90秒間脱炭焼鈍した。次いで、焼鈍
分離剤として、MnNを5%含有するMgOを塗布
した後、N2:25%+H2:75%の雰囲気中で昇温
し、H2:100%の雰囲気中で20時間の高温仕上焼
鈍を行つた。 第1表に、得られた製品のB10値を示す。第1
表から明らかな如く、本発明範囲の0.029% Al材で、高いB10値を有する製品が得られる。
(Industrial Application Field) The present invention is characterized in that the steel plate (strip) has an easy magnetization axis <001> orientation in the longitudinal direction and the direction perpendicular to the longitudinal direction, and a {100} plane appears on the rolled surface (Miller index The present invention relates to a method of manufacturing a so-called bidirectional electrical steel sheet composed of {100}<001>) crystal grains. (Prior Art) Conventionally, typically, the method described in U.S. Pat.
Unidirectional electrical steel sheets with low iron loss values are manufactured. This unidirectional electrical steel sheet has {100}
It is composed of crystal grains with a <001> orientation (Miller index: {100}<001>), which is an axis of easy magnetization only in the rolling direction (longitudinal direction of the steel sheet). Unidirectional electrical steel sheets with excellent magnetic properties only in the rolling direction (for example, B10 value in the rolling direction:
1.92Tesla, B 10 in the direction perpendicular to the rolling direction
value: 1.45Tesla), the bidirectional electrical steel sheet is
It has easy magnetization axes both in the longitudinal direction of the steel plate (strip) and in the direction perpendicular to the longitudinal direction of the steel plate (strip), and has excellent magnetic properties in both directions.
It is particularly advantageous to use it as an iron core material for large rotating machines. On the other hand, in the field of small rotating machines, cold-rolled non-oriented electrical steel sheets that are not highly concentrated in the axis of easy magnetization are generally used; It is extremely effective in terms of equipment miniaturization and efficiency. As mentioned above, bidirectional electrical steel sheets have superior magnetic properties compared to unidirectional electrical steel sheets, and although their commercialization has been long-awaited, to date they have not been produced as industrial products. It has not yet been reached. On a laboratory scale, the following two types of manufacturing methods for bidirectional electrical steel sheets have been announced, but both have problems as manufacturing processes on an industrial scale. One of the prior art is the technology disclosed in Japanese Patent Publication No. 37-7110. This technique involves subjecting the material to high-temperature annealing in an atmosphere containing a polar gas, such as hydrogen sulfide.
This is a method of selectively forming <001> oriented grains. However, this technique requires strict control of the atmosphere on the surface of the steel plate, making it unsuitable for mass production processes. Another prior art is the method disclosed in Japanese Patent Publication No. 35-2657 by Satoru Taguchi et al.
This technique is a so-called "cross cold rolling method" in which cold rolling is performed in one direction and then cold rolling is performed in a direction perpendicular to the rolling direction. In this technology,
In the "cross cold rolling method", after the first cold rolling process, the strip is cut into a certain length to form a steel plate (sheet), and in this state, the second cold rolling process is carried out in a direction that crosses the first cold rolling direction. or the cut sheet is rotated 90 degrees so that the edges of the strip at the time of the first cold rolling form an abutting part and then welded to form a strip. , a method is adopted in which the second cold rolling is performed continuously. However, when using these techniques, there are problems for manufacturers in that the process is complicated and it is difficult to obtain a steel plate with a uniform shape. On the other hand, for the user side, when the material is supplied in the form of sheets, the punching operation is extremely inefficient, and when the material is supplied in the form of strip coils, there are welding points at regular intervals. ,
Since the magnetism of that part is poor, it is necessary to remove the part. For the reasons mentioned above, bidirectional electrical steel sheets according to the prior art have not been used as industrial products at all. In addition to the problems mentioned above, there are important reasons why the technology disclosed in Japanese Patent Publication No. 35-2657 cannot become mainstream in industry. That is, according to this cross cold rolling method, relatively high magnetization characteristics ( B10 value) can be obtained.
However, since it does not have excellent magnetic properties that are commensurate with the high cost due to the complexity of its manufacturing method, it cannot compete with conventional unidirectional electrical steel sheets. In particular, the magnetization characteristics ( B10 value) of recent unidirectional electrical steel sheets have rapidly progressed since the invention of the technology disclosed in Japanese Patent Publications No. 15644/1972 and No. 13469/1982. 10 ≧1.89Tesla is also standardized by JIS, and products with a B10 value of around 1.92Tesla are commercially available. Under such circumstances, it is necessary that bidirectional electrical steel sheets also have magnetization properties comparable to those of the unidirectional electrical steel sheets. As a means to improve the magnetization characteristics of bidirectional electrical steel sheets,
Publication No. 8213 proposed a method of annealing a hot-rolled material and then cold-rolling it in mutually orthogonal directions, but the magnetization properties obtained even with this method cannot necessarily be said to be sufficient. . The iron core material has excellent core loss characteristics in addition to the above-mentioned magnetization characteristics. (The iron loss value W/Kg is small). In order to improve iron loss characteristics,
Increasing the B10 value and reducing the thickness of the product are particularly effective in the field of unidirectional electrical steel sheets.
It is standardized by JIS up to a thickness of 0.23mm.
However, with such a thin steel plate, {100}
It is extremely difficult to obtain <001> oriented grains, and in both the processes disclosed in Japanese Patent Publication No. 35-2657 and Japanese Patent Publication No. 38-8213, the final plate thickness is
The limit is 0.30mm. Therefore, as an improved technology,
A technique disclosed in Japanese Patent Publication No. 35-17208 has been proposed, but in this technique cold rolling and annealing are added, making the manufacturing cost extremely high. In addition, the magnetization properties ( B10 value) of the resulting product are less than 1.85 Tesla, and the final plate thickness is also
It stops at 0.294mm. (Problems to be Solved by the Invention) The present invention provides a product that can be manufactured consistently in the form of a strip, and that the magnetic properties of the product are uniform in the length direction of the strip. A method for manufacturing a bidirectional electrical steel sheet with high magnetic properties, which has no parts, has excellent thickness uniformity and excellent shape (flatness), and can be efficiently and continuously punched when processed into an iron core. It was made for the purpose of providing. Another object of the present invention is to provide a method for producing a thin product plate with a thickness of less than 0.30 mm and a high magnetic flux density. (Means for Solving the Problems) The features of the present invention are as follows: (1) By weight, Si: 0.8 to 5.2%, acid-soluble Al: 0.008%
~0.048%, remainder: steel plate consisting essentially of Fe,
First, cold rolling is applied to apply a reduction rate of 40 to 80% in the longitudinal direction of the material, and then cross cold rolling is applied to apply a reduction rate of 30 to 70% in a direction crossing the rolling direction in the cold rolling. Further, the material is rolled in the same direction as the first longitudinal cold rolling.
After performing cold rolling applying a rolling reduction of %,
After being annealed for a short time in the temperature range of 750-1000℃,
A method for manufacturing a high magnetic flux density bidirectional electrical steel sheet having uniform magnetic properties in the longitudinal direction, characterized by performing high-temperature finish annealing in a temperature range of 900 to 1200°C. (2) By weight, Si: 0.8-5.2%, acid-soluble Al: 0.008
~0.048%, remainder: steel plate consisting essentially of Fe
After annealing in a temperature range of 750 to 1200°C for 30 seconds to 30 minutes, first cold rolling is applied to apply a reduction rate of 40 to 80% in the longitudinal direction of the material, and then the rolling direction in the cold rolling is 30~ in the direction that intersects with
After cross cold rolling with a rolling reduction of 70% and further cold rolling with a rolling reduction of 5 to 33% in the same direction as the initial cold rolling in the longitudinal direction of the material, the temperature is 750 to 1000℃. A method for producing a high magnetic flux density bidirectional electrical steel sheet having uniform magnetic properties in the longitudinal direction, which comprises annealing for a short time in a temperature range of 100 to 1200 °C, followed by high-temperature finish annealing in a temperature range of 900 to 1200 °C. (3) After completion of cold rolling, a temperature increase stage before the onset of secondary recrystallization in the process of short-time annealing in the temperature range of 750 to 1000°C or in the process of high-temperature finish annealing in the temperature range of 900 to 1200°C. The method according to claim 1 or 2, wherein the steel plate (strip) is nitrided so that the increase in the N content of the material is 0.002 to 0.06% in terms of total N amount. It is in. The present invention will be explained in detail below. In the process of the present invention, as a means for cold rolling the material in the strip form after the first cold rolling in a direction perpendicular to the direction of the first cold rolling, Japanese Patent Publication No. 62-45007 describes There is a cross cold rolling method disclosed. According to this cold rolling method, relatively high magnetization characteristics (Tesla indicated by the value of B10 ) can be obtained, but there are problems with the shape of the material (strip) after rolling. It has not yet been put to practical use as a cold rolling method for producing bidirectional electrical steel sheets. Firstly, in this cold rolling method, the material is rolled intermittently, so the plate thickness at the boundary between each pass becomes thicker, resulting in uneven thickness in the longitudinal direction of the material, which causes laminated steel There is a problem with the core material. Second, by applying stress in the material width direction,
Bending stress occurs within the material plane at the boundary between the deformed part and the undeformed part, and undulations (ear waves) occur at the side edges of the material, causing the shape (flatness) of the laminated iron core material to change. cannot be secured. After the cross cold rolling, the inventors performed a continuous rolling process in the form of rolling rolls in a direction perpendicular to the rolling direction, that is, in the same direction as the initial cold rolling direction,
Moreover, by limiting the rolling reduction ratio to 5 to 33%, it is possible to make the thickness of the strip uniform in the longitudinal direction of the material, and to maintain a good shape (flatness) of the material (strip) after rolling, and to improve the quality of the final product. It has been found that the obtained magnetic flux density can be improved. C: 0.053%, Si: 3.2%, Mn: 0.080%, S:
0.023%, Al: 0.033%, N: 0.0075%, balance: A 2.3 mm thick hot rolled plate consisting essentially of Fe was heated at 1100°C.
After annealing for 2 minutes at a temperature of In 1987, special public service
- The above-mentioned first method by the means disclosed in Publication No. 45007.
It was cold rolled (cross rolled) to a thickness of 0.55 mm in a direction perpendicular to the direction of the second cold rolling to form a strip coil. Furthermore, continuous cold rolling was performed in the same direction as the first cold rolling using a rolling mill with the same rolling roll type as in the first cold rolling, applying a rolling reduction of 5 to 50%. . In addition, as a comparison material, a material that was not subjected to cold rolling using the rolling reduction ratio of 5 to 50% was also subjected to the treatment process after cold rolling. These cold-rolled sheets were heated at 820℃×5 in a wet hydrogen atmosphere.
After decarburization annealing for 1 minute, MgO was applied and 1200
High temperature finish annealing was performed at ℃ for 20 hours. The magnetic flux density, variation in plate thickness in the longitudinal direction, and shape (flatness) of the obtained product are shown in FIG. As is clear from Fig. 1, when the post-processing process is completed without cross-cold rolling, there is a large variation in the thickness in the longitudinal direction of the product, and the undulations (ear waves) on both side edges of the product have not disappeared. It did not become a product. In contrast, the material according to the present invention, which is subjected to cold rolling of 5% or more in the same direction as the first cold rolling direction after cross cold rolling, does not have the above problem at all. However, it can be seen that when a rolling reduction of more than 33% is applied in cold rolling after cross cold rolling, the magnetic flux density deteriorates rapidly. Next, one feature of the present invention is that after cross cold rolling and subsequent cold rolling applying a rolling reduction of 5 to 33% in the same direction as the first cold rolling, a final annealing process is performed. By introducing a certain amount of nitrogen from the surface of the steel sheet until the appearance of {100}<001> oriented grains (secondary recrystallization),
The advantage is that preferential growth of {100}<001> oriented grains is promoted to obtain a bidirectional electrical steel sheet with high magnetic flux density. {100} in the final annealing process after final cold rolling
The means for introducing a certain amount of nitrogen from the surface of the steel sheet until the appearance of <001> oriented grains is not particularly limited.
For example, a method of nitriding a steel sheet in an atmosphere with nitriding ability during short-time annealing for decarburization after final cold rolling, or the development of {100}<001> oriented grains in the final annealing process. A method can be applied in which the temperature of the steel plate is raised up to 100% in an atmosphere capable of nitriding. If the object of the final annealing is a strip coil and the strip coil is large, it is difficult for nitrogen to penetrate between the layers of the strip, and the steel plate may not be sufficiently nitrided. It is desirable to take measures such as adding metal nitrides or ammonides, which release nitrogen during the final annealing process, to the annealing separator applied to the strip surface prior to final annealing. In the present invention, the nitrogen introduced into the steel plate is
Presumably, fine precipitates such as AlN, Si 3 N 4 , (Al, Si)N, etc. promote the preferential growth of {100}<001> oriented grains, but the truth of this is not clear. The treatment for increasing the amount of nitrogen into the steel sheet, which characterizes the present invention, is carried out either during the decarburization annealing, in additional annealing after the decarburization annealing, or in the temperature raising process of the final annealing. Here, additional annealing after decarburization annealing is performed in an ammonia-containing atmosphere for various times, and the magnetic flux density of the product is shown when the amount of nitrogen in the steel sheet is varied. The treatment process at that time was as follows. C: 0.055%, Si: 3.23%, acid soluble Al: 0.028,
TotalN: 0.0073%, balance: Fe and unavoidable impurities.
After being annealed for 1 minute, it is cold rolled in the same direction as the hot rolling at a reduction rate of 65%, and then in a direction crossing the cold rolling direction (substantially perpendicular direction).
Cold rolling is performed applying a rolling reduction of 60%, and further cold rolling is performed to 0.20 mm in the same direction as the initial cold rolling using a rolling mill with the same rolling roll type as the initial cold rolling. did. The thus obtained cold-rolled sheet was subjected to a wet hydrogen atmosphere.
Decarburization annealing was performed at 810°C for 90 seconds. The nitrogen content of the material after this decarburization annealing is 0.0075%, the same as that in the raw material, and is not nitrided at this stage. The material after decarburization annealing was additionally annealed for (10 to 180) seconds at 550° C. in an atmosphere containing 10% NH 3 to be nitrided. The material obtained in this way is used as an annealing separator.
After applying MgO and drying it (25% N 2 , 75% H 2 ), it was heated to 1200°C in a 100% H 2 atmosphere for 20 min.
A time purification annealing was performed. Figure 2 shows the relationship between the B10 value of the obtained product and the increase in nitrogen content due to additional annealing (nitriding treatment of the steel plate) performed before final annealing. As is clear from Figure 2, if nitrogen enrichment treatment is not performed, secondary recrystallization will not occur and the magnetic flux density (B 10 value) will decrease.
is low. On the other hand, if the amount of nitrogen is increased too much, the crystal grains of the product will become extremely large, the frequency of appearance of grains with orientations other than {100}<001> will increase, and the B 10 value will decrease. Even though the nitrogen increase is within the range of 0.002 to 0.060% and the product plate thickness is 0.20 mm, which is thin and has not been disclosed so far, a product with a high B10 value of 1.88 Tesla or more can be obtained. Increase in amount from 0.0060 to 0.0200%
A product with the highest magnetic flux density is obtained in the range of . Other ways to increase the amount of nitrogen other than the above include adding metal nitrides or ammonides to the annealing separator to release nitrogen during the final annealing process and nitriding the steel sheet, or adding nitriding to the atmosphere during decarburization annealing. It is possible to adopt a method of processing the material in a way that gives it the ability to do so, but there is no need to be particular about it. However, even if the material is subjected to nitrogen increasing treatment before cold rolling, it has no effect, and only when nitrogen increasing is performed during the annealing process after cold rolling, there is an effect. Next, embodiments of the present invention will be described. After the hot-rolled sheet is pickled, its longitudinal direction is 40
Cold rolling applying a rolling reduction of ~80% and then in the form of a strip in a direction perpendicular to the direction of said first cold rolling, according to the method disclosed in Japanese Patent Publication No. 62-45007. It is then cross-cold-rolled and further rolled in a mill of the type with ordinary rolling rolls in the same direction as the first cold-rolling.
It is subjected to cold rolling applying a rolling reduction of %. Although it is possible to increase the magnetic flux density of the product by annealing hot-rolled sheets for a short period of 30 to 30 minutes at a temperature range of 750 to 1200°C, it increases manufacturing costs, so it is difficult to achieve the desired level of magnetic flux density. It is preferable to decide whether or not to use the short-time annealing process depending on the balance. In the case of a process of short-time annealing of a hot-rolled sheet, the short-time annealing is followed by the first cold rolling in the longitudinal direction. As the material before cold rolling, a normal hot rolled silicon steel plate can be used. Further, a steel plate obtained by continuously casting molten steel, for example, a continuously cast ribbon having a thickness of 1.5 to 3.0 mm can also be used. The ingredients contained in the material include Si: 0.8-5.2%,
Acid-soluble Al: 0.008 to 0.048%, remainder: Fe and unavoidable impurities, with these as essential components and no other limitations. When the Si content exceeds 5.2%, the material tends to crack during cold rolling, making rolling impossible. On the other hand, the smaller the Si content, the better in terms of increasing the magnetic flux density of the product, but if material α→r transformation occurs during high-temperature finish annealing, the orientation of the crystal will be destroyed. The lower limit of Si content is 0.8%. By adding acid-soluble Al in a range of 0.008 to 0.048%, the magnetic flux density of the product increases. In particular, when acid-soluble Al is in the range of 0.018 to 0.036% and subjected to the nitrogen increasing treatment described below, the magnetic flux density (B 10 value) becomes 1.92 Tesla or higher, which is unprecedentedly high. The remainder other than the above is Fe and unavoidable impurities. The molten steel consisting of the above components is produced by casting → hot rolling, or by continuously casting the molten steel directly into a thin ribbon.
Cold rolling is performed immediately or after a short annealing step. After cold rolling, the material is heated to 750~750°C in a wet hydrogen atmosphere to remove the minute amount of C that is normally contained in steel.
Decarburization annealing is performed for a short time in a temperature range of 1000℃. Next, the steel plate (strip) is coated either during the decarburization annealing, in additional annealing after the decarburization annealing, or in the temperature raising process in high-temperature finish annealing.
Perform nitrogen enrichment treatment in the range of 0.002 to 0.060%. After applying an annealing separator to the material thus obtained and drying it, high-temperature finish annealing is performed in a temperature range of 900 to 1200°C. (Example) Example 1 C: 0.05%, Si: 3.1%, Mn: 0.08%, S:
Contains 0.018%, N: 0.0072%, acid-soluble Al:
Two types of 1.8 mm thick hot rolled sheets containing 0.005% and 0.029% were annealed for a short time at 1070°C for 2 minutes, then cold rolled to 0.68 mm in the longitudinal direction of the material, and then formed into strips. Using the rolling method disclosed in Japanese Patent Publication No. 62-45007, cross cold rolling was performed in a direction perpendicular to the direction of the first cold rolling until the plate thickness was 0.23 mm. . Thereafter, continuous cold rolling was performed in the same direction as the first cold rolling using a conventional cold rolling mill to a thickness of 0.20 mm. This cold-rolled sheet was decarburized and annealed at 810° C. for 90 seconds in a wet hydrogen atmosphere. Next, after applying MgO containing 5% MnN as an annealing separator, the temperature was raised in an atmosphere of 25% N2 + 75% H2 , and then heated at high temperature for 20 hours in an atmosphere of 100% H2 . Finish annealing was performed. Table 1 shows the B 10 values of the products obtained. 1st
As is clear from the table, a product with a high B10 value can be obtained using the 0.029% Al material within the range of the present invention.

【表】 実施例 2 C:0.048%、Si:2.0%、Mn:0.14%、S:
0.012%、酸可溶性Al:0.032%、N:0.0035%を
含有する2.0mmの熱延板を、1120℃×2分間の短
時間で焼鈍した後、素材の長手方向に、0.70mmま
で冷間圧延し、ストリツプの形態のまま特公昭62
−45007号公報に開示されている方法によつて、
前記最初の冷間圧延方向に直角な方向に、0.23mm
厚さとなるまでクロス冷間圧延を行い、次いで上
記最初の冷間圧延方向と同一方向に、通常の冷間
圧延機によつて、0.20mmまで冷間圧延した。得ら
れた冷延板を、湿水素雰囲気中、810℃×90秒間
脱炭焼鈍し、次いで焼鈍分離剤として、MnNを
それぞれ0%,2%,5%および10%含有する
MgOを塗布した後、N2:10%+H2:90%の雰囲
気中で昇温し、H2:100%の雰囲気中で高温仕上
焼鈍を行つた。こうして得られた製品のB10
と、上記N2:10%+H2:90%の雰囲気中での昇
温過程900℃の段階で加熱を停止(切電)して材
料を取り出し分析した鋼板のトータルN量を、第
2表に示す。
[Table] Example 2 C: 0.048%, Si: 2.0%, Mn: 0.14%, S:
A 2.0 mm hot-rolled plate containing 0.012%, acid-soluble Al: 0.032%, and N: 0.0035% was annealed at 1120°C for 2 minutes, and then cold rolled to 0.70 mm in the longitudinal direction of the material. However, it remained in the form of a strip in 1986.
-By the method disclosed in Publication No. 45007,
0.23mm in the direction perpendicular to the first cold rolling direction
Cross cold rolling was performed until the thickness reached 0.20 mm, and then cold rolling was performed in the same direction as the first cold rolling direction using a conventional cold rolling mill to a thickness of 0.20 mm. The obtained cold-rolled sheet was decarburized and annealed in a wet hydrogen atmosphere at 810°C for 90 seconds, and then MnN was contained as an annealing separator in an amount of 0%, 2%, 5%, and 10%, respectively.
After applying MgO, the temperature was raised in an atmosphere of N 2 : 10% + H 2 : 90%, and high temperature finish annealing was performed in an atmosphere of H 2 : 100%. The B10 value of the product obtained in this way and the steel plate that was analyzed after heating was stopped (cut off) at the stage of 900°C during the heating process in the N 2 : 10% + H 2 : 90% atmosphere. The total N amount is shown in Table 2.

【表】 第2表から明らかなように、焼鈍分離中に
MnN添加がなく鋼板に窒素増量が少ない場合は、
B10値が低い。これに比し、焼鈍分離中にMnHを
添加し、適切な窒素増量を鋼板に対して行つたも
のはB10値が高い。 実施例 3 実施例1における2種類の熱延板のうち酸可溶性
Al:0.029%を含有するものと同じ成分の1.8mm厚
さの熱延板について、1つは熱間圧延まま、他の
1つは950℃×2分間の熱延板焼鈍を、さらに他
の1つは1120℃×2分間の熱延板焼鈍を焼鈍を施
した。得られたこれらの材料を、熱間圧延と同一
方向に0.78mm厚さまで冷間圧延した後、ストリツ
プの形態のまま特公昭62−45007号公報に開示さ
れている方法によつて前記最初の冷間圧延の方向
に直角な方向に、0.35mm厚さまでクロス冷間圧延
を行つた。次いで、上記最初の冷間圧延の方向と
同一方向に、通常の冷間圧延機と同じロール形式
の圧延機によつて0.30mm厚さまで連続冷間圧延を
行つた。 こうして得られた冷延板を湿水素雰囲気中、
810℃×90秒間脱炭焼鈍した後、焼鈍分離剤とし
て10%のMnNを含有するMgOを塗布した後に、
N2:25%+H2:75%の雰囲気中で昇温し、H2
100%の雰囲気中で高温仕上焼鈍した。 得られた製品のB10値を、表3表に示す。 第3表から、材料に熱延板焼鈍を施すと、特に
高いB10値を有する製品が得られ、現在の一方向
性電磁鋼板の冷間圧延方向におけると同等以上の
B10値を持つ二方向性電磁鋼板を得ることができ
た。
[Table] As is clear from Table 2, during annealing separation
If there is no MnN addition and the steel sheet has a small amount of nitrogen added,
B10 value is low. In comparison, steel sheets in which MnH was added during annealing separation and an appropriate amount of nitrogen was added to the steel sheet had a high B 10 value. Example 3 Among the two types of hot rolled sheets in Example 1, the acid-soluble one
Regarding 1.8 mm thick hot rolled sheets with the same composition as the one containing Al: 0.029%, one was as hot rolled, the other was hot rolled sheet annealed at 950℃ x 2 minutes, and the other One was a hot rolled sheet annealed at 1120°C for 2 minutes. The obtained materials were cold-rolled to a thickness of 0.78 mm in the same direction as the hot-rolling, and then, in the form of a strip, were subjected to the first cold rolling by the method disclosed in Japanese Patent Publication No. 62-45007. Cross cold rolling was performed in the direction perpendicular to the direction of inter-rolling to a thickness of 0.35 mm. Next, continuous cold rolling was performed in the same direction as the first cold rolling to a thickness of 0.30 mm using a rolling mill with the same roll type as a normal cold rolling mill. The cold-rolled sheet thus obtained was placed in a wet hydrogen atmosphere.
After decarburizing annealing at 810℃×90 seconds, after applying MgO containing 10% MnN as an annealing separator,
The temperature was raised in an atmosphere of N 2 : 25% + H 2 : 75%, and H 2 :
High temperature finish annealing in 100% atmosphere. The B 10 values of the obtained products are shown in Table 3. Table 3 shows that when the material is subjected to hot-rolled plate annealing, a product with a particularly high B10 value can be obtained, which is equivalent to or higher than that of current grain-oriented electrical steel sheets in the cold rolling direction.
A bidirectional electrical steel sheet with a B value of 10 could be obtained.

【表】 (発明の効果) この発明は、以上述べたように構成しかつ、作
用せしめるようにしたから、現在、最高レベルの
一方向性電磁鋼板の冷間圧延方向におけるB10
と同等以上のB10値を二方向にもつ、製品長手方
向に厚み偏差の極めて小さいかつ形状(平坦さ)
に優れた二方向性電磁鋼板をストリツプの形態で
工業的に生産し得る効果を奏する。
[Table] (Effects of the invention) Since this invention is configured and operated as described above, the B10 value in the cold rolling direction of the currently highest level unidirectional electrical steel sheet is equal to or higher than that of the present invention. B10 value in both directions, extremely small thickness deviation in the longitudinal direction of the product, and shape (flatness)
This makes it possible to industrially produce a bidirectional electrical steel sheet in the form of a strip.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、クロス冷間圧延後の、最初の冷間
圧延方向と同一方向に冷間圧延(第3回冷間圧
延)するときの圧下率とストリツプ形状の関係を
示す図、第1図bは、クロス冷間圧延後の、最初
の冷間圧延方向と同一方向に冷間圧延(第3回冷
間圧延)するときの圧下率と製品の磁束密度
(B10値)の関係を示す図、第2図は、本発明に
よつて得られた製品の、第1回目冷間圧延方向お
よびクロス冷間圧延方向におけるB10値を、鋼板
への窒素増量との関係において示す図である。
Figure 1a is a diagram showing the relationship between rolling reduction and strip shape when cold rolling is performed in the same direction as the first cold rolling direction (third cold rolling) after cross cold rolling. Figure b shows the relationship between the rolling reduction and the magnetic flux density ( B10 value) of the product when cold rolling is performed in the same direction as the first cold rolling direction (third cold rolling) after cross cold rolling. Figure 2 is a diagram showing the B10 value in the first cold rolling direction and the cross cold rolling direction of the product obtained by the present invention in relation to the amount of nitrogen added to the steel plate. be.

Claims (1)

【特許請求の範囲】 1 重量で、Si:0.8〜5.2%、酸可溶性Al:0.008
〜0.048%、残部:実質的にFeからなる鋼板に、
先ず、素材長手方向に40〜80%の圧下率を適用す
る冷間圧延を施し、次いで前記冷間圧延における
圧延方向に交叉する方向に30〜70%の圧下率を適
用するクロス冷間圧延を行いさらに、最初の素材
長手方向冷間圧延と同一方向に5〜33%の圧下率
を適用する冷間圧延を行つた後、750〜1000℃の
温度域で短時間焼鈍を施した後、900〜1200℃の
温度域で高温仕上焼鈍することを特徴とする長手
方向に均一な磁気特性を有する高磁束密度二方向
性電磁鋼板の製造法。 2 重量で、Si:0.8〜5.2%、酸可溶性Al:0.008
〜0.048%、残部:実質的にFeからなる鋼板に、
750〜1200℃の温度域で30秒〜30分間の焼鈍を施
した後、先ず、素材長手方向に40〜80%の圧下率
を適用する冷間圧延を施し、次いで前記冷間圧延
における圧延方向に交叉する方向に30〜70%の圧
下率を適用するクロス冷間圧延を行いさらに、最
初の素材長手方向冷間圧延と同一方向に5〜33%
の圧下率を適用する冷間圧延を行つた後、750〜
1000℃の温度域で短時間焼鈍を施した後、900〜
1200℃の温度域で高温仕上げ焼鈍することを特徴
とする長手方向に均一な磁気特性を有する高磁束
密度二方向性電磁鋼板の製造法。 3 冷間圧延完了後、750〜1000℃の温度域で短
時間焼鈍を施す過程または、900〜1200℃の温度
域で高温仕上焼鈍する過程における二次再結晶発
現以前の昇温段階で、材料のN含有量の増分がト
ータルN量表示で0.002〜0.06%となる如く鋼板
(ストリツプ)を窒化処理する特許請求の範囲第
1項或は第2項記載の方法。
[Claims] 1. By weight, Si: 0.8-5.2%, acid-soluble Al: 0.008
~0.048%, remainder: steel plate consisting essentially of Fe,
First, cold rolling is applied to apply a reduction rate of 40 to 80% in the longitudinal direction of the material, and then cross cold rolling is applied to apply a reduction rate of 30 to 70% in a direction crossing the rolling direction in the cold rolling. Furthermore, after performing cold rolling in the same direction as the initial cold rolling in the longitudinal direction of the material, applying a reduction rate of 5 to 33%, and then annealing for a short time in the temperature range of 750 to 1000 °C, A method for producing a high magnetic flux density bidirectional electrical steel sheet having uniform magnetic properties in the longitudinal direction, characterized by high-temperature finish annealing in a temperature range of ~1200°C. 2 By weight, Si: 0.8-5.2%, acid-soluble Al: 0.008
~0.048%, remainder: steel plate consisting essentially of Fe,
After annealing in a temperature range of 750 to 1200°C for 30 seconds to 30 minutes, first cold rolling is applied in the longitudinal direction of the material at a reduction rate of 40 to 80%, and then the rolling direction in the cold rolling is cross cold rolling applying a rolling reduction of 30 to 70% in the direction intersecting the
After performing cold rolling applying a rolling reduction of 750~
After being annealed for a short time in the temperature range of 1000℃, 900~
A method for manufacturing a high magnetic flux density bidirectional electrical steel sheet having uniform magnetic properties in the longitudinal direction, which is characterized by high-temperature finish annealing in a temperature range of 1200°C. 3 After the completion of cold rolling, the material is 3. The method according to claim 1 or 2, wherein the steel plate (strip) is nitrided so that the increase in the N content is 0.002 to 0.06% in terms of total N amount.
JP9906988A 1987-11-27 1988-04-21 Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction Granted JPH01272718A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9906988A JPH01272718A (en) 1988-04-21 1988-04-21 Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction
EP88119808A EP0318051B1 (en) 1987-11-27 1988-11-28 Process for production of double-oriented electrical steel sheet having high flux density
US07/276,856 US4997493A (en) 1987-11-27 1988-11-28 Process for production of double-oriented electrical steel sheet having high flux density
DE3853871T DE3853871T2 (en) 1987-11-27 1988-11-28 Process for the production of double-oriented electrical sheets with high flux density.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9906988A JPH01272718A (en) 1988-04-21 1988-04-21 Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction

Publications (2)

Publication Number Publication Date
JPH01272718A JPH01272718A (en) 1989-10-31
JPH045727B2 true JPH045727B2 (en) 1992-02-03

Family

ID=14237557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9906988A Granted JPH01272718A (en) 1987-11-27 1988-04-21 Production of double oriented electrical steel sheet having high magnetic flux density and uniform magnetic characteristic in longitudinal direction

Country Status (1)

Country Link
JP (1) JPH01272718A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152344A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 Primary recrystallization annealed sheet for oriented electromagnetic steel sheet, and method for producing oriented electromagnetic steel sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733548B2 (en) * 1990-04-20 1995-04-12 新日本製鐵株式会社 Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152344A1 (en) * 2014-03-31 2015-10-08 Jfeスチール株式会社 Primary recrystallization annealed sheet for oriented electromagnetic steel sheet, and method for producing oriented electromagnetic steel sheet
JP2015196851A (en) * 2014-03-31 2015-11-09 Jfeスチール株式会社 Primary recrystallization annealed sheet for grain oriented magnetic steel sheet and production method of grain oriented magnetic steel sheet

Also Published As

Publication number Publication date
JPH01272718A (en) 1989-10-31

Similar Documents

Publication Publication Date Title
JP2782086B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic and film properties
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0717961B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent magnetic and film properties
US4997493A (en) Process for production of double-oriented electrical steel sheet having high flux density
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH045727B2 (en)
JP2679928B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0143818B2 (en)
JP2983129B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2003213335A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property in longitudinal direction and cross direction
JP2762105B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with good iron loss characteristics
JP4320793B2 (en) Method for producing electrical steel sheet with excellent punchability and magnetic properties in the rolling direction
JPH09287025A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JPH0432127B2 (en)
JPH06192736A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH06336611A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JP2514279B2 (en) Method for producing grain-oriented electrical steel sheet using continuous cast slab with high productivity
JP3061515B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPH10110217A (en) Production of grain oriented silicon steel sheet
JPH0663031B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties with little edge cracking in hot rolling

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees