WO2005061747A1 - Hot work tool steel and mold member excellent in resistance to melting - Google Patents

Hot work tool steel and mold member excellent in resistance to melting Download PDF

Info

Publication number
WO2005061747A1
WO2005061747A1 PCT/JP2003/016304 JP0316304W WO2005061747A1 WO 2005061747 A1 WO2005061747 A1 WO 2005061747A1 JP 0316304 W JP0316304 W JP 0316304W WO 2005061747 A1 WO2005061747 A1 WO 2005061747A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
less
tool steel
work tool
toughness
Prior art date
Application number
PCT/JP2003/016304
Other languages
French (fr)
Japanese (ja)
Inventor
Seiji Kurata
Toshimitsu Fujii
Original Assignee
Daido Steel Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co.,Ltd filed Critical Daido Steel Co.,Ltd
Priority to CNA2003801108403A priority Critical patent/CN1878881A/en
Priority to US10/583,783 priority patent/US20070110610A1/en
Priority to PCT/JP2003/016304 priority patent/WO2005061747A1/en
Priority to EP03782816A priority patent/EP1696045A1/en
Priority to AU2003292572A priority patent/AU2003292572A1/en
Publication of WO2005061747A1 publication Critical patent/WO2005061747A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies
    • B22D17/2209Selection of die materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/42Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions only one element being applied
    • C23C8/48Nitriding
    • C23C8/50Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • C23C8/52Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions more than one element being applied in one step
    • C23C8/54Carbo-nitriding
    • C23C8/56Carbo-nitriding of ferrous surfaces

Definitions

  • the present invention relates to a hot work tool steel and a mold member excellent in erosion resistance and suitable for a mold member for A1 die casting.
  • mold members As a material for the die body, core, insert pin, and hot water supply pipe for A1 die casting (hereinafter collectively referred to as mold members), hot materials such as JIS SKD61, SD6, and SKD62 have been used. Tool steel has been used.
  • Fe and A1 have a strong affinity, and the mold member reacts relatively easily with the A1 molten metal, forming a Fe-A1 intermetallic compound and dropping off the surface layer. No loss occurs.
  • This erosion includes seizures due to galling and seizure.
  • Erosion is particularly likely to occur at the mold step near the gate, which is in contact with the high-temperature A1 molten metal at high speed, and at the nested pins.
  • the present invention has been made in view of such circumstances, and it is an object of the present invention to provide a hot work tool steel and a mold member having excellent A1 erosion resistance while maintaining excellent toughness and heat check resistance. Aim.
  • Claim 1 relates to a hot work tool steel.
  • C 0.10 0.35% Si: 0.80%, ⁇ : ⁇ 3.0% Cr: 2. (! ⁇ 7.0%, l / 2W + Mo: 0.3 5.0%, N: more than 0.05 to 0.50%, C + N: 0.20 0.60% (C / N: ⁇ 6), 0: ⁇ 0.0100%, P: ⁇ 0.050%, A1: ⁇ 0.050% Is satisfied, and the balance is substantially composed of Fe.
  • Claim 2 is characterized in that, in claim 1, V: less than 0.5% by weight is further contained.
  • Claim 3 is characterized in that in any one of claims 1 and 2, one or two of Ni: ⁇ 2.0% and Co: ⁇ 5.0% are further contained.
  • Claim 5 is the invention according to claim 14, wherein S: ⁇ 0.050%
  • Mg ⁇ 0.0100%
  • Y ⁇ 0.10% 100% or more.
  • Claim 6 relates to a mold member, and is characterized in that it is made of hot-rolled steel according to any one of claims 15 to 15.
  • Claim 7 also relates to the die member, and is made of the hot work tool steel according to any one of claims 15 and the surface layer is modified by a surface treatment into a layer with higher A1 erosion resistance than the base metal. It is characterized by quality treatment.
  • the present inventor has conducted various studies on the A1 erosion resistance of hot work tool steel, and has found that increasing the amount of N improves the A1 erosion resistance.
  • N content is simply increased, if the V content is large, coarse primary carbonitrides are formed, and the toughness and heat check resistance required for mold members are reduced.
  • it is effective to reduce the amount of V and to control the C + N amount and the (C / N) ratio within a certain range. I also found out.
  • the present invention has been made based on such knowledge, and it is intended to increase the amount of N, reduce the amount of V, and control the C + N amount and the (C / N) ratio within a predetermined range. Based on this, the present invention has made it possible to increase the A1 erosion resistance without deteriorating the toughness and heat check resistance of the hot work tool steel.
  • V has been included as an essential component in hot work tool steels.
  • V For example, in the case of JIS SKD61, 0.8-1.20% of V is contained, in the case of JIS SKD62, 0.20-0.60% of V is contained, and in the case of JIS SKD8, 1.70 2.20% of V is contained. I have.
  • V in these hot work tool steels is to increase the hardness and wear resistance by carbides of V, and the fine secondary carbides of V are formed by the pinning effect of crystal grains. It refines crystal grains and contributes to ensuring toughness.
  • the coarse primary carbides of V generated during solidification also have the adverse effect of impairing the toughness and heat check resistance of hot steel.
  • the hot-rolled steel of the invention it is possible to eliminate the content of V, which has been indispensable in the past, and in this case, sufficient toughness and heat check resistance can be ensured.
  • N contained in a high content forms fine nitrides with, for example, Cr and the fine nitrides form V nitrides. It replaces fine secondary carbides and refines the crystal grains, ensuring toughness and It is presumed that the lockability is improved.
  • ⁇ V has the function of increasing hardness ⁇ abrasion resistance.Therefore, in the present invention, if hardness ⁇ wear resistance rather than hardness ⁇ abrasion resistance is required more, If you want to increase the hardness and abrasion resistance while eliminating V, you can also include V in a small amount below a certain level, and it is possible to select one of them according to fc.
  • the repair cycle of the die member can be extended irrespective of the presence or absence of surface layer modification by surface treatment.
  • the dimension in degree of the product can be maintained with high accuracy for a long time.
  • the surface treatment can be omitted, it is possible to eliminate the need for reworking the surface treatment every time the mold is repaired, and it is possible to reduce the frequency of the repair, and to reduce the frequency of the repair. Reduced repair costs can also be achieved
  • the surface layer of the gold member can be modified into a layer having higher A1 erosion resistance than the base material by surface treatment.
  • Plasma C V D TiN, TiAIN, TiC, TiCN, DLC compound single layer or multilayer formation, etc.
  • Ion plating single or multiple layers of TiN, TiAIN, CrN, TiC, TiCN, DLC compounds, etc.
  • Sputter-ring (TiN, TiAIN, CrN, Al 2 0 3 formed of multi-layered monolayers also rather are compounds, etc.)
  • C is an element necessary to secure hardness and wear resistance. To ensure sufficient hardness and wear resistance as a hot-work steel, it is necessary to add 0.10% or more.
  • Si is an element required as a deoxidizing element. It is also an effective element for improving machinability and temper softening resistance.
  • the amount of addition when the amount of addition is large, the toughness ⁇ ⁇ heat check resistance decreases. Therefore, it must be less than 0.80%. Desirably, it is more than 0.10 to 0.50%.
  • Mn is a component necessary as a deoxidizing element and for ensuring hardenability and hardness, and is desirably added in an amount of 0.02% or more. More preferably, it is 0.1% or more, and still more preferably 0.3% or more.
  • the content should be 3.0% or less. Preferably it is 2.0% or less, more preferably 1.0% or less.
  • Cr is an element necessary for strengthening the matrix by forming carbides, improving wear resistance, and ensuring hardenability, and is added in an amount of 2.0% or more. It is preferably at least 3.0%, more preferably at least 4.0%.
  • A1 is an element necessary to increase the erosion resistance and hardness.
  • the formation of fine nitrides and carbonitrides may have an effect on the improvement of A1 erosion resistance.
  • the upper limit is set to 0.50%.
  • the lower limit is set to 0.20%. Desirably, it should be 0.30 to 0.45%.
  • 0 is an element that is preferably reduced in order to reduce toughness and heat check resistance, but is an element that is unavoidably contained, and is regulated to 0.0100% or less in the present invention.
  • the content is 0.0030% or less.
  • P is an element that is preferably reduced in order to reduce toughness and heat check resistance, but is an element that is inevitably contained, and is set to 0.050% or less in the present invention. It is desirable to reduce it to 0.015% or less.
  • A1 is an element effective as a strong deoxidizing material, and is also effective for preventing crystal grain coarsening and improving nitriding properties, and is desirably added at 0.001% or more.
  • the cleanliness of the material is reduced and the machinability is reduced, so the content is limited to 0.050% or less.
  • V 0.01 to less than 0.5%
  • V forms carbides and is effective in strengthening the matrix and improving wear resistance.
  • the formation of fine carbides is also effective in refining crystal grains and thus improving toughness. Therefore, add 0.01% or more as necessary can do.
  • the content is set to less than 0.5% in order to reduce the performance. Preferably it is 0.4% or less, and more preferably 0.3% or less.
  • Ni is effective in improving hardenability and strengthening the base, and can be added as necessary.
  • the desirable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
  • the upper limit must be set to 2.0%. Preferably it is 1.5% or less, more preferably 1.0% or less.
  • Co is effective for strengthening the matrix and improving the wear resistance, and can be added as needed.
  • the preferable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
  • the upper limit must be set to 5.0%.
  • it is 4.0% or less, more preferably 3.0% or less.
  • T i has the effect of forming carbonitrides to prevent crystal grain coarsening during quenching, and can be added as necessary.
  • the desirable amount at that time is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
  • the upper limit must be set to 1.0% in order to reduce toughness and heat check resistance.
  • it is 0.7% or less, more preferably 0.5% or less.
  • Ta ⁇ 1.0% Ta has the effect of forming carbonitrides to prevent crystal grain coarsening during quenching, and can be added as necessary.
  • the preferable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
  • the upper limit must be set to 1.0% in order to reduce toughness and heat check resistance.
  • it is 0.7% or less, more preferably 0.5% or less.
  • the desirable amount at that time is 0.0001% or more, more preferably 0.0003% or more, and still more preferably 0.0005% or more.
  • the upper limit must be made 0.010%. Preferably it is 0.007% or less, more preferably 0.005% or less.
  • Cu is effective in strengthening the matrix and can be added as needed.
  • the desirable amount is 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
  • the upper limit must be set to 1.0%. Preferably it is 0.7% or less, more preferably 0.5% or less.
  • S is an element that is inevitably contained, but is effective in improving machinability and can be added as necessary. However, if added excessively, the toughness decreases, so the upper limit is made 0.050%.
  • Ca is an element effective for improving machinability, and can be added as necessary. However, if added excessively, the toughness will decrease.
  • Se ⁇ 0.0100% Se is an element effective for improving machinability and can be added as necessary. However, if added excessively, the toughness will decrease.
  • Te is an element effective in improving machinability and can be added as needed. However, if added excessively, the toughness and hot workability deteriorate, so the upper limit is made 0.0100%.
  • Zr is an element effective in improving machinability and can be added as needed. However, if added excessively, the toughness will decrease.
  • Mg acts as a deoxidizing and desulfurizing element during melting. It is also effective in improving strength and ductility at high temperatures.
  • Y forms an oxide film on the mold surface, has the effect of improving wear resistance, seizure resistance and heat check resistance, and can be added as necessary. However, if added excessively, the toughness will decrease.
  • A1 erosion test piece is 10 mm x 60 mmL
  • hardness test piece is 1 Omm square x 1 Omm
  • Charbie test piece is JIS No.3 test piece
  • heat check test piece is ⁇ 15nunX5 mm
  • high temperature overpass wear The test piece was 1 Omm x 17 mm x 30 mm.
  • the A1 erosion test, hardness test, Charpy test, and heat check test were performed on each specimen under the following test conditions.
  • Evaluation was performed using a high-frequency heating and water-cooled heat check tester. Specifically, after repeating the heating of the surface layer at 700 ° C »water cooling 1000 times, the depth and number of cracks generated on the sample surface are measured, and the heat check resistance is evaluated based on the average crack length. did.
  • the wear resistance of conventional steel No. 27 was set to 100, and the wear resistance of other steel types was indicated by an index.
  • Example and conventional steel For a steel having the composition shown in Table 4 (Example and conventional steel), a 50 kg ingot was melted in the same pressure melting furnace (Example) and vacuum induction furnace (Conventional steel) as in Example 1, and It was forged into ⁇ 20mni round material and then annealed at 870 ° C.
  • a die-casting die (cylinder head type) was assembled with the above-mentioned punching pin, and a forging test was performed. At that time, 5000 shots were used for unpinned pins without surface treatment, and up to 20000 shots for unpinned pins after surface treatment.
  • the punched pin after fabrication was immersed in a saturated NaOH aqueous solution to remove the attached A 1 alloy, and then weighed.
  • the weight loss due to erosion was determined from (weight before test) and (weight after test), and the erosion resistance was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A hot work tool steel having a chemical composition in wt %: C: 0.10 to 0.35 %, Si: less than 0.80 %, Mn: 3.0 % or less, Cr: 2.0 % or more and less than 7.0 %, N: more than 0.05 % and 0.50 % or less, O: 0.0100 % or less, P: 0.050 % or less, Al: 0.050 % or less, with the proviso that 1/2W + Mo: 0.3 to 5.0 %, C + N: 0.20 to 0.60 % and C/N: 6 or less, and the balance: substantially Fe, and optionally V: 0.01 to 0.5 %. The hot work tool steel exhibits excellent resistance to melting, while retaining good toughness and good resistance to heat checking.

Description

耐溶損性に優れた熱間工具鋼及び金型部材 技術分野  Hot work tool steel and mold parts with excellent erosion resistance
この発明は、 A1 ダイカス ト用の金型部材に好適な耐溶損性に優れ た熱間工具鋼及び金型部材に関する。  The present invention relates to a hot work tool steel and a mold member excellent in erosion resistance and suitable for a mold member for A1 die casting.
背景技術 Background art
従来よ り A1 ダイカス ト用の金型本体, 中子, 入子ピン及び給湯管 (以下これらを総称して金型部材とする) 用の材料として、 JIS SKD61, S D6, SKD62等の熱間工具鋼が使用されて来た。  Conventionally, as a material for the die body, core, insert pin, and hot water supply pipe for A1 die casting (hereinafter collectively referred to as mold members), hot materials such as JIS SKD61, SD6, and SKD62 have been used. Tool steel has been used.
と ころで Fe と A1 は親和性が強く 、金型部材は A1 溶湯と比較的容 易に反応し、 Fe- A1 の金属間化合物を形成するなどして表層部が脱 落する現象、 いわゆる溶損を生じ い 。 この溶損にはかじ りや焼付 さに基づく脱落も含まれる。  Here, Fe and A1 have a strong affinity, and the mold member reacts relatively easily with the A1 molten metal, forming a Fe-A1 intermetallic compound and dropping off the surface layer. No loss occurs. This erosion includes seizures due to galling and seizure.
の溶損は、特に高温の A 1 溶湯と高速で接触する湯口近傍の金型 の段差部や入子ピン等に生じ易い □  Erosion is particularly likely to occur at the mold step near the gate, which is in contact with the high-temperature A1 molten metal at high speed, and at the nested pins.
而してこのような溶損が大さく なると、 製品に凸部欠陥が生じた As such erosion increased, the product had convex defects.
、 製品の離型が困難になるなどの問題が生ずる。 However, problems such as difficulty in releasing the product are caused.
そのため、耐 A1 溶損性に優れた金型部材用の材料が求められてい た。  Therefore, there has been a demand for a material for a mold member having excellent A1 erosion resistance.
従来、耐 A1 溶損性を高めるために軟窒化処理等の表面処理を行レ 表層を母材よ り も高耐 A1 溶損性の層に改質する といつたこ とも行 われている。  Conventionally, surface treatments such as nitrocarburizing have been performed to improve the A1 erosion resistance, and the surface layer has been modified to have a higher A1 erosion resistance layer than the base metal.
しかしながら このような表面処理による改質処理を施した場合で あっても、 表層の改質層が残存する初期の間は溶損を防止できるも のの、 その表層の改質層は次第に消失するため、 その後は母材が溶 損して上記と同様の問題を生ずる。  However, even when such a surface treatment is performed, erosion can be prevented during the initial period in which the surface modified layer remains, but the surface modified layer gradually disappears. Thereafter, the base material is melted and causes the same problem as described above.
従って表面処理によ り表層の改質処理を施す場合であっても母材 自体の耐 Al溶損性が強く求め られる。 Therefore, even when the surface layer is modified by surface treatment, Al corrosion resistance is strongly required.
発明の開示 Disclosure of the invention
本発明はこのような事情を背景としてなされたもので、 優れた靭 性,耐ヒー トチェック性を保持しつつ耐 A1溶損性に優れた熱間工具 鋼及び金型部材を提供する ことを目的とする。  The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a hot work tool steel and a mold member having excellent A1 erosion resistance while maintaining excellent toughness and heat check resistance. Aim.
而して請求項 1 は熱間工具鋼に関する もので、 重量%で、 C : 0.10 0.35% Si:く 0.80% , Μη:≤ 3· 0% Cr: 2. (!〜 7.0%未満, l/2W + Mo: 0.3 5.0%, N: 0.05超〜 0.50% , C + N: 0.20 0.60% (但し C/N : ≤ 6) , 0: ≤ 0.0100% , P: ≤ 0.050 % , A1 : ≤ 0.050 %を満たし、 残 部が実質的に Feから成る組成を有する こ とを特徴とする。  Claim 1 relates to a hot work tool steel. In weight%, C: 0.10 0.35% Si: 0.80%, Μη: ≤3.0% Cr: 2. (! ~ 7.0%, l / 2W + Mo: 0.3 5.0%, N: more than 0.05 to 0.50%, C + N: 0.20 0.60% (C / N: ≤ 6), 0: ≤ 0.0100%, P: ≤ 0.050%, A1: ≤ 0.050% Is satisfied, and the balance is substantially composed of Fe.
請求項 2のものは、 請求項 1 において、 重量%で、 V: 0.01 0.5% 未満を更に含有している こ とを特徴とする。  Claim 2 is characterized in that, in claim 1, V: less than 0.5% by weight is further contained.
請求項 3のものは、 請求項 1 , 2 の何れかにおいて、 Ni: ≤ 2.0% , Co :≤ 5.0%の 1種又は 2種を更に含有している ことを特徴とする。  Claim 3 is characterized in that in any one of claims 1 and 2, one or two of Ni: ≤ 2.0% and Co: ≤ 5.0% are further contained.
請求項 4のものは、 請求項 :! 〜 3 の何れかにおいて、 Ti :≤ 1.0% , Ta: ≤ 1.0% , B: ≤ 0.010% , Cu: ≤ 1.0 %の 1種又は 2種以上を更 に含有している こ とを特徴とする。  Claim 4 claims:! In any one of ~ 3, one or more of Ti: ≤ 1.0%, Ta: ≤ 1.0%, B: ≤ 0.010%, Cu: ≤ 1.0% .
請求項 5のものは、 請求項 1 4の何れかにおいて、 S:≤0.050% Claim 5 is the invention according to claim 14, wherein S: ≤ 0.050%
Ca: < 0.0100% , Se: ≤ 0.0100% , Te: ≤ 0. 0 lOi
Figure imgf000003_0001
Ca: <0.0100%, Se: ≤ 0.0100%, Te: ≤ 0.0 lOi
Figure imgf000003_0001
Mg: < 0.0100% , Y: ≤ 0. 100%の 1 種又は 2種以上を更に含有して いる とを特徴とする。  Mg: <0.0100%, Y: ≤ 0.10% 100% or more.
0冃求項 6は金型部材に関する もので、 請求項 1 5の何れかの熱 間ェ且鋼から成る ことを特徴とす 。  Claim 6 relates to a mold member, and is characterized in that it is made of hot-rolled steel according to any one of claims 15 to 15.
5冃求項 7 もまた金型部材に関する もので 求項 1 5の何れか の熱間工具鋼から成り、 表層が表面処理によ Ό母材よ り も高耐 A1 溶損性の層に改質処理されている こ とを特徴とする。 5 Claim 7 also relates to the die member, and is made of the hot work tool steel according to any one of claims 15 and the surface layer is modified by a surface treatment into a layer with higher A1 erosion resistance than the base metal. It is characterized by quality treatment.
本発明者は、熱間工具鋼の耐 A1溶損性について種々研究を行った と ころ N量を増加する こ とによって耐 A1溶損性が向上する こ とを 見出した。 但し単に N量を高めた場合、 V量が多いと粗大な 1 次炭窒化物が 形成され、 金型部材として必要な靭性, 耐ヒー トチェック性が低下 してしまう こと、 靭性, 耐ヒー トチェ ック性等の特性の低下を防ぐ ためには、 V量を低減する こ と、 更に加えて C + N量及び ( C/N) 比を 一定の幅に制御する こ とが有効である こ とも併せて見出した。 The present inventor has conducted various studies on the A1 erosion resistance of hot work tool steel, and has found that increasing the amount of N improves the A1 erosion resistance. However, when the N content is simply increased, if the V content is large, coarse primary carbonitrides are formed, and the toughness and heat check resistance required for mold members are reduced. In order to prevent the deterioration of characteristics such as lockability, it is effective to reduce the amount of V and to control the C + N amount and the (C / N) ratio within a certain range. I also found out.
本発明はこのような知見の下になされたものであって N量を増加 する こ と, V量を低減する こと, C + N量, ( C/N) 比を所定範囲内に制 御する こ とを骨子とし、 かかる本発明によ り熱間工具鋼における靭 性,耐ヒー トチェック性を損なう こ となく 耐 A1 溶損性を高める こ と が可能となった。  The present invention has been made based on such knowledge, and it is intended to increase the amount of N, reduce the amount of V, and control the C + N amount and the (C / N) ratio within a predetermined range. Based on this, the present invention has made it possible to increase the A1 erosion resistance without deteriorating the toughness and heat check resistance of the hot work tool steel.
従来、 熱間工具鋼においては Vが必要不可欠の成分と して含有さ れていた。  Conventionally, V has been included as an essential component in hot work tool steels.
例えば JIS SKD61 の場合には、 Vが 0. 8 1. 20%含有され、 また JIS SKD62 の場合、 Vが 0.20 0.60%含有され、 更に JIS SKD8 の場 a には Vが 1.70 2.20%含有されている。  For example, in the case of JIS SKD61, 0.8-1.20% of V is contained, in the case of JIS SKD62, 0.20-0.60% of V is contained, and in the case of JIS SKD8, 1.70 2.20% of V is contained. I have.
これらの熱間工具鋼における Vの働きは、 Vの炭化物によつて硬 さや耐摩耗性を高める こ とにあ り、 また Vの微細な 2 次炭化物は結 晶粒のいわ る ピン止め効果によって結晶粒を微細化し、 靭性の確 保にも寄与している。  The function of V in these hot work tool steels is to increase the hardness and wear resistance by carbides of V, and the fine secondary carbides of V are formed by the pinning effect of crystal grains. It refines crystal grains and contributes to ensuring toughness.
一方で凝固の際に生じる粗大な Vの 1 次炭化物は熱間ェ M.鋼 ける靭性, 耐ヒー トチェッ ク性を損なう といった悪影響もある □ これに対して Nを高レベルで含有させて成る本発明の熱間ェ具鋼 においては 従来必要不可欠とされていた Vの含有を無くす とが 可能であ り この場合においても十分な靭性, 耐ヒー トチェック性 を確保する とが可能である。  On the other hand, the coarse primary carbides of V generated during solidification also have the adverse effect of impairing the toughness and heat check resistance of hot steel. In the hot-rolled steel of the invention, it is possible to eliminate the content of V, which has been indispensable in the past, and in this case, sufficient toughness and heat check resistance can be ensured.
その詳細な理由については必ずしも明確ではないが、 本発明の熱 間工具鋼では 、高含量で含有させた Nが例えば Cr等と微細な窒化物 を形成し、 そしてその微細な窒化物が Vの微細な 2次炭化物に置き 換わつて結晶粒を微細化し、 靭性を確保する とともに耐ヒ ナェ ック性も高めてレ るものと推察される。 Although the detailed reason is not necessarily clear, in the hot work tool steel of the present invention, N contained in a high content forms fine nitrides with, for example, Cr and the fine nitrides form V nitrides. It replaces fine secondary carbides and refines the crystal grains, ensuring toughness and It is presumed that the lockability is improved.
むしろ本発明では、 Vの含有を無くすこ とで Vの粗大な 1 次炭化 物に る亜影響を排除して、 靭性, 耐ヒー チエック性を従前に増 して高める こ とが可能である。  Rather, in the present invention, by eliminating the V content, it is possible to eliminate the sub-effect of the coarse primary carbides of V and further increase the toughness and the heat-etch resistance.
伹し Vは硬さゃ耐摩耗性を高める働きを有しており、 従つて本発 明では硬さゃ耐摩耗性よ り も寧ろ靭性ゃ耐ヒ トチェック性がよ り 求め られる場合には Vの含有を無くす一方 硬さや耐摩耗性を高め たい場 a には Vを一定以下の少ない量で含有させるこ ともでき、 目 的に fc じて何れかを選択する こ とが可能でめる  伹 V has the function of increasing hardness ゃ abrasion resistance.Therefore, in the present invention, if hardness 硬 wear resistance rather than hardness ゃ abrasion resistance is required more, If you want to increase the hardness and abrasion resistance while eliminating V, you can also include V in a small amount below a certain level, and it is possible to select one of them according to fc.
但し V を含有させるにしてもその含有量を 0. 5 %未満の少ない量 と してお < ことが必要である。  However, even if V is contained, it is necessary to make the content less than 0.5%.
のような本発明の熱間工具鋼をダイ力ス h用の金型部材に適用 した場 A 表面処理による表層改質の有無に拘らず金型部材の補修 サイ クルの延長が可能であ り、 製品の寸法 in度を長期間高精度に維 持する とがで る。  When the hot work tool steel of the present invention as described above is applied to a die member for die force h, the repair cycle of the die member can be extended irrespective of the presence or absence of surface layer modification by surface treatment. In addition, the dimension in degree of the product can be maintained with high accuracy for a long time.
また表層改質のための表面処理を省略する とも可能となり 、 こ れに り金型部材のための所要費用を低減する ことができる。  Further, it is possible to omit the surface treatment for modifying the surface layer, thereby reducing the cost required for the mold member.
更に表面処理を省略可能である こ とから 金型を補修する度に表 面処理をし直す手間を省く こ とが可能とな り 補修の頻度を少なく できる とと相俟って金型部材の補修費用の低減も達成する こ とが できる  Furthermore, since the surface treatment can be omitted, it is possible to eliminate the need for reworking the surface treatment every time the mold is repaired, and it is possible to reduce the frequency of the repair, and to reduce the frequency of the repair. Reduced repair costs can also be achieved
但し本 明においては請求項 7 に従って金 部材の表層を表面処 理によ り母材よ り も高耐 A 1 溶損性の層に改質処理する こ ともでき る。  However, in the present invention, according to claim 7, the surface layer of the gold member can be modified into a layer having higher A1 erosion resistance than the base material by surface treatment.
このような改 処理を施すことによつて金型部材における耐溶損 性を更に高める とがでさる。  By performing such a modification, it is possible to further increase the erosion resistance of the mold member.
で表層改質のための表面処理として以下のようなものを例示 できる ( A) 窒化処理 The following can be exemplified as surface treatments for surface layer reforming (A) Nitriding treatment
塩浴窒化 浸硫窒化  Salt bath nitriding Sulfur nitriding
ガス窒化 軟窒化  Gas nitriding Soft nitriding
プラズマ窒化 硬窒化  Plasma nitriding Hard nitriding
2. コーティ ング法  2. Coating method
( A ) C V D法  (A) C V D method
熱 C V D (TiN, TiC 化合物の単層も し く は多層の形成等)  Thermal C V D (TiN, TiC compound single layer or multilayer formation, etc.)
プラズマ C V D (TiN, TiAIN, TiC, TiCN, DLC化合物 の単層も しく は多層の形成等)  Plasma C V D (TiN, TiAIN, TiC, TiCN, DLC compound single layer or multilayer formation, etc.)
( B ) P V D法  (B) PVD method
イオンプレーティ ング (TiN, TiAIN, CrN, TiC, TiCN, DLC化合物の単層もしく は多層の形成等)  Ion plating (single or multiple layers of TiN, TiAIN, CrN, TiC, TiCN, DLC compounds, etc.)
スパッタ リ ング (TiN, TiAIN, CrN, Al203化合物の単 層も し く は多層の形成等) Sputter-ring (TiN, TiAIN, CrN, Al 2 0 3 formed of multi-layered monolayers also rather are compounds, etc.)
( C ) 酸化処理 (Fe 203, Fe 304化合物の単層もしく は多層の 形成等) (C) oxidation (Fe 2 0 3, Fe 3 0 4 monolayers be properly multilayer formation of compounds)
次に本発明における各化学成分の限定理由を以下に詳述する。 C: 0.10〜 0.35%  Next, the reasons for limiting each chemical component in the present invention will be described in detail below. C: 0.10-0.35%
Cは硬さ, 耐摩耗性を確保するために必要な元素であ り 、 熱間ェ 具鋼として十分な硬さ, 耐摩耗性を確保するためには 0.10 %以上の 添加が必要である。  C is an element necessary to secure hardness and wear resistance. To ensure sufficient hardness and wear resistance as a hot-work steel, it is necessary to add 0.10% or more.
但し過度に添加した場合は溶製時に粗大な共晶炭化物が生成する ことや、 焼入時に固溶しない炭化物が増加する こ とによ り靭性や耐 ヒー トチェック性の低下を招く ため上限を 0.35%とする。  However, if added excessively, coarse eutectic carbides are formed during smelting, and carbides that do not form a solid solution during quenching increase, leading to a decrease in toughness and heat check resistance. 0.35%.
Si : <0.80%  Si: <0.80%
S i は脱酸元素と して必要な元素である。 また被削性及び焼戻し軟 化抵抗性を高めるためにも有効な元素である。  Si is an element required as a deoxidizing element. It is also an effective element for improving machinability and temper softening resistance.
但し添加量が多い場合には靭性ゃ耐ヒー トチェック性が低下する ことから 0.80%未満とする必要がある。望ま しく は 0.10超〜 0.50% とする。 However, when the amount of addition is large, the toughness ヒ ー heat check resistance decreases. Therefore, it must be less than 0.80%. Desirably, it is more than 0.10 to 0.50%.
Mn: ≤ 3.0%  Mn: ≤ 3.0%
Mnは脱酸元素として、 また焼入性及び硬さの確保のために必要な 成分であ り 、望まし く は 0.02%以上添加する。よ り望ましく は 0.1% 以上、 更に望ましく は 0.3%以上とする。  Mn is a component necessary as a deoxidizing element and for ensuring hardenability and hardness, and is desirably added in an amount of 0.02% or more. More preferably, it is 0.1% or more, and still more preferably 0.3% or more.
. 一方添加量が多い場合には加工性が低下する ことから 3.0 %以下 とする。 望ましく は 2.0%以下、 更に望ましく は 1.0%以下とする。  On the other hand, if the addition amount is large, the workability is reduced, so the content should be 3.0% or less. Preferably it is 2.0% or less, more preferably 1.0% or less.
Cr: 2.0〜 7.0%未満  Cr: 2.0 to less than 7.0%
Crは炭化物を形成して基地の強化ゃ耐摩耗性を向上させるため、 また焼入性確保のために必要な元素であ り 、 2.0 %以上添加する。 望 ましく は 3.0%以上、 更に望ましく は 4.0%以上とする。  Cr is an element necessary for strengthening the matrix by forming carbides, improving wear resistance, and ensuring hardenability, and is added in an amount of 2.0% or more. It is preferably at least 3.0%, more preferably at least 4.0%.
但し過度の添加は焼入性や熱間強度の低下を招く ため 7.0 %未満 とする。 望ましく は 6.5%以下とする。  However, excessive addition causes a decrease in hardenability and hot strength, so it is set to less than 7.0%. Preferably, it should be 6.5% or less.
1/2W + MO : 0.3〜 5.0%  1 / 2W + MO: 0.3-5.0%
炭化物を形成して基地の強化ゃ耐摩耗性を向上させるため、 また 焼入性確保のために必要で、 このような効果を得るためには 0.3% 以上の添加が必要である。  It is necessary to form carbides to strengthen the matrix and improve wear resistance and to ensure hardenability. To obtain such an effect, it is necessary to add 0.3% or more.
但し過度の添加は靭性の低下を招く ため上限を 5.0 %とする。 尚 Mo と Wは同等の効果をもたら し、 Wは Moの約 2倍の原子量で ある ことから本発明では Mo当量で規定する。添加方法は単独でも複 合でも良い。  However, an excessive addition causes a decrease in toughness, so the upper limit is made 5.0%. In addition, Mo and W have the same effect, and W has about twice the atomic weight of Mo. Therefore, in the present invention, it is defined by the Mo equivalent. The addition method may be used alone or in combination.
N: 0.05超〜 0.50%  N: Over 0.05 to 0.50%
耐 A1溶損性及び硬さを高めるために必要な元素である。 この耐 A1溶損性の向上には微細な窒化物, 炭窒化物の生成が影響している 可能性がある。  A1 is an element necessary to increase the erosion resistance and hardness. The formation of fine nitrides and carbonitrides may have an effect on the improvement of A1 erosion resistance.
その効果を得るためには 0.05 %を超える添加が必要である。  To obtain the effect, it is necessary to add more than 0.05%.
但し過度に添加すると粗大な共晶炭窒化物量が増加して靭性, 謝 ヒー トチェック性が低下する こと、 及び合金組成によ り添加可能な 限界量が存在するため上限を 0.50 %とする。 However, if added excessively, the amount of coarse eutectic carbonitride increases and the toughness and heat check properties decrease, and it can be added depending on the alloy composition. Since there is a limit, the upper limit is set to 0.50%.
CIN: 0.20〜 0.60%  CIN: 0.20-0.60%
共晶炭窒化物の生成を抑えて靭性を向上させるために C+N量を 0.60 %以下に抑える こ とが必要である。  In order to suppress the formation of eutectic carbonitride and improve toughness, it is necessary to keep the C + N content below 0.60%.
但し C + N量が低過ぎる と硬さが低下するため、 下限を 0.20 %とす る。 望ましく は 0.30〜 0.45%とする。  However, if the amount of C + N is too low, the hardness will decrease, so the lower limit is set to 0.20%. Desirably, it should be 0.30 to 0.45%.
C/N: ≤ 6  C / N: ≤ 6
耐 A1溶損性を向上させるためには Nを添加しつつ Cを低減する こ とが有効である こ と、 即ち C/N を 6以下に制御する こ とによ り 、 耐 AI 溶損性が大幅に向上する ことを見出した。 その理由と して微細な 窒化物,炭窒化物量が増加している ことが可能性として考え られる。  In order to improve A1 erosion resistance, it is effective to reduce C while adding N. That is, by controlling C / N to 6 or less, AI erosion resistance is improved. Was found to be significantly improved. One possible reason for this is that the amount of fine nitrides and carbonitrides is increasing.
0 : ≤ 0.0100%  0: ≤ 0.0100%
0 は靭性ゃ耐ヒー トチェック性を低下させるため低減する こ とが 好ましい元素であるが、 不可避的に含有されて来る元素であ り、 本 発明では 0.0100 %以下に規制する。望ましく は 0.0030 %以下とする。  0 is an element that is preferably reduced in order to reduce toughness and heat check resistance, but is an element that is unavoidably contained, and is regulated to 0.0100% or less in the present invention. Preferably, the content is 0.0030% or less.
P : ≤ 0.050 %  P: ≤ 0.050%
P は靭性ゃ耐ヒー トチェック性を低下させるため低減する ことが 好ましい元素であるが、 不可避的に含有されて来る元素であ り、 本 発明では 0.050%以下とする。 0.015%以下に低減する こ とが望まし い。  P is an element that is preferably reduced in order to reduce toughness and heat check resistance, but is an element that is inevitably contained, and is set to 0.050% or less in the present invention. It is desirable to reduce it to 0.015% or less.
A1 : ≤ 0.050 %  A1: ≤ 0.050%
A1 は強脱酸材として有効な元素であ り、 また結晶粒粗大化防止や 窒化性向上のために有効であ り、 望ましく は 0. 001 %以上添加する。  A1 is an element effective as a strong deoxidizing material, and is also effective for preventing crystal grain coarsening and improving nitriding properties, and is desirably added at 0.001% or more.
但し過度に添加する と材料の清浄度が低下したり被削性が低下す るため 0.050 %以下に限定する。  However, if added excessively, the cleanliness of the material is reduced and the machinability is reduced, so the content is limited to 0.050% or less.
V: 0.01〜 0.5%未満  V: 0.01 to less than 0.5%
Vは炭化物を形成し、 基地の強化ゃ耐摩耗性を向上させるために 有効であ り、 また微細な炭化物の形成によ り結晶粒の微細化、 ひい ては靭性の向上にも有効であるため、 必要に応じて 0.01 %以上添加 する こ とができる。 V forms carbides and is effective in strengthening the matrix and improving wear resistance.In addition, the formation of fine carbides is also effective in refining crystal grains and thus improving toughness. Therefore, add 0.01% or more as necessary can do.
但し過度に添加する と溶製時に粗大な共晶炭化物, 炭窒化物が生 成する こと、 及び焼入時に固溶せずに残留する炭化物, 炭窒化物量 が増加する ことによって靭性, 耐ヒー トチヱック性の低下を招く た め、 添加量を 0.5%未満とする。 望ましく は 0.4%以下、 更に望まし く は 0.3%以下とする。  However, if added excessively, coarse eutectic carbides and carbonitrides are generated during smelting, and the amount of carbides and carbonitrides remaining without solid solution during quenching increases, resulting in increased toughness and heat resistance. The content is set to less than 0.5% in order to reduce the performance. Preferably it is 0.4% or less, and more preferably 0.3% or less.
Ni : ≤ 2.0%  Ni: ≤ 2.0%
N i は焼入性の向上、 基地の強化に有効であ り、 必要に応じて添加 する こ とができる。 その際の望ましい量は 0. 01%以上であ り、 よ り望ましく は 0. 03%以上、更に望ましく は 0. 05%以上とする。 但し過度に添加する と加工性が低下するため上限を 2.0 %とする 必要がある。 望ましく は 1. 5%以下、 更に望ましく は 1.0%以下と する。  Ni is effective in improving hardenability and strengthening the base, and can be added as necessary. In this case, the desirable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more. However, if added excessively, the workability is reduced, so the upper limit must be set to 2.0%. Preferably it is 1.5% or less, more preferably 1.0% or less.
Co : ≤ 5.0%  Co: ≤ 5.0%
Co は基地の強化、 耐摩耗性向上に有効であ り、 必要に応じて添加 する こ とができる。 その際の望ましい量は 0.01%以上であ り、 よ り 望ましく は 0.03%以上、 更に望ましく は 0.05%以上とする。  Co is effective for strengthening the matrix and improving the wear resistance, and can be added as needed. In this case, the preferable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
但し過度に添加する と加工性が低下するため上限を 5.0 %とする 必要がある。 望ましく は 4.0%以下、 更に望ましく は 3.0%以下とす る。  However, excessive addition lowers the workability, so the upper limit must be set to 5.0%. Preferably it is 4.0% or less, more preferably 3.0% or less.
Ti : ≤ 1.0%  Ti: ≤ 1.0%
T i は炭窒化物を形成して焼入れ時の結晶粒粗大化を防止する効 果があ り、 必要に応じて添加する こ とができる。 その際の望ま しい 量は 0.01%以上であ り、 よ り望ましく は 0.03%以上、 更に望ま しく は 0.05%以上とする。  T i has the effect of forming carbonitrides to prevent crystal grain coarsening during quenching, and can be added as necessary. The desirable amount at that time is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
但し過度に添加する と粗大な炭窒化物が生成し、 靭性ゃ耐ヒー 卜 チェック性を低下させるため上限を 1.0%とする必要がある。 望ま しく は 0.7%以下、 更に望まし く は 0.5%以下とする。  However, if added excessively, coarse carbonitrides are formed, and the upper limit must be set to 1.0% in order to reduce toughness and heat check resistance. Preferably it is 0.7% or less, more preferably 0.5% or less.
Ta : ≤ 1.0% Taは炭窒化物を形成して焼入れ時の結晶粒粗大化を防止する効 果があ り 、 必要に応じて添加する こ とができる。 その際の望ましい 量は 0.01%以上であ り、 よ り望ましく は 0.03%以上、 更に望ましく は 0.05%以上とする。 Ta: ≤ 1.0% Ta has the effect of forming carbonitrides to prevent crystal grain coarsening during quenching, and can be added as necessary. In this case, the preferable amount is 0.01% or more, more preferably 0.03% or more, and further preferably 0.05% or more.
但し過度に添加すると粗大な炭窒化物が生成し、 靭性ゃ耐ヒー ト チェック性を低下させるため上限を 1.0 %とする必要がある。 望ま し く は 0.7%以下、 更に望ましく は 0.5%以下とする。  However, if added excessively, coarse carbonitrides are formed, and the upper limit must be set to 1.0% in order to reduce toughness and heat check resistance. Preferably it is 0.7% or less, more preferably 0.5% or less.
B: ≤ 0.010%  B: ≤ 0.010%
Bは焼入性を向上させるのに有効な元素であ り、 必要に応じて添 加する こ とができる。 その際の望ま しい量は 0.0001 %以上であ り、 よ り望ましく は 0.0003%以上、更に望ましく は 0.0005%以上とする。  B is an element effective for improving hardenability and can be added as needed. The desirable amount at that time is 0.0001% or more, more preferably 0.0003% or more, and still more preferably 0.0005% or more.
但し過度に添加すると熱間加工性や靭性が低下するので上限を 0.010%とする必要がある。 望ましく は 0.007%以下、 更に望ましく は 0.005 %以下とする。  However, if added excessively, the hot workability and toughness decrease, so the upper limit must be made 0.010%. Preferably it is 0.007% or less, more preferably 0.005% or less.
Cu: ≤ 1.0%  Cu: ≤ 1.0%
Cuは基地の強化に有効であ り、 必要に応じて添加する こ とができ る。 その際の望ましい量は 0.01%以上であ り、 よ り望ま しく は 0.03%以上、 更に望ましく は 0.05%以上とする。  Cu is effective in strengthening the matrix and can be added as needed. In this case, the desirable amount is 0.01% or more, more preferably 0.03% or more, and still more preferably 0.05% or more.
但し過度に添加すると靭性が低下するため上限を 1.0 %とする必 要がある。 望ましく は 0.7%以下、 更に望ましく は 0.5%以下とする。  However, if added excessively, the toughness decreases, so the upper limit must be set to 1.0%. Preferably it is 0.7% or less, more preferably 0.5% or less.
S: ≤ 0.050 %  S: ≤ 0.050%
Sは不可避的に含有される元素であるが、 被削性向上に有効であ り必要に応じて添加する ことができる。 但し過度に添加する と靭性 が低下するため上限を 0.050 %とする。  S is an element that is inevitably contained, but is effective in improving machinability and can be added as necessary. However, if added excessively, the toughness decreases, so the upper limit is made 0.050%.
Ca: ≤ 0.0100%  Ca: ≤ 0.0100%
Caは被削性向上に有効な元素であ り、 必要に応じて添加する こ と ができる。 但し過度に添加する と靭性が低下するため上限を  Ca is an element effective for improving machinability, and can be added as necessary. However, if added excessively, the toughness will decrease.
0.0100%とする。 0.0100%.
Se: ≤ 0.0100% Se は被削性向上に有効な元素であ り、 必要に応じて添加する こ と ができる。 但し過度に添加する と靭性が低下するため上限を Se: ≤ 0.0100% Se is an element effective for improving machinability and can be added as necessary. However, if added excessively, the toughness will decrease.
0. 0100%とする。 0.0100%.
Te : ≤ 0. 0100%  Te: ≤ 0.0100%
Te は被削性向上に有効な元素であ り、 必要に応じて添加する こ と ができる。 但し過度に添加する と靭性, 熱間加ェ性が低下するため 上限を 0. 0100%とする。  Te is an element effective in improving machinability and can be added as needed. However, if added excessively, the toughness and hot workability deteriorate, so the upper limit is made 0.0100%.
Zr : ≤ 0. 0100%  Zr: ≤ 0.0100%
Zr は被削性向上に有効な元素であ り、 必要に応じて添加する こ と ができる。 但し過度に添加する と靭性が低下するため上限を  Zr is an element effective in improving machinability and can be added as needed. However, if added excessively, the toughness will decrease.
0. 0100% とする。 0.00%.
Mg: ≤ 0. 0100%  Mg: ≤ 0.0100%
Mgは溶製時に脱酸, 脱硫元素として作用する。 また高温での強度, 延性向上にも効果がある。 ,  Mg acts as a deoxidizing and desulfurizing element during melting. It is also effective in improving strength and ductility at high temperatures. ,
必要に応じて添加する こ とができるが、 過度に添加する と熱間加 ェ性が低下するため上限を 0. 0100%とする。  It can be added as needed, but if added excessively, the hot workability decreases, so the upper limit is made 0.0100%.
Y: ≤ 0. 100%  Y: ≤ 0. 100%
Yは金型表面に酸化被膜を形成し、 耐摩耗性, 耐焼付き性, 耐ヒ ー トチェック性を改善する効果があ り、 必要に応じて添加する こ と ができる。 但し過度に添加する と靭性が低下するので上限を  Y forms an oxide film on the mold surface, has the effect of improving wear resistance, seizure resistance and heat check resistance, and can be added as necessary. However, if added excessively, the toughness will decrease.
0. 100%とする。 0. 100%.
発明を実施するための最良の態様 BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施例を以下に詳述する。  Next, examples of the present invention will be described in detail below.
<実施例 1 >  <Example 1>
表 1 に示す組成の鋼 50kgを鋼塊中の窒素濃度を高めるため、溶解, 铸込みの装置全体が 1 0気圧まで加圧可能な加圧溶解炉で溶解し、 铸造した 。但し表 1 中の従来鋼については 50kgを真空溶解炉で溶解 し 、 銬造した。 ,
Figure imgf000012_0001
続いて 1230°C x 10 hrの条件でソーキングを行い、 その後 60mm 角材に鍛造し、 870°C X3hr→徐冷の条件で焼鈍しを行い、 A1溶損試 験片 硬さ P 験 h , シャ ルピー試験片, ヒー トチェック 式験片, 咼 ί ί皿曰大越式摩耗 験片の各試験片を荒加工した。
In order to increase the nitrogen concentration in the steel ingot, 50 kg of steel with the composition shown in Table 1 was melted and manufactured in a pressure melting furnace that can pressurize the entire melting and mixing equipment to 10 atm. However, 50 kg of the conventional steel in Table 1 was melted in a vacuum melting furnace and manufactured. ,
Figure imgf000012_0001
Subsequently, soaking was performed at 1230 ° C x 10 hr, then forged into a 60 mm square bar, annealed at 870 ° C for 3 hr and then slowly cooled, and A1 erosion test was performed. Specimens Hardness P test h, Charpy test specimen, heat check type test specimen, and 咼 ί 曰 曰 大 大 越 大 各 荒 荒 荒 荒 荒 荒 荒.
その後、 以下の表 2 に示す条件で焼入焼戻し (但し硬さ試験片に ついては後述の ( B ) の条件で焼入焼戻し) を行レ 続いて A1 溶損 試験片 , 硬さ試験片, シャルピー試験片, ヒー 卜チエック試験片, 高 曰  Then, quenching and tempering were performed under the conditions shown in Table 2 below (however, the hardness test pieces were quenched and tempered under the conditions of (B) below). Specimen, Heat Check Specimen, Taka
ism.大越式摩耗試験片の各試験片を精加工した  ism.Each Ogoshi abrasion test specimen
こ こで A1 溶損試験片は 10mmX60mmL とし、 硬さ試験片は 1 Omm 角 X 1 Omm、 またシャルビ一試験片は J I S 3号試験片、 ヒー トチエツ ク試験片は Φ 15nunX5mm とし、 高温大越式摩耗試験片は 1 Omm x 17mm x 30mm とした。 表
Figure imgf000013_0001
Here, A1 erosion test piece is 10 mm x 60 mmL, hardness test piece is 1 Omm square x 1 Omm, Charbie test piece is JIS No.3 test piece, heat check test piece is Φ15nunX5 mm, high temperature overpass wear The test piece was 1 Omm x 17 mm x 30 mm. table
Figure imgf000013_0001
そして各試験片について以下の試験条件で A1 溶損試験,硬さ試験, シャルピー試験, ヒー トチェック試験を実施した。 The A1 erosion test, hardness test, Charpy test, and heat check test were performed on each specimen under the following test conditions.
その結果が表 3 に示してある。  The results are shown in Table 3.
( A ) A1 溶損試験  (A) A1 erosion test
A 1 溶湯中に試験片の 3 Ommを浸漬し、 試験片中心が直径 3 Ommの円 描く よ に回転させて A1 による溶損状況を調査した。  3 Omm of the test piece was immersed in the A1 molten metal, and the center of the test piece was rotated so as to draw a circle with a diameter of 3 Omm, and the state of melting by A1 was investigated.
攀 A1 合金 : B390 (Al-17Si-4. 5Cu)  Climbing A1 alloy: B390 (Al-17Si-4.5Cu)
• 溶湯温度 : 750°C  • Melt temperature: 750 ° C
• 回転数 : 200rpm  • Speed: 200rpm
• 浸漬時間 : 30分 • Immersion time: 30 minutes
it験後の Pit験片を飽和 NaOH水溶液に浸漬して付着した A1 合金を 去し 、 重量を測定して耐溶損性を下式による溶損率で評価した。 溶損率 ( ) = (試験前重量一試験後重量) ÷ (試験前の Φ 1 Omm X30mmL部の重量) xlOO The Pit specimen after the it test was immersed in a saturated NaOH aqueous solution to remove the attached A1 alloy, and the weight was measured to evaluate the erosion resistance by the erosion rate according to the following equation. Melting rate () = (weight before test-weight after test) ÷ (Φ 1 Omm before test) X30mmL part weight) xlOO
( B ) 焼入焼戻し硬さ  (B) Hardening and tempering hardness
ソル ト炉にて下記の条件で熱処理を実施後、 ロ ックウェル硬さを 測定した。  After heat treatment in a salt furnace under the following conditions, the Rockwell hardness was measured.
• 焼入れ : 1030°C X30分, 油冷  • Quenching: 1030 ° C for 30 minutes, oil cooled
• 焼戻し : 650DC X 1時間, 空冷 X 2 回 • Tempering: 650 D CX for 1 hour, air cooling X 2 times
( C ) シャルピー試験  (C) Charpy test
鋼材の幅方向から試験片を採取 (T方向) し、 JIS Z 2242 に従い シャルピー衝擊値を評価した。  Specimens were sampled from the width direction of the steel material (T direction), and the Charpy impact value was evaluated in accordance with JIS Z 2242.
( D ) ヒー トチェック試験  (D) Heat check test
高周波加熱、 水冷式のヒー トチェ ック試験機を用いて評価した。 具体的には表層部の 700°C加熱 »水冷を 1000回繰り返した後、 試料 表面に発生するク ラ ックの深さ, 本数を測定し、 クラック平均長さ で耐ヒー トチェッ ク性を評価した。  Evaluation was performed using a high-frequency heating and water-cooled heat check tester. Specifically, after repeating the heating of the surface layer at 700 ° C »water cooling 1000 times, the depth and number of cracks generated on the sample surface are measured, and the heat check resistance is evaluated based on the average crack length. did.
( E ) 高温大越式摩耗試験  (E) High temperature Ogoshi abrasion test
700°Cでの大越式摩耗試験の結果をもとに、従来鋼 No.27の耐摩耗 性を 100 と して、 他の鋼種の耐摩耗性を指数で表示した。 Based on the results of the Ogoshi-type wear test at 700 ° C, the wear resistance of conventional steel No. 27 was set to 100, and the wear resistance of other steel types was indicated by an index.
Figure imgf000015_0001
表 3の結果に見られるよ う に、 No. 27, 28, 29の従来鋼の場合、 何れも耐溶損性 (溶損率) が悪く 、 また靭性 (シャルピー衝撃値), 耐ヒー トチェ ッ ク性 (平均ク ラ ッ ク長さ) の何れも不十分な値であ る。 また一方、 比較鋼においても No. 2 1, 23 , 24 は耐溶損性 (溶損率) が悪く 、 No. 22, 25 , 26 は靭性 (シャルピー衝撃値) が低く 、 No. 24 25 , 26 は耐ヒー トチェック性 (平均ク ラ ッ ク長さ) が不十分である のに対し、 実施例の場合耐溶損性, 硬さ, 靭性, 耐ヒー トチェック 性, 耐摩耗性の何れも良好な特性が得られている。 中でもと りわけ N量が多い No. 3, 1 2 , 14 , 17 は耐溶損性が特に優れている。
Figure imgf000015_0001
As can be seen from the results in Table 3, the conventional steels of Nos. 27, 28 and 29 all have poor erosion resistance (melt loss rate), and have toughness (Charpy impact value) and heat check resistance. Properties (average crack length) are all inadequate values. On the other hand, in the comparative steels, Nos. 21, 23 and 24 have poor erosion resistance (melting rate), and Nos. 22, 25 and 26 have low toughness (Charpy impact value). Has insufficient heat check resistance (average crack length), but in the case of Examples, all of the erosion resistance, hardness, toughness, heat check resistance, and wear resistance are good. Characteristics are obtained. In particular, No. 3, 12, 14, and 17, which have a large N content, have particularly excellent erosion resistance.
また V無添加の No. 3 , 5 , 1 3 については高い靭性 (シャルピー衝 撃値) が得られている。  In addition, high toughness (Charpy impact value) was obtained for Nos. 3, 5, and 13 with no V added.
ぐ実施例 2 > Example 2>
表 4 に示す組成の鋼 (実施例及び従来鋼) について、 実施例 1 と 同様な加圧溶解炉 (実施例) と真空誘導炉 (従来鋼) にて 50kgのィ ンゴッ トを溶製し、 Φ 20mniの丸材に鍛造し、 その後 870°Cで焼鈍し 処理を実施した。 For a steel having the composition shown in Table 4 (Example and conventional steel), a 50 kg ingot was melted in the same pressure melting furnace (Example) and vacuum induction furnace (Conventional steel) as in Example 1, and It was forged into Φ20mni round material and then annealed at 870 ° C.
Figure imgf000017_0001
Figure imgf000017_0001
続いて実施例, 従来鋼ともに 20 Ommの長さに 3本ずつ切断後、 旋 削によ り 15mmx 200mmに荒加工し、 続いて 1030°C x lhr の条件で 焼入れ後、 580 590^ X8hr の条件で焼戻しを 2 回行い、 硬さを HRC38, 45, 52 にそれぞれ調整した。  Subsequently, after cutting three pieces each of the Example and the conventional steel to a length of 20 Omm, rough-cut to 15 mm x 200 mm by turning, then quenched at 1030 ° C x lhr, and then 580 590 ^ Tempering was performed twice under the conditions, and the hardness was adjusted to HRC38, 45, and 52, respectively.
そしてそれらを铸抜ピン形状に仕上加工し、 続いて表層改質のた めの表面処理を実施した。 こ こで表面処理は、 実施例, 従来鋼ともに HRC 38 の素材について は 525 °C X 2. 51i r の条件でガス軟窒化処理を行い、 また HRC 52 の素材 については P V D処理によって C rN被膜を形成した。 Then, they were finished into punched pin shapes, and surface treatment for surface layer modification was performed. Here, in the surface treatment, gas nitrocarburizing treatment was performed on the HRC 38 material for both the working example and conventional steel at 525 ° C X 2.51ir, and for the HRC 52 material, a CrN coating was formed by PVD treatment. Formed.
尚 HRC45 の素材については表面処理不実施とした。  No surface treatment was applied to HRC45 material.
A 1 ダイカス ト金型 (シリ ンダーへッ ド型) に上記錡抜ピンを組み 込んで铸造試験を行った。 その際表面処理無しの铸抜ピンについて は 5000 ショ ッ ト、 表面処理を実施した铸抜ピンについては 20000 ショ ッ 卜まで使用 した。  A1 A die-casting die (cylinder head type) was assembled with the above-mentioned punching pin, and a forging test was performed. At that time, 5000 shots were used for unpinned pins without surface treatment, and up to 20000 shots for unpinned pins after surface treatment.
そして铸造前の鐯抜ピン重量及び錶造後の踌抜ピン重量を測定し た。  Then, the weight of the punched pin before and after the fabrication was measured.
このとき铸造後の鎊抜ピンは飽和 Na OH水溶液に浸漬し、付着した A 1 合金を除去してから重量を測定した。  At this time, the punched pin after fabrication was immersed in a saturated NaOH aqueous solution to remove the attached A 1 alloy, and then weighed.
そして (試験前重量) 一 (試験後重量) によ り溶損による減量を 求め、 溶損性の評価を行った。  The weight loss due to erosion was determined from (weight before test) and (weight after test), and the erosion resistance was evaluated.
結果が表 5 に示してある。 表 5 The results are shown in Table 5. Table 5
Figure imgf000018_0001
表 5 の結果から、 実施例において、 表層改質のための表面処理を 実施する ことによって溶損減量を更に効果的に低減せしめ得る こ と が分る。
Figure imgf000018_0001
From the results shown in Table 5, it can be seen that, in the examples, the surface loss for the surface layer reforming can be reduced more effectively.
以上本発明の実施例を詳述したがこれはあく まで一例示であ り、 本発明はその趣旨を逸脱しない範囲において種々変更を加えた態様 で実施可能である。  Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in various modified forms without departing from the spirit thereof.

Claims

8  8
請求の範囲  The scope of the claims
匱%で、  In a rice bowl,
C : 0. 10〜 0.35%  C: 0.10 to 0.35%
Si : <0.80%  Si: <0.80%
Mn: ≤ 3.0%  Mn: ≤ 3.0%
Cr: 2.0〜7.0%未満  Cr: 2.0 to less than 7.0%
1/2W+M0: 0.3〜 5.0%  1 / 2W + M0: 0.3-5.0%
N : 0.05超〜 0.50%  N: Over 0.05 to 0.50%
C+N: 0.20〜0.60% (但し C/N: 6)  C + N: 0.20 to 0.60% (however, C / N: 6)
0 : ≤ 0.0100%  0: ≤ 0.0100%
P : ≤ 0.050 %  P: ≤ 0.050%
A1 : ≤ 0.050 %  A1: ≤ 0.050%
を満たし、残部が実質的に Fe から成る組成を有する こ とを特徴と する耐溶損性に優れた熱間工具鋼。  A hot work tool steel excellent in erosion resistance, characterized by satisfying the above condition and having a composition substantially consisting of Fe.
2. 請求の範囲第 1 項において、 重量%で、 2. In claim 1, in weight percent,
V : 0.01〜 0.5%未満  V: 0.01 to less than 0.5%
を更に含有している ことを特徴とする耐溶損性に優れた熱間工具 鋼  Hot work tool steel with excellent erosion resistance, characterized by further containing
3. 請求の範囲第 1 , 2項の何れかにおいて、  3. In any of Claims 1 and 2,
Ni: ≤ 2.0%  Ni: ≤ 2.0%
Co: ≤ 5.0%  Co: ≤ 5.0%
の 1 種又は 2種を更に含有している こ とを特徴とする耐溶損性に 優れた熱間工具鋼。  A hot work tool steel excellent in erosion resistance, characterized by further containing one or two of the following.
4. 請求の範囲第 1 〜 3項の何れかにおいて、  4. In any one of claims 1 to 3,
•Ti · ≤ 1. 0%  • Ti · ≤ 1.0%
Ta: ≤ 1. 0%  Ta: ≤ 1.0%
B : ≤ 0. 010%  B: ≤ 0.010%
Cu: ≤ 1. 0%  Cu: ≤ 1.0%
の 1 種又は 2種以上を更に含有している こ とを特徴とする耐溶損 性に優れた熱間工具鋼Dissolution resistance characterized by further containing one or more of the following: Hot tool steel with excellent heat resistance
. 請求の範囲第 1 〜 4項の何れかにおいて、 In any one of claims 1 to 4,
S ≤ 0. 050 %  S ≤ 0.050%
Ca ' ≤ 0. 0100%  Ca '≤ 0.0100%
Se : ≤ 0. 0100%  Se: ≤ 0.0100%
Te : ≤ 0. 0100%  Te: ≤ 0.0100%
Zr : ≤ 0. 0100%  Zr: ≤ 0.0100%
Mg: ≤ 0. 0100%  Mg: ≤ 0.0100%
Y : ≤ 0. 100%  Y: ≤ 0. 100%
の 1 種又は 2種以上を更に含有している ことを特徴とする耐溶損 性に優れた熱間工具鋼。A hot work tool steel excellent in erosion resistance, characterized by further containing one or more of the following.
. 請求の範囲第 1 〜 5項の何れかの熱間工具鋼から成る ことを 特徴とする耐溶損性に優れた金型部材。A mold member having excellent erosion resistance, comprising the hot work tool steel according to any one of claims 1 to 5.
. 請求の範囲第 1 〜 5項の何れかの熱間工具鋼から成り、 表層 が表面処理によ り母材よ り も高耐 A1 溶損性の層に改質処理され ている ことを特徴とする耐溶損性に優れた金型部材。 The hot-work tool steel according to any one of claims 1 to 5, characterized in that the surface layer is modified by a surface treatment into a layer with higher A1 erosion resistance than the base metal. Mold member with excellent erosion resistance.
PCT/JP2003/016304 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting WO2005061747A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CNA2003801108403A CN1878881A (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting
US10/583,783 US20070110610A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent resistance to melting loss
PCT/JP2003/016304 WO2005061747A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting
EP03782816A EP1696045A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting
AU2003292572A AU2003292572A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/016304 WO2005061747A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting

Publications (1)

Publication Number Publication Date
WO2005061747A1 true WO2005061747A1 (en) 2005-07-07

Family

ID=34708590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016304 WO2005061747A1 (en) 2003-12-19 2003-12-19 Hot work tool steel and mold member excellent in resistance to melting

Country Status (5)

Country Link
US (1) US20070110610A1 (en)
EP (1) EP1696045A1 (en)
CN (1) CN1878881A (en)
AU (1) AU2003292572A1 (en)
WO (1) WO2005061747A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7662980B2 (en) 2006-10-20 2010-02-16 Scinopharm Singapore Pte Ltd. Crystalline forms of docetaxel and process for preparation thereof
AU2007232532B2 (en) * 2006-04-06 2011-06-02 Uddeholms Ab Hot-working steel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101440462B (en) * 2007-11-21 2011-05-11 宝山钢铁股份有限公司 Economical long service life material for mechanical press forging die and manufacturing method thereof
JP2011001572A (en) * 2009-06-16 2011-01-06 Daido Steel Co Ltd Tool steel for hot work and steel product using the same
CN101709407B (en) * 2009-11-06 2011-09-28 江阴新华宏铜业有限公司 Preparation method of ferrimanganic copper-nickel tube
BRPI0904607A2 (en) * 2009-11-17 2013-07-02 Villares Metals Sa high resistance to tempering action
SE536596C2 (en) * 2011-03-04 2014-03-18 Uddeholms Ab Hot work steel and a process for producing a hot work steel
EP2824212B1 (en) 2013-07-12 2015-12-09 Energietechnik Essen GmbH Hot-working steel
CN104164620B (en) * 2014-07-25 2016-08-17 合肥市瑞宏重型机械有限公司 A kind of steel alloy for cutting parts and manufacture method thereof
SE1651268A1 (en) * 2016-09-26 2018-03-27 Uddeholms Ab Hot work tool steel
US11377718B2 (en) * 2018-10-12 2022-07-05 Daido Steel Co., Ltd. Steel for mold
CN111621719A (en) * 2020-07-07 2020-09-04 西安工业大学 High-strength heat-resistant die-casting aluminum alloy and smelting method
JP2022180208A (en) * 2021-05-24 2022-12-06 大同特殊鋼株式会社 Steel material and steel product using the same
CN114250422B (en) * 2021-12-31 2022-09-30 安徽哈特三维科技有限公司 Die steel with good toughness and high thermal conductivity and preparation method thereof
CN115786819A (en) * 2022-12-09 2023-03-14 广东新兴铸管有限公司 Large-pipe-diameter pipe die with long service life and high metallurgical quality and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654379B2 (en) * 1977-06-20 1981-12-25
US4729872A (en) * 1985-09-18 1988-03-08 Hitachi Metals, Ltd. Isotropic tool steel
JPH08164465A (en) * 1994-12-12 1996-06-25 Daido Steel Co Ltd Steel for die of die casting in small quantity production
JP2001181782A (en) * 1999-12-24 2001-07-03 Sanyo Special Steel Co Ltd Hot work tool steel excellent in weldability
JP2002121643A (en) * 2000-10-16 2002-04-26 Hitachi Metals Ltd Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die
JP2003154437A (en) * 2001-11-15 2003-05-27 Sumitomo Metal Ind Ltd Metallic mold for casting and its producing method
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2004019001A (en) * 2002-06-20 2004-01-22 Daido Steel Co Ltd Tool steel for hot-working superior in erosion resistance, and die member

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458703A (en) * 1991-06-22 1995-10-17 Nippon Koshuha Steel Co., Ltd. Tool steel production method
US6479013B1 (en) * 2000-08-10 2002-11-12 Sumitomo Metal Industries, Ltd. Casting components made from a tool steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654379B2 (en) * 1977-06-20 1981-12-25
US4729872A (en) * 1985-09-18 1988-03-08 Hitachi Metals, Ltd. Isotropic tool steel
JPH08164465A (en) * 1994-12-12 1996-06-25 Daido Steel Co Ltd Steel for die of die casting in small quantity production
JP2001181782A (en) * 1999-12-24 2001-07-03 Sanyo Special Steel Co Ltd Hot work tool steel excellent in weldability
JP2002121643A (en) * 2000-10-16 2002-04-26 Hitachi Metals Ltd Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die
JP2003154437A (en) * 2001-11-15 2003-05-27 Sumitomo Metal Ind Ltd Metallic mold for casting and its producing method
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2004019001A (en) * 2002-06-20 2004-01-22 Daido Steel Co Ltd Tool steel for hot-working superior in erosion resistance, and die member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007232532B2 (en) * 2006-04-06 2011-06-02 Uddeholms Ab Hot-working steel
US7662980B2 (en) 2006-10-20 2010-02-16 Scinopharm Singapore Pte Ltd. Crystalline forms of docetaxel and process for preparation thereof
US8357811B2 (en) 2006-10-20 2013-01-22 ScnioPharm Singapore PTE Ltd. Crystalline forms of docetaxel and process for preparation thereof

Also Published As

Publication number Publication date
CN1878881A (en) 2006-12-13
US20070110610A1 (en) 2007-05-17
AU2003292572A1 (en) 2005-07-14
EP1696045A1 (en) 2006-08-30

Similar Documents

Publication Publication Date Title
JP4992344B2 (en) Mold steel with excellent thermal fatigue properties
JP5276330B2 (en) Cold mold steel and cold press mold
JP5143531B2 (en) Cold mold steel and molds
JP7335680B2 (en) Steel, products made from the steel, and methods for making the same
WO2010134583A1 (en) Steel for machine structure use attaining excellent cutting-tool life and method for cutting same
WO2005061747A1 (en) Hot work tool steel and mold member excellent in resistance to melting
JP2007197784A (en) Alloy steel
KR100891764B1 (en) Spring steel wire rod excellent in pickling performance
JP4258772B2 (en) Cold die steel with excellent size reduction characteristics
JP2004019001A (en) Tool steel for hot-working superior in erosion resistance, and die member
TWI390043B (en) Hot working die steel for aluminum die-casting
JP3381812B2 (en) Casting mold or molten metal material with excellent erosion resistance
KR102253469B1 (en) Steel for die-casting die and die-casting die
JP5316425B2 (en) Alloy for surface coating treatment and sliding member
JP2010163648A (en) Cold work die steel and die
JP2001089826A (en) Hot working tool steel excellent in wear resistance
JP2002121643A (en) Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die
JP3029642B2 (en) Casting molds or molten metal fittings with excellent erosion resistance to molten metal
JP4411594B2 (en) Cold working mold
JP2001158937A (en) Tool steel for hot working, method for producing same and method for producing tool for hot working
JPH11279702A (en) Steel for aluminum die casting die excellent in erosion-resistance
WO2003064715A9 (en) Bainite type non-refined steel for nitriding, method for production thereof and nitrided product
JP5399000B2 (en) Heat-resistant cast steel jig material for vacuum carburizing heat treatment
TW202033788A (en) Low phosphorus, zirconium micro-alloyed, fracture resistant steel alloys
JP2005028398A (en) Material with erosion-resistance to aluminum and its producing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200380110840.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2003782816

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2007110610

Country of ref document: US

Ref document number: 10583783

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003782816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005512321

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 10583783

Country of ref document: US