JPH0456749A - Die for casting or apparatus to be brought into contact with molten metal excellent in erosion resistance - Google Patents

Die for casting or apparatus to be brought into contact with molten metal excellent in erosion resistance

Info

Publication number
JPH0456749A
JPH0456749A JP16465690A JP16465690A JPH0456749A JP H0456749 A JPH0456749 A JP H0456749A JP 16465690 A JP16465690 A JP 16465690A JP 16465690 A JP16465690 A JP 16465690A JP H0456749 A JPH0456749 A JP H0456749A
Authority
JP
Japan
Prior art keywords
molten metal
alloys
casting
resistance
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16465690A
Other languages
Japanese (ja)
Other versions
JP3029642B2 (en
Inventor
Isao Tamura
庸 田村
Toshio Okuno
奥野 利夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2164656A priority Critical patent/JP3029642B2/en
Publication of JPH0456749A publication Critical patent/JPH0456749A/en
Application granted granted Critical
Publication of JP3029642B2 publication Critical patent/JP3029642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To manufacture high strength and high toughness parts free from erosion caused by the molten metal of Al alloys by manufacturing parts for a die or the like to be brought into contact with molten Al alloys of a martensitic alloy steel subjected to surface nitriding treatment. CONSTITUTION:At the time of manufacturing parts to be brought into contact with the molten metal of Al alloys such as a die used in the stage of casting Al alloys, the parts to be brought into contact with the molten metal of Al alloys are manufactured of a martensitic alloy steel contg., by weight, 0.2 to 0.8% C, 0.1 to 3% Si, 0.1 to 3% Mn and 6 to 15% Cr, or furthermore contg. total 0.5 to 5% of one or two kinds of W and Mo, or moreover contg. 0.2 to 3% V or furthermore contg. 5% of one or >= two kinds among Ni, Cu and Co, and its surface is subjected to nitriding treatment by a method such as gas nitriding and molten salt nitriding. The parts free from the generation of erosion caused by the molten metal of Al alloys can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属の鋳造用金型または堰、ビン等溶湯
に接する器具類(本発明において接溶湯器具と記す)に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to molds for casting molten metal, weirs, bottles, and other appliances that come into contact with molten metal (referred to as molten metal appliances in the present invention).

〔従来の技術〕[Conventional technology]

溶融金属の鋳造による成形(ダイカスト、重力鋳造など
)に用いられる金型や接溶湯器具(鋳抜きビン、中子ビ
ン、湯口層、アルミダイカストスリーブなど)には、従
来、熱間ダイス鋼、高速度工具鋼、ステンレス鋼などの
鋼や鋳鉄が用いられてきた。
Molds and molten metal equipment (casting bottles, core bottles, sprue layers, aluminum die casting sleeves, etc.) used for molding by casting molten metal (die casting, gravity casting, etc.) have conventionally been made of hot die steel, high-grade steel, etc. Steels such as speed tool steel and stainless steel and cast iron have been used.

現在、鋳造による成形で最も多く用いられる被成形金属
はアルミニウム合金であるが、この鋳造の際、金型や接
溶湯器具に使用されている上記鉄鋼材料のアルミニウム
合金溶湯と接触する部分では、これらの鉄鋼材料がアル
ミニウム合金溶湯Gこよって溶損され、アルミニウム合
金溶湯中の鉄含有量を増加し、鋳造部品の品質を低下せ
しめる。
Currently, the most commonly used metal to be formed by casting is aluminum alloy, but during casting, these metals are used in the parts of the above-mentioned steel materials used in molds and molten metal equipment that come into contact with molten aluminum alloy. The steel material is melted away by the molten aluminum alloy G, increasing the iron content in the molten aluminum alloy and deteriorating the quality of the cast parts.

さらに、これら金型等の溶損は、操業工種々の不都合を
生ゼしぬ、それの耐用期限の長短に大きく影響する。
Furthermore, the erosion of these molds, etc. causes various inconveniences in operation and greatly affects the length of their service life.

これらの問題を解決するために、従来、溶融アルミニウ
ム合金と全く反応しないセラミックス系の材料や溶損を
起こしにくいW合金、Mo合金等が一部使用されている
が、これらの材料は価格面からはもちろん、入子として
用いられた場合周囲の鉄鋼材料との熱膨張率の差が大き
いことによる種々の問題や、折れ・欠けなどに対する強
度、靭性、耐熱衝撃性の不足などの問題があり、必ずし
も工業上これらの課題を解決するには至ってν)ない。
To solve these problems, some ceramic materials that do not react with molten aluminum alloy, W alloys, Mo alloys, etc. that do not easily cause melting damage have been used, but these materials are expensive due to their price. Of course, when used as a nest, there are various problems due to the large difference in thermal expansion coefficient with surrounding steel materials, and problems such as insufficient strength, toughness, and thermal shock resistance against bending and chipping. It is not necessarily possible to solve these problems industrially.

さらに、鋼製の金型または接溶湯器具に窒化物または炭
化物または硼化物等(TiN、TiC,BN。
Furthermore, nitrides, carbides, borides, etc. (TiN, TiC, BN) are added to steel molds or molten metal equipment.

SiC+Si、N、、TtB2.Al2O,)等を、プ
ラズマ化学蒸着法やスパッタリング法などの物理蒸着法
、融着法、焼ばめ法などで表面を被覆する提案がされて
いる(特願昭55−14395号、特願昭57−131
024号、特願昭57−143747号、特公平1〜2
9133号、特願昭59156337号)。しかし、化
学蒸着法や物理蒸着法のの場合、膜厚が数十μmと薄く
、また表面処理層に、微細なりラックを有し、このクラ
ックを経路として、溶融金属(例えばアルミニウム合金
)が浸透し、表面処理層直下の母材中の鉄と反応して合
金を生成し、この合金生成により表面処理層直下が膨張
して処理層が剥離してしまい、剥離後は、溶損が急速に
進む現象が見られる。
SiC+Si,N,,TtB2. It has been proposed to coat the surface with Al2O, etc. by physical vapor deposition methods such as plasma chemical vapor deposition method and sputtering method, fusion bonding method, shrink fitting method, etc. 57-131
No. 024, Japanese Patent Application No. 57-143747, Special Publication No. 1-2
No. 9133, Japanese Patent Application No. 59156337). However, in the case of chemical vapor deposition and physical vapor deposition, the film thickness is as thin as several tens of micrometers, and the surface treatment layer has fine cracks, and molten metal (for example, aluminum alloy) penetrates through these cracks. However, it reacts with the iron in the base material directly under the surface treatment layer to form an alloy, and due to this alloy formation, the area directly below the surface treatment layer expands and the treated layer peels off.After peeling off, erosion occurs rapidly. A progressive phenomenon can be seen.

これに対し、浸炭、窒化による表面処理層は、拡散処理
であるため、深い処理層が得られるうえ、剥離は問題と
ならない。従来から5KD61等の熱間ダイス鋼、高速
度工具鋼、ステンレス鋼などに窒化処理を施し、溶損寿
命を高める工夫がなされてきた。ところが、これらの鋼
は窒化処理により耐溶損性を高めるべく開発された合金
ではないので、用途によっては耐溶損性が不足すること
が本発明者らにより見出された。
On the other hand, since the surface treatment layer by carburizing or nitriding is a diffusion treatment, a deep treatment layer can be obtained and peeling is not a problem. Conventionally, efforts have been made to extend the wear life of hot die steels such as 5KD61, high speed tool steels, stainless steels, etc. by applying nitriding treatment. However, since these steels are not alloys developed to improve corrosion resistance through nitriding treatment, the inventors have found that the corrosion resistance may be insufficient depending on the application.

本発明者は、アルミニウム合金を中心とした溶融金属に
よる鉄鋼材料、非鉄合金の溶損について、種々検討を行
なった結果、これらの合金は、溶融アルミニウム合金と
の界面で、まずAlとFe、Ni。
The present inventor has conducted various studies on corrosion damage of ferrous materials and non-ferrous alloys caused by molten metals, mainly aluminum alloys, and has found that these alloys first contain Al, Fe, and Ni at the interface with molten aluminum alloys. .

Mn、Go等が合金層を形成し、これを介して合金成分
が溶融アルミニウム合金中へ拡散することにより溶損が
進行すること、窒化処理を行なうことにより、Fe、N
i、Mn、Go等からなる基地表面に、アルミニウムと
反応しない窒化物が分布することから、耐溶損性が増す
ことを見出し、さらに耐溶損性を高めるためには、この
窒化物の分布密度を高めることが効果のあることを見出
した。
Mn, Go, etc. form an alloy layer, and the alloy components diffuse into the molten aluminum alloy through this, causing melting loss to proceed. By performing nitriding treatment, Fe, N
It was discovered that corrosion resistance increases because nitrides that do not react with aluminum are distributed on the base surface consisting of i, Mn, Go, etc., and in order to further improve corrosion resistance, the distribution density of these nitrides should be increased. I have found that increasing the amount is effective.

本発明者は以前に、炭化物を相当量分散させた鉄鋼材料
が従来の当該用途用鉄鋼材料に比べ耐溶損性が著しく優
れることを見出し、超硬度高速度工具鋼を低圧鋳造用の
治工具材料とする特許を出願した(「特願平01〜17
4897号」)。
The present inventor previously discovered that steel materials in which a considerable amount of carbides are dispersed have significantly superior erosion resistance compared to conventional steel materials for the relevant applications, and the inventors have previously discovered that steel materials with a considerable amount of carbides dispersed in them have significantly superior corrosion resistance compared to conventional steel materials for the relevant applications, and have developed ultra-hard high-speed tool steels for low-pressure casting jigs and tools. filed a patent application for
No. 4897”).

また、同様の発想から、安価で実用上、十分な強度、靭
性を持つ新しい合金を提案した(特願平l−18839
7号)が、これらは、目的とする金型や接溶湯器具によ
っては、形状面からの機械加工性や熱衝撃などによる耐
割損性、耐折損性が不足する場合があることが判った。
Based on a similar idea, we proposed a new alloy that was inexpensive and had sufficient strength and toughness for practical use (Patent Application No. 1-18839).
No. 7), but it has been found that depending on the intended mold or molten metal equipment, these may lack machinability due to shape or resistance to cracking or breakage due to thermal shock, etc. .

なお、従来の技術として特開平1〜111846号があ
るが、これについては後に触れる。
Incidentally, as a conventional technique, there is Japanese Patent Application Laid-Open No. 1-111846, which will be discussed later.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、これらの問題を解消し、さらに溶融金属に対
する耐性を増進し、また十分な強度、靭性等実用特性を
備えた金型または接溶湯器具を提供することを目的とす
る。
It is an object of the present invention to solve these problems and provide a mold or a molten metal fixture that has improved resistance to molten metal and has practical properties such as sufficient strength and toughness.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、重量%で、C002〜0.8%、SiO,1
〜3%、Mn 0.1〜3%、Cr 6〜15%、場合
によっては、これにW、Moの一種または二種を合計で
、0.5〜5%、あルイはさらに、V 0.2〜3%や
Ni、Cu、Coの一種以上を適宜含み、残部Feなら
びに不可避的不鈍物からなるマルテンサイト系の合金鋼
に窒化処理を施したことを特徴とする耐溶損性の優れた
鋳造用金型または接溶湯器具である。
The present invention, in weight percent, C002~0.8%, SiO,1
~3%, Mn 0.1~3%, Cr 6~15%, and in some cases, one or both of W and Mo in total of 0.5~5%. Excellent corrosion resistance characterized by nitriding martensitic alloy steel containing 2 to 3% and one or more of Ni, Cu, and Co, with the remainder being Fe and unavoidable dull materials. It is a mold for casting or a tool for welding molten metal.

〔作用〕[Effect]

本発明は、溶損に対する窒化層の有効性に着目して、よ
り有効な窒化層を得て、さらに被窒化性の向上を図ると
ともに、耐熱衝撃性、靭性、被加工性等、実施上の問題
点を加味しつつ選定され、その結果、中C高Crマルテ
ンサイト系とされた成分範囲を有するもので、これらの
要求特性を高いレベルで満たし、かつこれらを調和させ
ている。
The present invention focuses on the effectiveness of the nitrided layer against melting loss, and aims to obtain a more effective nitrided layer and further improve the nitridability, as well as improve practical aspects such as thermal shock resistance, toughness, and workability. It was selected taking into consideration the problems, and as a result, it has a component range of medium C, high Cr martensitic system, which satisfies these required characteristics at a high level and harmonizes them.

なお、本発明の金型または接溶湯器具に用いる材料の化
学成分に近似した同用途材として、前記のごとく特開平
1〜111486号がある。
As mentioned above, Japanese Patent Laid-Open Nos. 1 to 111486 are known as materials having similar chemical compositions to those used in the mold or molten metal device of the present invention.

特開平1〜111846号は、窒化特性を付与する元素
としてA1を挙げ、これを構成元素として0.1〜1.
5wt%添加している。これに対し、本発明は、Crの
添加効果がAIと比べ、極めて顕著であることを見出し
たことによるもので、AIを添加しないでCrを増量し
たものである。すなわち、該提案の実施例のCr含有量
は、すべて6%未満であるのに対し、本発明のCr含有
量は6%以上である。つまり、該提案の同用途鋼がCr
含有量6%未満の熱間工具鋼であるのに対し、本発明は
、6%以上のCrを含有する鋼であり、この鋼を窒化し
たとき、耐溶損性向上に大きな効果を持つ窒化層が形成
されることを見い出したことによるものである。
JP-A-1-111846 lists A1 as an element that imparts nitriding properties, and uses this as a constituent element of 0.1-1.
5 wt% is added. On the other hand, the present invention is based on the discovery that the effect of adding Cr is extremely significant compared to AI, and the amount of Cr is increased without adding AI. That is, the Cr content of all of the proposed examples is less than 6%, whereas the Cr content of the present invention is 6% or more. In other words, the proposed steel for the same purpose is Cr.
In contrast to hot work tool steel with a Cr content of less than 6%, the present invention is a steel containing 6% or more of Cr, and when this steel is nitrided, a nitrided layer has a great effect on improving corrosion resistance. This is due to the discovery that the formation of

本発明組成の合金材料は、通常の鋳造または鍛造により
作製することができ、マルテンサイト焼入れまたはこれ
に準する焼入れ、および焼もどしを行なうことによって
、優れた強度と靭性が得られ、粗大な炭化物が生じない
ため、機械加工性が実用上問題とならない。これを所定
の金型や接溶湯器具に加工したのち、窒化処理を施すこ
とにより、耐溶損性の優れた金型や接溶湯器具とするも
のである。
The alloy material having the composition of the present invention can be produced by ordinary casting or forging, and by performing martensitic quenching or similar quenching and tempering, excellent strength and toughness can be obtained, and coarse carbide particles can be obtained. Since this does not occur, machinability is not a practical problem. After processing this material into a predetermined mold or molten metal device, it is subjected to a nitriding treatment to produce a mold or molten metal device with excellent corrosion resistance.

次に本発明鋼の成分範囲の限定理由を述べる。Next, the reason for limiting the composition range of the steel of the present invention will be described.

Cは、本発明鋼の優れた焼入性、焼もどし硬さ、靭性を
得るため添加され、組織を焼入時にマルテンサイトとす
る。また、Cは、W、Mo、VおよびCrなとの炭化物
形成元素と結合して炭化物を形成し、結晶粒の微細化、
耐摩耗性、焼もどし軟化抵抗、高温硬さを与えるために
添加するものである。多すぎると過剰の炭化物を生じ鍛
造性、被加工性を著しく低下させて実用面での不都合を
生ずるので、0.8%以下とし、低すぎると上記添加の
効果が得られないので0.2%以上とする。
C is added in order to obtain excellent hardenability, tempering hardness, and toughness of the steel of the present invention, and makes the structure martensite during hardening. In addition, C combines with carbide-forming elements such as W, Mo, V, and Cr to form carbides, resulting in refinement of crystal grains and
It is added to provide wear resistance, temper softening resistance, and high temperature hardness. If it is too high, excessive carbides will be produced, which will significantly reduce forgeability and workability, resulting in practical problems, so it should be 0.8% or less, and if it is too low, the above effects of addition cannot be obtained, so 0.2%. % or more.

Siは、製鋼のときの脱酸効果のために0.1%以上添
加される。多すぎると熱伝導率を低下させるので3%以
下とする。
Si is added in an amount of 0.1% or more for the deoxidizing effect during steel manufacturing. If it is too large, the thermal conductivity will decrease, so it should be 3% or less.

Mnは、焼入性を向上させるが、多すぎるとA1変態点
を過度に低下させ、焼なまし硬さを過度に高くし、被切
削性を低下させるので0.1%以上、3%以下とする。
Mn improves hardenability, but if it is too large, it excessively lowers the A1 transformation point, increases annealing hardness excessively, and reduces machinability, so it should be 0.1% or more and 3% or less. shall be.

Crは、適正な添加量の設定により焼もどし軟化抵抗お
よび高温強度の向上、Cと結合して炭化物を形成するこ
とによる耐摩耗性の向上、焼入性の向上および窒化迅速
性付与の効果を有するものである。Crは、さらに窒化
処理のとき、Nと結合して窒化物を形成し、本発明鋼の
最も重要な特徴である耐溶損性を付与する。鉄鋼材料の
溶融金属による溶損は、前記のように溶融金属と母相の
FeやN1が化合物を形成し、これを介して鉄鋼材料が
溶融金属側に拡散して、進行する現象であるが、窒化物
が母相に高密度で分布することによって母相と溶融金属
の反応界面を小さくすることにより、溶損が進行しにく
くなる。しかし、Crの過剰な添加は、過度の炭化物を
生じ、靭性、被加工性を著しく低下させ、実用面で不都
合を生ずるので、6%以上15%以下とする。
By setting the appropriate amount of addition, Cr improves temper softening resistance and high-temperature strength, combines with C to form carbides, improves wear resistance, improves hardenability, and provides rapid nitriding. It is something that you have. Further, during nitriding treatment, Cr combines with N to form nitrides, thereby imparting corrosion resistance, which is the most important feature of the steel of the present invention. Melting loss of steel materials due to molten metal is a phenomenon in which the molten metal and the parent phase Fe and N1 form a compound, and the steel material diffuses to the molten metal side through this compound, and progresses. By distributing nitrides in a high density in the matrix, the reaction interface between the matrix and the molten metal is made small, making it difficult for melt damage to proceed. However, excessive addition of Cr produces excessive carbides and significantly reduces toughness and workability, causing practical problems, so the content is set at 6% or more and 15% or less.

W、Moは、焼入加熱時、基地に固溶しにくい炭化物を
形成して耐摩耗性向上に効果をもたらすものであり、ま
た、焼もどし時微細な炭化物を析出して軟化抵抗、高温
強度を増加させる効果を有するものである。
W and Mo form carbides that are difficult to dissolve in the matrix during quenching and heating, and are effective in improving wear resistance.They also precipitate fine carbides during tempering, improving softening resistance and high-temperature strength. This has the effect of increasing the

W、Moはさらに窒化処理のとき、Nと結合して窒化物
を形成し、上記Crと同様に母相と溶融金属の反応界面
を小さくすることにより、溶損が進行しにくくする。W
、Moは、Crと比較すると上記の効果を得るために多
量の添加が必要であり、多すぎると靭性低下の影響を及
ぼし易いため、1種または2種の合計で5%以下とし、
低すぎると上記添加の効果が得られないので0.5%以
上とする。
Furthermore, W and Mo combine with N to form nitrides during nitriding treatment, and similarly to the above-mentioned Cr, they reduce the reaction interface between the matrix and the molten metal, thereby making it difficult for melting loss to progress. W
, Mo needs to be added in a large amount in order to obtain the above effects when compared with Cr, and if it is too large, it tends to have the effect of reducing toughness, so the total amount of one or two types is 5% or less,
If it is too low, the effect of the above addition cannot be obtained, so the content should be 0.5% or more.

■は固溶しにくい炭化物を形成して耐摩耗性および耐焼
付性向上に効果を有するものであり、焼入加熱時基地に
固溶して、焼もどし時微細な凝集しにくい炭化物を析出
し、高い温度域における軟化抵抗を大とし、大きな高温
耐力を与えるのに有効な元素である。特にダイカスト用
の金型または接溶湯器具の場合、溶湯の流動速度は著し
く早く、このため金型または接溶湯器具の表面は、溶湯
の衝突や通過により、高温へ昇温したり、摩擦作用をう
ける。この意味で高い温度域における軟化抵抗や大きな
高温耐力が必要である。
■ is effective in improving wear resistance and seizure resistance by forming carbides that are difficult to dissolve in solid solution.They dissolve in solid solution in the matrix during quenching heating and precipitate fine carbides that do not easily aggregate during tempering. , is an effective element for increasing softening resistance in high temperature ranges and providing large high-temperature proof strength. Particularly in the case of die-casting molds or molten metal equipment, the flow rate of the molten metal is extremely high, and as a result, the surface of the mold or molten metal equipment heats up to a high temperature or is subject to frictional effects due to the collision or passage of the molten metal. box office. In this sense, softening resistance in a high temperature range and high high temperature proof strength are required.

多すぎると巨大な炭化物を生成するなど靭性を低下させ
るので、3%以下とし低すぎると型表面部の早期軟化を
まねくなど上記添加の効果が得られないので0.2%以
上とする。
If the amount is too high, the toughness is reduced, such as the formation of giant carbides, so the content should be set at 3% or less. If the content is too low, the above-mentioned effects of addition may not be achieved, such as premature softening of the mold surface, so the content should be set at 0.2% or more.

Ni、Cuは、それぞれの元素とA1との状態図と、F
eやMOとA1との状態図の比較かられかるように、溶
湯A1に対する固溶度がFeと同等またはそれ以上であ
り、また、溶損されにくいことが広く知られているMO
に比べ固溶度が大きく、またAlと化合物層を生成する
化合物(FeA1.、NiAl、等)も、低温から生成
され易いので、積極的には添加しないが、それぞれ5%
以下は含有されても、実用上問題となるような耐溶損性
の大幅な低下をもたらさないので、靭性や耐酸化性向上
のために含有しても良い。
Ni and Cu are shown in the phase diagram of each element and A1, and the F
As can be seen from the comparison of the phase diagrams of e and MO and A1, MO has a solid solubility in molten metal A1 equal to or higher than that of Fe, and is widely known to be resistant to erosion.
Compounds (FeA1., NiAl, etc.) that have a higher solid solubility than Al and that form a compound layer with Al are also easily formed at low temperatures, so they are not actively added, but 5% of each is added.
The following may be included to improve toughness and oxidation resistance, since they do not cause a significant decrease in erosion resistance that would pose a practical problem.

Goは、そのAlに対する状態図から、Feとほぼ同様
の溶損挙動をすることがわかり、一方、耐酸化性を向上
するから必要により添加することができる。
From its phase diagram with respect to Al, it can be seen that Go exhibits almost the same melting behavior as Fe, and on the other hand, it improves oxidation resistance, so it can be added as necessary.

なお、本発明の金型等および材料に公知の種々の快削元
素を添加し、この特性を向上することは可能である。
Note that it is possible to improve these characteristics by adding various known free-cutting elements to the mold, etc. and material of the present invention.

〔実施例〕〔Example〕

次に実施例に基づき、本発明の詳細な説明する。 Next, the present invention will be explained in detail based on examples.

実施例1 まず、第1表に示す組成の素材を準備し、これから第1
図に示す試験片を作製し、耐アルミ溶損性試験片と耐亜
鉛溶損性試験片とした。
Example 1 First, materials with the composition shown in Table 1 were prepared, and from this
The test pieces shown in the figure were prepared and used as an aluminum erosion resistance test piece and a zinc erosion resistance test piece.

本発明品と比較例U(SKD61)は、920〜.11
50℃で焼入後、580〜620℃で焼もどしを行ない
、硬さを約HRC40とした。比較例V(超硬度高速度
工具#l)および比較例X(4I願平1〜188397
号に記載の鋼)は、焼なましままとし、比較例W(粉末
高速度工具鋼)は、所定の熱処理を施し、硬さを約HR
C50とした。
The products of the present invention and Comparative Example U (SKD61) were 920~. 11
After quenching at 50°C, tempering was performed at 580 to 620°C to give a hardness of approximately HRC40. Comparative Example V (carbide high-speed tool #l) and Comparative Example X (4I Application Hei 1-188397
The steel described in No. 1) was left as annealed, and Comparative Example W (powdered high-speed tool steel) was subjected to a prescribed heat treatment to have a hardness of approximately HR.
It was set as C50.

耐溶損性試験片の一部は、表面処理された。本発明鋼は
すべて窒化処理を施した。第2表にこれらそれぞれの表
面処理の処理条件と、処理層の厚みを示す(本発明品の
溶融ソルト法はいわゆるタフトライド法である)。
Some of the erosion resistance test pieces were surface treated. All steels of the present invention were subjected to nitriding treatment. Table 2 shows the treatment conditions for each of these surface treatments and the thickness of the treated layer (the molten salt method for the product of the present invention is the so-called tuftride method).

耐アルミ溶損性試験は、アルミ合金ADC12の700
℃の溶湯中およびB590合金(Al−17%Si)の
740℃の溶湯中に、2時間ずつ浸漬し、試験片の試験
前後の重量比で耐溶損性を比較した。なお、8390合
金は、耐摩耗性アルミ合金であるが、耐摩耗性付与のた
め、含Si量が、ADC12より高い(ADC12は約
11%)。このため、融点が高く、高温度で鋳造される
ので、試験温度もこれに合わせて740°Cとした。
The aluminum corrosion resistance test was conducted using aluminum alloy ADC12 700.
The specimens were immersed in a molten metal of 740°C and a B590 alloy (Al-17%Si) for 2 hours each, and the melting loss resistance was compared based on the weight ratio of the test pieces before and after the test. The 8390 alloy is a wear-resistant aluminum alloy, but in order to provide wear resistance, the Si content is higher than that of ADC12 (ADC12 is about 11%). Therefore, since the melting point is high and it is cast at a high temperature, the test temperature was also set at 740°C.

耐亜鉛溶損性試験についてもほぼ同様で、試験片は亜鉛
合金ZAC2の600℃の溶湯中に10時間、浸漬した
The same was true for the zinc corrosion resistance test, in which the test piece was immersed in a molten zinc alloy ZAC2 at 600°C for 10 hours.

第3表に耐溶損性試験の結果を示す。Table 3 shows the results of the erosion resistance test.

第2表 比較例W(粉末高速度IRT i C処理品)は、実用
アルミダイカストの中子ピンに適用され、アルミ合金の
焼き付きまたはアルミ合金による喰はれに対し、耐久寿
命が良い実績をもつものである。
Table 2 Comparative Example W (powder high-speed IRT i C processed product) is applied to core pins of practical aluminum die-casting, and has a good track record of long lifespan against seizure of aluminum alloy or erosion by aluminum alloy. It is something.

第3表かられかるように、本発明品の耐溶損性は、減量
率が大きいADC12の700℃および8390号金の
7i0℃と比較すると、いずれの材質、窒化処理方法に
ついても、比較例U (SKD61に浸硫窒化)および
比較例■(超硬度高速度鋼9表面処理なし)に比べ優れ
ている。また、本発明品において、最も効果的な窒化法
は、浸硫窒化法であり、これによるADC12の700
℃の減量率では、比較例Y(セラミックス)以外では、
比較例Wおよびゃはり浸硫窒化処理である比較例Xとほ
ぼ同等、B590合金の740℃での減量率では比較例
Xに対しやや劣る粒度である。
As can be seen from Table 3, the corrosion resistance of the inventive product is 700°C for ADC12, which has a large weight loss rate, and 7i0°C for No. 8390 gold. (SKD61 sulfur-nitrided) and Comparative Example (3) (superhard high-speed steel 9 without surface treatment). In addition, in the product of the present invention, the most effective nitriding method is the sulfur-nitriding method, which has an ADC12 of 700
Regarding the weight loss rate in °C, except for Comparative Example Y (ceramics),
The particle size is almost the same as Comparative Example W and Comparative Example X, which is a Yahari sulphonitriding treatment, and the grain size is slightly inferior to Comparative Example X in terms of the weight loss rate of B590 alloy at 740°C.

なお、比較例W(粉末高速度工具鋼TiC処理品)は、
ADC12の700℃では溶損減量率が上記のように僅
少であるが、8390合金の740℃では溶損が急激に
進行した。この試験後の試料の観察を行なったところ、
TiC被膜が剥離し、剥き出しになった母材とアルミ合
金の反応が起り溶損が進んでいた。この挙動は、公知の
セラミックコーティング技術(PVD、CVD、溶融塩
法等)によるその他の炭化物、窒化物、硼化物系(VC
,NbC,TiN、BN等)の被覆処理品についても通
常具られる現象と同様であった。
In addition, Comparative Example W (powdered high-speed tool steel TiC treated product) is
At 700°C for ADC12, the loss loss rate due to melting was small as described above, but at 740°C for 8390 alloy, melting loss progressed rapidly. When we observed the sample after this test, we found that
The TiC coating had peeled off, and a reaction between the exposed base material and the aluminum alloy had occurred, leading to progressing erosion. This behavior is similar to other carbide-, nitride-, and boride-based (VC
, NbC, TiN, BN, etc.), the phenomenon was similar to that which normally occurs.

浸硫窒化による本発明品の耐溶損性は、前述のように比
較例Y(セラミックス)およびX(特願平118839
7号)には劣ったが、これらが実用される場合、重要な
問題となる耐熱衝撃性、機械加工性については後述の如
く極めて優位である。
The erosion resistance of the products of the present invention due to sulfonitriding was determined by Comparative Examples Y (ceramics) and X (Japanese Patent Application No. 118839), as described above.
Although it was inferior to No. 7), it was extremely superior in terms of thermal shock resistance and machinability, which are important issues when these are put into practical use, as will be described later.

次に耐熱衝撃性試験結果について述べる。該試験は、3
0mm角x20mm*さの試料を前記と同様の熱処理お
よび表面処理を施して準備し、ガスバーナーで700℃
に加熱後、ただちに20℃の水浴中に浸漬することを繰
り返して、表面クラックが所定程度以上となるまでの回
数を調べた。対象品は本発明品(A、CおよびEにそれ
ぞれ浸硫窒化したもの)、比較例Xおよび比較例Yであ
る。その結果、比較例Y(セラミックス)は、1回で砕
は散り、比較例Xは、50回であった。第2図に比較例
Xのスケッチを示す。本発明品は、いずれも100回ま
でのテストで変化は見られず、以降は打ち切った。
Next, the results of the thermal shock resistance test will be described. The test is 3
A 0 mm square x 20 mm* sample was prepared by applying the same heat treatment and surface treatment as above, and heated to 700°C with a gas burner.
After heating, the specimens were immediately immersed in a water bath at 20° C., and the number of times until the surface cracks reached a predetermined level was determined. The target products are the products of the present invention (A, C, and E each subjected to sulfur-nitriding), Comparative Example X, and Comparative Example Y. As a result, in Comparative Example Y (ceramics), the cracks were scattered after one application, and in Comparative Example X, it was performed 50 times. A sketch of Comparative Example X is shown in FIG. No change was observed in any of the products of the present invention after testing up to 100 times, and the tests were discontinued thereafter.

れに対し、本発明にがかるAおよびCは、それぞれ0.
15w(1m切削後)、0.28mm(2m切削後)お
よび0.22mm(1m切削後)、0.41mm(2m
切削後)と比較例Xに比し、格段に高い被削性を示した
In contrast, A and C according to the present invention each have a value of 0.
15w (after cutting 1m), 0.28mm (after cutting 2m), 0.22mm (after cutting 1m), 0.41mm (after cutting 2m)
After cutting) and compared to Comparative Example X, it showed significantly higher machinability.

第  4  表 第  5  表 被剛性テスト結果を第4表に、また、第5表にその切削
条件を示す。テストは焼鈍状態の各試料母材をエンドミ
ルで切削したときの、エンドミル刃先摩耗量を測定した
。セラミックスは、全く加工できず、比較例Xは、1m
切削後の刃先摩耗が0.85mmと大きく、これ以上加
工できなかった。こ以上、耐熱衝撃性および被剛性テス
ト結果を述べたが、これらにおいて本発明品は、各比較
例より優れており、総合性能が高いことが判る。
Table 4 Table 5 Table 4 shows the stiffness test results, and Table 5 shows the cutting conditions. In the test, the wear amount of the end mill cutting edge was measured when each sample base material in an annealed state was cut with an end mill. Ceramics cannot be processed at all, and Comparative Example
The wear on the cutting edge after cutting was as large as 0.85 mm, and further processing could not be carried out. The thermal shock resistance and stiffness test results have been described above, and it can be seen that the product of the present invention is superior to each of the comparative examples in these, and has high overall performance.

なお、本発明Gは、Ni、Coを含むものであり、本発
明A−Fと比べ、若干耐溶損性が劣る。しかし、それで
も比較例Uよりは著しく優れ、浸硫窒化の場合、比較例
■よりはるかに優れる。そして、Niを含むため、衝撃
特性が増していた。これは、用途によって、耐割れ性や
耐折損性を重視する場合、この程度のNiその他の元素
を含有させることが有効であることを示している。
In addition, the present invention G contains Ni and Co, and is slightly inferior in erosion resistance compared to the present inventions A to F. However, it is still significantly better than Comparative Example U, and in the case of sulfonitriding, it is much better than Comparative Example (■). In addition, since Ni was included, the impact properties were increased. This indicates that it is effective to contain this amount of Ni and other elements when cracking resistance or breakage resistance is important depending on the application.

なお、本実施例では、アルミ合金と亜鉛合金に対する溶
損試験の結果を示したが、一般に溶融金属による金型等
の溶損は、溶融金属と金型等の母相である金属との接触
による化合物形成により進行するので、本発明の金型等
や材料は、アルミ系や亜鉛系に対すると同様にその他の
溶融金属、例えば、鉄系や銅系の合金に対する耐溶損性
も同様に優れることが推論される。
In this example, the results of the melting test for aluminum alloys and zinc alloys were shown, but melting damage of molds, etc. caused by molten metal is generally caused by contact between the molten metal and the parent metal of the mold, etc. Therefore, the molds, etc. and materials of the present invention have excellent corrosion resistance against other molten metals, such as iron-based and copper-based alloys, as well as against aluminum-based and zinc-based alloys. is inferred.

実施例2 次に前記の素材から、金型を製作し、実用テストを行な
った結果を示す。
Example 2 Next, a mold was manufactured from the above-mentioned material and a practical test was conducted.The results will be shown below.

熱処理および表面処理は前記実施例1と同様(本@明品
は浸硫窒化)とし、アルミダイカスト金型の一部を入子
として製作した。入子は、アルミ合金の溶湯が、ゲート
から直接衝突するゲート正面部に組み込んだ。アルミ合
金の溶湯温度は750℃である。
The heat treatment and surface treatment were the same as in Example 1 (this product was sulfur-nitrided), and a part of the aluminum die-casting mold was manufactured as a nest. The insert was built into the front part of the gate, where the molten aluminum alloy directly collides with the gate. The temperature of the molten aluminum alloy is 750°C.

また、本人子は、入子と言えども寸法が大きく(概略寸
法150 X 200 X 100)、さらに形状が複
雑でコーナ一部を有するものとした。また、入子表面は
、アルミ合金が凝固して金型から除去された後、水冷さ
れ、この際大きな熱応力が表面に作用し、しかもコーナ
一部は応力集中により過大な熱応力が作用するものであ
る。
Further, although the child itself is a nest, its dimensions are large (approximate dimensions: 150 x 200 x 100), and its shape is complicated, with a portion of corners. In addition, the surface of the insert is water-cooled after the aluminum alloy solidifies and is removed from the mold, and at this time, large thermal stress acts on the surface, and excessive thermal stress acts on some corners due to stress concentration. It is something.

第6表 第6表にそれぞれの金型入子の金型寿命を示す。Table 6 Table 6 shows the mold life of each mold insert.

参考例Zは500シヨツト使用した時点で溶損により金
型表面が肌あれを生じ、使用を停止した。
In Reference Example Z, after 500 shots were used, the surface of the mold became rough due to melting damage, and its use was discontinued.

比較例U(SKD61  浸硫窒化)は、l 、500
シヨツトで肌あれが生じた。また、比較例Xは、溶損は
生じなかったが、1,800シヨツトでコーナーR部よ
り深いクラックが発生し、使用を停止した。
Comparative example U (SKD61 sulfonitriding) is l, 500
The shot caused skin irritation. Further, in Comparative Example X, no melt damage occurred, but a crack deeper than the corner R portion occurred after 1,800 shots, and the use was discontinued.

これは第2図で示した結果を裏付けるものである。This supports the results shown in FIG.

これに対し、本発明品Aは、5,000シヨツトで肌あ
れを生じ、Eは5 、000シヨツトで肌あれは軽微で
あったが、テストは中止した。これは、EがW、MO,
Vを含むため高温強度が強く、窒化層へのバックアップ
作用が強いことによるものである。
On the other hand, product A of the present invention caused skin roughness after 5,000 shots, and product E showed slight skin roughness after 5,000 shots, but the test was discontinued. This means that E is W, MO,
This is because it has strong high-temperature strength because it contains V, and has a strong backup effect on the nitrided layer.

本用途のように、高温溶湯が、治工具の表面に高速で衝
突する場合、治工具表面は高温への昇温と溶湯の運動エ
ネルギーにより、機械的にも侵食される。このような場
合には、W、Mo、Vの添加は有効である。
When high-temperature molten metal collides with the surface of a jig and tool at high speed as in this application, the surface of the jig and tool is mechanically eroded by the rise in temperature and the kinetic energy of the molten metal. In such cases, addition of W, Mo, and V is effective.

実施例3 次にアルミダイカスト成形に用いる中子ビンを第7表に
示した素材により製作した(熱処理および表面処理は実
施例1に同じ)。これらの耐久寿命を同表に示す。
Example 3 Next, core bottles used in aluminum die-casting were manufactured from the materials shown in Table 7 (heat treatment and surface treatment were the same as in Example 1). The durability life of these is shown in the same table.

木表から、本発明品のすべてと比較例Xは比較例Uの1
0倍以上の耐久性を持つことがわかる。ただし、比較例
Xは破損はしないものの、ピンの一部にクラックが入り
、余命か僅かであることかわかる。これに対し本発明品
B、D、Fは、これらのクラックは発生しなかった。ま
たアルミダイカストの場合、鋳造後に金型や中子ビン等
は水冷され、急冷されるので耐熱衝撃性の低いセラミッ
クス族の中子ビンは一回目の鋳造で破損した。
From the wooden table, all of the products of the present invention and Comparative Example X are 1 of Comparative Example U.
It can be seen that it has more than 0 times the durability. However, although Comparative Example X was not damaged, some of the pins were cracked, indicating that the pin had only a short life remaining. In contrast, these cracks did not occur in products B, D, and F of the present invention. Furthermore, in the case of aluminum die casting, the mold, core bottle, etc. are water-cooled and rapidly cooled after casting, so the ceramic core bottle, which has low thermal shock resistance, was damaged during the first casting.

第7表 実施例4 次に、低圧鋳造によるアルミ製品成形に用いる鋳抜ビン
を第8表に示す素材で製作した。熱処理条件、表面処理
は実施例1と同じである。たたし、V′はVと同材質で
ある。その形状を第3図に示す。寸法は第3図中のd 
=5mmφ、長さは200 mmである。同表にそれぞ
れの素材で製作した鋳抜ビンの耐久性を比較して示した
。参考例Zでは200回の鋳造で溶損によりビンの径が
細くなり寸法不良で使用が不可能となった。また比較例
■は、150回の鋳造で焼付折損を生じ、耐溶損性を高
めるために浸硫窒化を行なったもの(比較例V′)では
、さらに早期に折損(50本)を生じた。これに対し、
本発明品A〜G(溶融ソルト法による窒化処理の一種で
あるタフライド処理を施したビン)は、折損を生ぜず、
いずれもほぼ1,200回まで使用可能で最終的にはビ
ンにアルミ合金の付着を生じた。
Table 7 Example 4 Next, cast bottles used for forming aluminum products by low-pressure casting were manufactured using the materials shown in Table 8. The heat treatment conditions and surface treatment are the same as in Example 1. However, V' is made of the same material as V. Its shape is shown in FIG. The dimensions are d in Figure 3.
=5mmφ, length is 200mm. The table shows a comparison of the durability of cast bottles made from each material. In Reference Example Z, after 200 castings, the diameter of the bottle became thinner due to melting damage, and the bottle became unusable due to dimensional defects. Comparative Example (3) suffered from seizure breakage after 150 castings, and in the case of Comparative Example V', which was subjected to sulfur-nitriding to improve corrosion resistance, breakage (50 pieces) occurred even earlier. On the other hand,
Products A to G of the present invention (bottles subjected to tuff-riding treatment, which is a type of nitriding treatment using the molten salt method) do not break, and
All of them could be used up to approximately 1,200 times, and eventually aluminum alloy adhered to the bottles.

第8表 〔発明の効果〕 以上述べたように、本発明は、アルミ合金を始めとした
溶融金属鋳造用の金型または接溶湯器具において、窒化
を行なったものであるが、従来、5KD61を始めとす
る熱間ダイス鋼や粉末高速度工具鋼等既存のいわば、あ
りあわせの材料に窒化を行なったものではなく、窒化処
理してこれらの用途に用いることを前提に、耐溶損性に
ついてはもちろん、耐熱衝撃性、靭性、被削性等総合性
能を考慮して、新規な母材成分である中C高Crマルテ
ンサイト系を選定したものであるから、従来材に比し、
耐溶損性はもちろん、総合性能に優れるため、これらの
耐久寿命に大幅な向上効果をもたらすものである。
Table 8 [Effects of the Invention] As described above, the present invention performs nitriding in a mold or welding device for casting molten metal such as aluminum alloy. It is not a product that has been nitrided on existing materials such as hot die steel and powder high-speed tool steel. In consideration of overall performance such as thermal shock resistance, toughness, and machinability, we selected a new base material component of medium C and high Cr martensitic materials, so compared to conventional materials,
Since it has excellent overall performance as well as corrosion resistance, it has the effect of significantly improving the durability life of these products.

したがって、耐溶損性が優れる超硬度高速度工具鋼やセ
ラミックスが工業実用上、折損、破損の問題点から適用
が十分進まなかったのに対し、本発明の金型等や材料は
、前記のように靭性、抗折強度、耐熱衝撃性に優れるた
め実用性が高い。さらにW、Mo合金に比べ、安価で製
造できる。
Therefore, whereas ultrahard high-speed tool steel and ceramics, which have excellent corrosion resistance, have not been sufficiently applied in industrial practice due to problems of breakage and breakage, the molds and materials of the present invention have the above-mentioned advantages. It has excellent toughness, flexural strength, and thermal shock resistance, making it highly practical. Furthermore, it can be manufactured at a lower cost than W or Mo alloys.

また、本発明者が提案した耐溶損鋼(特願平1〜188
397号によるもの)が、熱衝撃性、機械加工性の面が
問題となる用途に本発明品の実用性が大きい。
In addition, the corrosion-resistant steel proposed by the present inventor (Japanese Patent Application No. 1999-188
No. 397), but the product of the present invention is highly practical for applications where thermal shock resistance and machinability are problematic.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で溶融アルミおよび亜鉛に使用した
溶損試験片を示す図、第2図は、実施例1で耐熱衝撃試
験を行なった後の試験片の外観スケッチ図で、比較例X
の50回テスト後の状況を示す図および第3図は実施例
4で使用した鋳抜きビンを示す図である。
Figure 1 is a diagram showing the erosion test piece used for molten aluminum and zinc in Example 1, and Figure 2 is a sketch of the appearance of the test piece after the thermal shock test was conducted in Example 1 for comparison. Example X
Figure 3 shows the situation after 50 tests and Figure 3 shows the cast bottle used in Example 4.

Claims (1)

【特許請求の範囲】 1 重量%で、C0.2〜0.8%、Si0.1〜3%
、Mn0.1〜3%、Cr6〜15%を含み、残部Fe
ならびに不可避的不純物からなるマルテンサイト系の合
金鋼に窒化処理を施したことを特徴とする耐溶損性の優
れた鋳造用金型または接溶湯器具。 2 重量%で、C0.2〜0.8%、Si0.1〜3%
、Mn0.1〜3%、Cr6〜15%、およびW、Mo
の一種または二種を合計で、0.5〜5%を含み、残部
Feおよび不可避的不純物からなるマルテンサイト系の
合金鋼に窒化処理を施したことを特徴とする耐溶損性の
優れた鋳造用金型または接溶湯器具。 3 重量%で、C0.2〜0.8%、Si0.1〜3%
、Mn0.1〜3%、Cr6〜15%、およびW、Mo
の一種または二種を合計で0.5〜5%、さらにV0.
2〜3%を含み、残部Feおよび不可避的不純物からな
るマルテンサイト系の合金鋼に窒化処理を施したことを
特徴とする鋳造用金型または接溶湯器具。 4 重量%で、C0.2〜0.8%、Si0.1〜3%
、Mn0.1〜3%、Cr6〜15%、W、Moの一種
または二種を合計で0.5〜5%、V0.2〜3%、さ
らにNi、Cu、Coのうち一種または二種以上をそれ
ぞれ5%以下、残部Feおよび不可避的不純物からなる
マルテンサイト系の合金鋼に窒化処理を施したことを特
徴とする鋳造用金型または接溶湯器具。
[Claims] 1% by weight, C0.2-0.8%, Si0.1-3%
, Mn0.1~3%, Cr6~15%, balance Fe
Also, a casting mold or a molten metal tool with excellent erosion resistance, which is characterized by subjecting martensitic alloy steel containing unavoidable impurities to nitriding treatment. 2% by weight, C0.2-0.8%, Si0.1-3%
, Mn0.1-3%, Cr6-15%, and W, Mo
Casting with excellent erosion resistance characterized by being nitrided on martensitic alloy steel containing a total of 0.5 to 5% of one or two of the above, with the remainder being Fe and unavoidable impurities. molds or welding equipment. 3% by weight, C0.2-0.8%, Si0.1-3%
, Mn0.1-3%, Cr6-15%, and W, Mo
0.5 to 5% in total of one or two kinds of V0.
1. A casting mold or a molten metal tool, characterized in that a martensitic alloy steel containing 2 to 3% Fe and unavoidable impurities is subjected to a nitriding treatment. 4% by weight, C0.2-0.8%, Si0.1-3%
, Mn0.1-3%, Cr6-15%, a total of 0.5-5% of one or two of W and Mo, V0.2-3%, and one or two of Ni, Cu, and Co. A casting mold or a molten metal tool, characterized in that a martensitic alloy steel comprising 5% or less of each of the above, and the balance Fe and unavoidable impurities is subjected to a nitriding treatment.
JP2164656A 1990-06-22 1990-06-22 Casting molds or molten metal fittings with excellent erosion resistance to molten metal Expired - Fee Related JP3029642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164656A JP3029642B2 (en) 1990-06-22 1990-06-22 Casting molds or molten metal fittings with excellent erosion resistance to molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164656A JP3029642B2 (en) 1990-06-22 1990-06-22 Casting molds or molten metal fittings with excellent erosion resistance to molten metal

Publications (2)

Publication Number Publication Date
JPH0456749A true JPH0456749A (en) 1992-02-24
JP3029642B2 JP3029642B2 (en) 2000-04-04

Family

ID=15797319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164656A Expired - Fee Related JP3029642B2 (en) 1990-06-22 1990-06-22 Casting molds or molten metal fittings with excellent erosion resistance to molten metal

Country Status (1)

Country Link
JP (1) JP3029642B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021747A1 (en) * 1995-01-13 1996-07-18 Hitachi Metals, Ltd. High hardness martensitic stainless steel with good pitting corrosion resistance
EP0957182A2 (en) * 1998-05-12 1999-11-17 Daido Tokushuko Kabushiki Kaisha A martensitic heat resisting steel
EP1001043A1 (en) * 1998-11-09 2000-05-17 Daido Tokushuko Kabushiki Kaisha Martensitic stainless steel parts and method for producing the same
JP2008205407A (en) * 2007-02-22 2008-09-04 Seiko Epson Corp Method for discharging remaining static electricity of electrostatic chuck, and electrostic chuck
JP2011131240A (en) * 2009-12-24 2011-07-07 Tokyo Seimitsu Kogyo Kk Nesting pin and die
JP2013215760A (en) * 2012-04-06 2013-10-24 Hitachi Metals Ltd Method for manufacturing aluminum alloy casting
WO2024166577A1 (en) * 2023-02-10 2024-08-15 株式会社プロテリアル Steel component and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950882B (en) * 2011-08-26 2017-04-12 海德堡印刷机械股份公司 Method and device for changing printing plates

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021747A1 (en) * 1995-01-13 1996-07-18 Hitachi Metals, Ltd. High hardness martensitic stainless steel with good pitting corrosion resistance
US5714114A (en) * 1995-01-13 1998-02-03 Hitachi Metals, Ltd. High hardness martensitic stainless steel with good pitting corrosion resistance
EP0957182A2 (en) * 1998-05-12 1999-11-17 Daido Tokushuko Kabushiki Kaisha A martensitic heat resisting steel
EP0957182A3 (en) * 1998-05-12 2001-10-04 Daido Tokushuko Kabushiki Kaisha A martensitic heat resisting steel
EP1001043A1 (en) * 1998-11-09 2000-05-17 Daido Tokushuko Kabushiki Kaisha Martensitic stainless steel parts and method for producing the same
JP2008205407A (en) * 2007-02-22 2008-09-04 Seiko Epson Corp Method for discharging remaining static electricity of electrostatic chuck, and electrostic chuck
JP2011131240A (en) * 2009-12-24 2011-07-07 Tokyo Seimitsu Kogyo Kk Nesting pin and die
JP2013215760A (en) * 2012-04-06 2013-10-24 Hitachi Metals Ltd Method for manufacturing aluminum alloy casting
WO2024166577A1 (en) * 2023-02-10 2024-08-15 株式会社プロテリアル Steel component and method for producing same

Also Published As

Publication number Publication date
JP3029642B2 (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4513058B2 (en) Casting parts
JP2009013465A (en) Tool steel, member for forming using the same, and method for verifying quality of tool steel
US5799717A (en) Copper alloy mold for casting aluminum or aluminum alloy
US7744056B2 (en) Hard-material-coated member excellent in durability
WO2005061747A1 (en) Hot work tool steel and mold member excellent in resistance to melting
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
JPH0456749A (en) Die for casting or apparatus to be brought into contact with molten metal excellent in erosion resistance
US6479013B1 (en) Casting components made from a tool steel
EP2915965B1 (en) Engine valve
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
JP5090257B2 (en) Tool steel suitable for aluminum machining dies and aluminum machining dies
JP4883400B2 (en) Casting parts
UTOPOV Surface modifications of maraging steels used in the manufacture of moulds and dies
JP2004019001A (en) Tool steel for hot-working superior in erosion resistance, and die member
JP2002194477A (en) Member for molten nonferrous metal
JP2003154437A (en) Metallic mold for casting and its producing method
JP2019199634A (en) Steel for die-casting die, and die-casting die
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method
JPH03162551A (en) Corrosion-resistant alloy for nonferrous hot dip metal and roll for the above hot dip metal coating
JP5779749B2 (en) Cast iron material manufacturing method, cast iron material and die casting machine sleeve
JPH1190611A (en) Die for die casting and manufacture thereof
JPH08229657A (en) Member for casting and its production
JPH0353046A (en) Metal mold for casting or instrument to be in contact with molten metal and material for metal mold or tool excellent in erosion resistance
JP3654159B2 (en) Nonferrous metal casting tool and tool steel therefor
JP3252969B2 (en) Hot tool steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees