JPH0456744A - High conductivity al-mg-si alloy tube and its manufacture - Google Patents

High conductivity al-mg-si alloy tube and its manufacture

Info

Publication number
JPH0456744A
JPH0456744A JP16576690A JP16576690A JPH0456744A JP H0456744 A JPH0456744 A JP H0456744A JP 16576690 A JP16576690 A JP 16576690A JP 16576690 A JP16576690 A JP 16576690A JP H0456744 A JPH0456744 A JP H0456744A
Authority
JP
Japan
Prior art keywords
alloy
treatment
subjected
cylindrical conductor
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16576690A
Other languages
Japanese (ja)
Other versions
JPH0621310B2 (en
Inventor
Kiyohiko Tanishita
谷下 清彦
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP2165766A priority Critical patent/JPH0621310B2/en
Publication of JPH0456744A publication Critical patent/JPH0456744A/en
Publication of JPH0621310B2 publication Critical patent/JPH0621310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture the external cylindrical conductor of a compressed gas insulated transmission line for bulk power conduction excellent in electrical conductiv ity by subjecting an Al-Mg-Si alloy having a specified compsn. to homogenizing treat ment and precipitation treatment, thereafter subjecting it to hot extrusion into the shape of a tube and executing hardening and aging treatment. CONSTITUTION:At the time of manufacturing as air transmission line of which an internal cylindrical conductor 2 is housed in an external cylindrical conductor 1 made of an Al alloy pipe, a stranded conductor 3 is housed in the internal cylindrical conduc tor 2 and the space thereamong is filled with an insulating SF6 gas, the external cylindrical conductor 1 is manufactured by an Al-Mg-Si alloy. The ingot of the Al-Mg- Si alloy contg., by weight, 0.3 to 0.8% Mg, 0.3 to 0.8% Si, <=0.10% Fe, 0.0003 to 0.0030% B and each <=0.0030% and total <=0.0100% of Mn, Cr, Ti, V and Zr as transi tion metals with total <=0.0050% impurities is subjected to homogenizing treatment at 450 to 600 deg.C for 8 to 24hr, is subjected to precipitation treatment at 300 to 400 deg.C for 8 to 24hr, is thereafter subjected to hot extruding into the shape of a pipe and is subjected to hardening and aging treatment to regulate the size of Mg2Si precipitates to <=5mum. The external cylindrical conductor 1 for an air transmission line excellent is electrical conductivity can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気伝導性に優れたアルミニウム合金管とそ
の製造方法に関し、特に大容量導電用管路気中送電線の
外部円筒導体に使用される高導電性Al−Mg−3i系
合金押出管及びその製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an aluminum alloy tube with excellent electrical conductivity and a method for manufacturing the same, particularly for use in external cylindrical conductors of large-capacity conductive conduits and aerial power transmission lines. The present invention relates to a highly conductive Al-Mg-3i alloy extruded tube and a method for manufacturing the same.

[従来の技術] 管路気中送電線は、新しいタイプの地中送電ケーブルと
して、最近実用化されつつある送電線である。第3図並
びに第4図はその管路気中送電線の断面を示したもので
、内部円筒導体1及び外部円筒導体2にアルミニウム合
金製のバイブが使用され、導体1,2の空間に絶縁体と
して六弗化硫黄(SF6)ガスが使用されている。
[Prior Art] A conduit aerial power transmission line is a power transmission line that has recently been put into practical use as a new type of underground power transmission cable. Figures 3 and 4 show cross sections of the conduit aerial power transmission line, in which an aluminum alloy vibrator is used for the inner cylindrical conductor 1 and the outer cylindrical conductor 2, and the space between the conductors 1 and 2 is insulated. Sulfur hexafluoride (SF6) gas is used as the gas.

そして、内部円筒導体lの内部には撚線導体3が収納さ
れている。
A stranded conductor 3 is housed inside the inner cylindrical conductor l.

かかるアルミニウム合金製パイプの材質については、ま
だ確立したものはないが、導電性、加工性及び現地溶接
性の良好なものが要求されている。このために押出用合
金の代表的な合金であるJIS 8063.6101等
の合金が使用されている。
Although the material for such aluminum alloy pipes has not yet been established, it is required to have good conductivity, workability, and on-site weldability. For this purpose, alloys such as JIS 8063.6101, which is a typical alloy for extrusion, are used.

又、本出願人は、先に特願平1−19836号で、Mg
、SiSFe及び他の不純物を規制し、残部が実質的に
A1からなり、Mg2Si析出物の面積率が1.2%以
下である電気伝導性に優れたアルミニウム合金材料、及
び上記組成の合金を均質化処理した後、lO〜70℃/
hrの冷却速度で冷却した後、熱間押出をする製造法を
提案した。
In addition, the present applicant previously disclosed Mg in Japanese Patent Application No. 1-19836.
, an aluminum alloy material with excellent electrical conductivity in which SiSFe and other impurities are controlled, the remainder substantially consists of A1, and the area ratio of Mg2Si precipitates is 1.2% or less, and an alloy having the above composition is homogeneously After treatment, lO~70℃/
We proposed a manufacturing method in which hot extrusion is performed after cooling at a cooling rate of hr.

更に線材で導電性に優れたアルミニウム合金材料及びそ
の製造方法として、次のようなものが提案されている。
Furthermore, the following have been proposed as wire rods of aluminum alloy materials with excellent conductivity and methods for producing the same.

■ S 1SGes Mg、Feを規制したアルミニウ
ム合金で、M g 2 G eを析出させ、導電率を低
下させずに強度を向上させるもの(特開昭48−539
18) ■ Fe、Mg5S i (Be又はsb)を規制した
アルミニウム合金で、電気アルミニウム地金にMg、S
iSSbを添加して得られ、Mg5SisFeによって
導電率を低下させずに強度を高め、耐食性の劣化をBe
又はsbで防止するもの(特開昭49−49814及び
■ M g s S iを規制し、荒引き線材を60%
以上で冷間加工の後、120〜180℃で一次熱処理後
、15%以上の冷間加工を行い、130〜240℃で二
次熱処理することにより、Mg2Si析出物を微細にし
、強度を高める方法(特開昭53−78114) ■ Mg5SiSTiSBを規制し、塩素ガス又はフロ
ンガスによる脱ガスを施し、更にTi、B処理を行うこ
とにより、鋳塊の割れを防止する方法(特開昭53−1
35814)■ Z r s S is M gを規制
し、鋳塊を 5℃/sec以上で冷却しながら200℃
までを80%以上の加工を行い、その後65%以上の冷
間加工を行った後、300〜450℃で20〜100時
間の熱処理を行うことにより、耐熱性と高強度を行う方
法(特開昭56−65968)。
■ S1SGes An aluminum alloy with regulated Mg and Fe, which precipitates Mg2Ge and improves strength without reducing conductivity (Japanese Patent Laid-Open No. 48-539)
18) ■ Fe, Mg5S i (Be or sb) regulated aluminum alloy, Mg, S in electric aluminum base metal.
It is obtained by adding iSSb, and Mg5SisFe increases the strength without reducing the conductivity, and reduces the deterioration of corrosion resistance.
Or those prevented by sb (JP-A-49-49814 and ■ Regulation of Mgs Si, 60% rough drawn wire
After the above cold working, a method of making Mg2Si precipitates fine and increasing strength by performing a 15% or more cold working after a primary heat treatment at 120 to 180°C, and a secondary heat treatment at 130 to 240°C. (Japanese Unexamined Patent Publication No. 53-78114) ■ A method for preventing cracking of ingots by controlling Mg5SiSTiSB, degassing with chlorine gas or fluorocarbon gas, and further treating with Ti and B (Unexamined Japanese Patent Application No. 53-78114)
35814)■ Zrs Sis Mg is regulated and the ingot is cooled to 200°C at a rate of 5°C/sec or more.
A method of achieving heat resistance and high strength by performing 80% or more processing, then 65% or more cold working, and then heat treatment at 300 to 450°C for 20 to 100 hours (Unexamined Japanese Patent Publication) (Sho 56-65968).

[発明が解決しようとする課題] 従来のJIS 8063合金は、電気伝導度が53〜5
5%(lAC3,%)と、純度99.5%の普通アルミ
ニウムの57〜59%に比べ低く、送電時の電力損失が
大きくなっていた。又、JIS 6101合金は溶接性
が劣るため、管路の接合法を工夫しなければならないと
いう欠点があった。
[Problem to be solved by the invention] The conventional JIS 8063 alloy has an electrical conductivity of 53 to 5.
5% (lAC3,%), which is lower than the 57-59% of ordinary aluminum with a purity of 99.5%, and the power loss during power transmission was large. Furthermore, since the JIS 6101 alloy has poor weldability, it has the disadvantage that a method for joining pipes must be devised.

又、先に提案した特願平1−19836号に記載の発明
は、均質化処理した後lO〜70℃/hrの冷却速度で
冷却しなければならないので、冷却炉が必要となるとい
う欠点がある。更に■〜■で提案されているものは、い
ずれも鋼ベルトと鋳造輪を用いた連続鋳造法(ブロペル
チ方式)で製造されるものであり、本発明の対象である
管用には使用できないものである。
Furthermore, the previously proposed invention described in Japanese Patent Application No. 1-19836 has the disadvantage that a cooling furnace is required since it must be cooled at a cooling rate of 10 to 70°C/hr after homogenization treatment. be. Furthermore, the products proposed in ■ to ■ are all manufactured by a continuous casting method (Bloperch method) using a steel belt and a casting wheel, and cannot be used for pipes, which is the object of the present invention. be.

そこで本発明の目的は、電気導電率がlAC3表現で6
0%以上が得られるアルミニウム合金押出管及びその製
造法を提供するものである。
Therefore, the purpose of the present invention is to obtain an electric conductivity of 6 in lAC3 expression.
The purpose of the present invention is to provide an aluminum alloy extruded tube and a method for manufacturing the same, which can obtain 0% or more.

[課題を解決するための手段] 上記目的を達成するために本発明は、Mg:0.3〜0
.8%、S i :  0.3〜0.8%、Fe:≦0
.10%、B : 0.0003〜0.0030%を含
有し、M n 。
[Means for Solving the Problem] In order to achieve the above object, the present invention provides Mg: 0.3 to 0.
.. 8%, Si: 0.3-0.8%, Fe:≦0
.. 10%, B: 0.0003-0.0030%, Mn.

Cr5Ti、V、Zrの遷移金属をいずれもo、ooa
o%以下で、かつこれらの合計をo、otoo%以下及
び他の不純物の合計を0.0050%以下とし、残部が
実質的にA1からなり、Mg2Si析出物が5μm以下
である高導電性Al−Mg−Si系合金管を第1の発明
とし、上記組成の合金材料を450〜600℃で8〜2
4時間均質化処理した後、300〜400℃にて8〜2
4時間の析出処理した後、通常の条件で熱間押出焼入れ
及び時効処理を行う高導電性Al−Mg−Si系合金管
の製造方法を第2の発明とするものである。
All transition metals of Cr5Ti, V, and Zr are o and ooa
o% or less, and the total of these is o, otoo% or less, and the sum of other impurities is 0.0050% or less, the balance consists essentially of Al, and the Mg2Si precipitate is 5 μm or less. Highly conductive Al - A Mg-Si alloy tube is the first invention, and an alloy material having the above composition is heated to 8 to 2
After homogenizing for 4 hours, at 300-400℃
The second invention is a method for manufacturing a highly conductive Al-Mg-Si alloy tube, which performs hot extrusion quenching and aging treatment under normal conditions after 4 hours of precipitation treatment.

[作 用] 本発明における合金の成分範囲並びに製造条件の限定理
由は下記の通りである。
[Function] The reasons for limiting the range of ingredients and manufacturing conditions of the alloy in the present invention are as follows.

Mg : MgはSiと共存してMg2Si析出物を形
成し、強度の向上に寄与するが、M g含有量が高くな
ると電気伝導度が低くなる。
Mg: Mg coexists with Si to form Mg2Si precipitates and contributes to improving strength, but as Mg content increases, electrical conductivity decreases.

したがって、Mgの含有量が0.3%未満の場合には導
体としての強度が不足し、0.8%を超えると電気伝導
度が低下する。したがって、Mg含有量を0.3〜0.
8%と定めた。なお、両性能のかねあいで、0.35〜
0.5%がより好ましい。
Therefore, when the Mg content is less than 0.3%, the strength as a conductor is insufficient, and when it exceeds 0.8%, the electrical conductivity decreases. Therefore, the Mg content is 0.3 to 0.
It was set at 8%. In addition, due to the balance between both performances, 0.35 ~
0.5% is more preferred.

St :SiはMgと共存してMg2Si析出物を形成
し、強度の向上に寄与するが、Si含有量が高くなると
電気伝導度と溶接性が低下する。Siが含有量0.3%
未満の場合には、単体としての強度が不足し、0.8%
を超えると電気伝導度が低下する。したがって、0.3
〜0.8%と定めた。なお、両性能のかねおいて0.3
5〜0.5%がより好ましい。
St:Si coexists with Mg to form Mg2Si precipitates and contributes to improving strength, but as the Si content increases, electrical conductivity and weldability decrease. Si content is 0.3%
If it is less than 0.8%, the strength as a single unit is insufficient and
If it exceeds , the electrical conductivity decreases. Therefore, 0.3
It was set at ~0.8%. In addition, considering both performances, 0.3
More preferably 5% to 0.5%.

Fe:Feは、アルミニウム合金の電気伝導度を下げる
ため0,10%以下とする。
Fe: Fe is set to 0.10% or less in order to lower the electrical conductivity of the aluminum alloy.

B:Bは合金鋳塊の結晶組織を微細化させると同時に、
アルミニウム溶湯中に含有している不純物元素(M n
 s Cr % T I % V、Zr)をボロン化合
物として沈降除去させる作用があり、Mnx CrST
 i、V、Zr含有量を軽減させ、導電率を高める効果
がある。その量が0.0003%未満ではその効果がな
く 、0.0030%を超えるとボロン化合物が残存し
、導電率を低下させる。したがッテ、B含有量を0.0
003〜0.0030%とする必要がある。
B: B refines the crystal structure of the alloy ingot, and at the same time,
Impurity elements (M n
It has the effect of precipitating and removing Mnx CrST as a boron compound.
It has the effect of reducing i, V, and Zr contents and increasing electrical conductivity. If the amount is less than 0.0003%, there is no effect, and if it exceeds 0.0030%, the boron compound remains and lowers the conductivity. Gatte, B content 0.0
It is necessary to set it to 0.003-0.0030%.

Mns Crs Tis V% Zr :MnS Cr
Mns Crs Tis V% Zr: Mns Cr
.

Ti、VSZrは、アルミニウム地金中に含有している
ものであり、いずれも電気導電率を低下させる作用があ
る。したがって、それぞれの最大含有量を0.0030
%以下とし、更にこれらの全含有量を0.0100%以
下とすることが好ましい。
Ti and VSZr are contained in aluminum base metal, and both have the effect of lowering electrical conductivity. Therefore, the maximum content of each is 0.0030
% or less, and the total content of these is preferably 0.0100% or less.

その他の不純物:その他の不純物は、いずれも電気伝導
率を低下させる作用がある。したがって少ない方が好ま
しく、全含有量を0.0050%以下とするのが好まし
い。
Other impurities: All other impurities have the effect of lowering electrical conductivity. Therefore, the smaller the content, the more preferable it is, and the total content is preferably 0.0050% or less.

Mg2Si析出物:Mg2Si析出物は、強度を確保す
るために必要であるが、形状が大きくなると電気伝導率
を低下させる作用がある。強度及び導電率を確保するた
めに析出物の長さを5μ層以下とするのが好ましい。
Mg2Si precipitates: Mg2Si precipitates are necessary to ensure strength, but when their shape becomes large, they have the effect of lowering electrical conductivity. In order to ensure strength and conductivity, the length of the precipitate is preferably 5 μm or less.

均質化処理条件:鋳塊の均質化処理条件は450〜60
0℃の温度域が好ましい。これが450℃未満では鋳造
時に晶出したMg−Si系の晶出物が十分に溶入しない
ため、強度が低くなる。処理時間が8時間未満の場合も
同様である。又、均質化処理温度が600℃を超えると
強度は高くなるが、電気伝導度が低下する。処理時間が
24時間を超える場合も同様である。鋳塊の均質化処理
は、Al−Fe−Si系及びAl −Mg−Si系の共
晶化合物を凝集させ、押出性を向上させるために行う。
Homogenization treatment conditions: Homogenization treatment conditions for ingots are 450 to 60
A temperature range of 0°C is preferred. If this temperature is lower than 450°C, Mg-Si crystallized substances crystallized during casting will not be sufficiently infused, resulting in a decrease in strength. The same applies when the processing time is less than 8 hours. Furthermore, if the homogenization treatment temperature exceeds 600°C, the strength will increase, but the electrical conductivity will decrease. The same applies when the processing time exceeds 24 hours. The homogenization treatment of the ingot is performed in order to aggregate Al-Fe-Si and Al-Mg-Si eutectic compounds and improve extrudability.

450℃未満であるとFe5Si、Mg原子の拡散速度
が低く、共晶化合物の凝集が起こらないので押出性を低
下させる。又、600℃を超えると鋳塊の一部に溶解が
起こるようになる。
If the temperature is less than 450°C, the diffusion rate of Fe5Si and Mg atoms will be low and the eutectic compound will not aggregate, resulting in a decrease in extrudability. Moreover, when the temperature exceeds 600°C, a part of the ingot starts to melt.

析出処理:均質化処理により固溶したMg、Siを、析
出処理によってMgzSi化合物として結晶粒内に均一
微細に析出させ、押出を容易にすると同時に、押出後の
材料の再結晶粒を微細化させ、強度を高める効果がある
。この温度が300℃未満であると、Mg2Si化合物
の析出が不十分となり、強度を高める効果が軽減される
。又、400℃を超えるとMg2Si化合物の析出物が
大きくなって再結晶の微細化が得られず、強度向上の効
果がなくなる。その他押出温度は、350℃未満では押
出圧力が太きくなリ、550℃を超えると押出材の表面
状態が悪くなり、不純物元素(Mn、Cr、Ti、V、
、Zr)などの再固溶によって導電率が低下するので好
ましくない。押出後450〜500℃から焼入及び25
0〜300℃で時効処理を行いMg2Si化合物を微細
に析出させる。
Precipitation treatment: The Mg and Si dissolved in solid solution by the homogenization treatment are precipitated uniformly and finely within the crystal grains as MgzSi compounds by the precipitation treatment, making extrusion easier and at the same time making the recrystallized grains of the material after extrusion finer. , has the effect of increasing strength. If this temperature is less than 300°C, precipitation of the Mg2Si compound will be insufficient, and the effect of increasing strength will be reduced. Furthermore, if the temperature exceeds 400°C, the precipitates of the Mg2Si compound become large, making it impossible to obtain fine recrystallization, and the effect of improving strength is lost. In addition, if the extrusion temperature is lower than 350°C, the extrusion pressure will not be high, and if it exceeds 550°C, the surface condition of the extruded material will deteriorate, and impurity elements (Mn, Cr, Ti, V,
, Zr) etc., the conductivity decreases due to re-solid solution, which is not preferable. After extrusion, quenching from 450 to 500℃ and 25
Aging treatment is performed at 0 to 300°C to finely precipitate Mg2Si compounds.

[実施例コ m1表1:示した組成のアルミニウム合金溶湯を、フィ
ルター処理して非金属介在物を除去した後、外径520
tnta s内径150■の中空鋳塊に鋳造し、外周を
面側により外径500■とした。これを470℃で10
時間の均質化処理後、350℃で8時間の析出処理をし
た後、450℃で押出加工を行い、外径150fflf
fl、肉厚18mm+の管材を得た。
[Example 1 Table 1: After filtering a molten aluminum alloy having the composition shown to remove nonmetallic inclusions, the outer diameter was 520 mm.
A hollow ingot with an inner diameter of 150 mm was cast, and the outer circumference was made to have an outer diameter of 500 mm on the face side. This was heated to 470℃ for 10
After time homogenization treatment, precipitation treatment at 350℃ for 8 hours, extrusion processing at 450℃, outer diameter 150fflf
A tube material with a wall thickness of 18 mm+ was obtained.

これを更に280℃で7時間の時効処理を行った後、試
験片を切り出し、Mg2Si析出物、機械的性質及び導
電率の試験を行った。
After further aging treatment at 280°C for 7 hours, test pieces were cut out and tested for Mg2Si precipitates, mechanical properties, and electrical conductivity.

Mg2Si析出物の大きさの測定は、倍率400倍の光
学顕微鏡写真から求めた。具体的には第1図が析出処理
材の写真で第2図が析出処理を行わないものの写真であ
る。この写真を画像解析装置にかけ、析出物の粒径分布
を統計的に処理してMg2Si析出物の大きさ(最大値
)を求めた。
The size of the Mg2Si precipitates was determined from optical micrographs at a magnification of 400 times. Specifically, FIG. 1 is a photograph of the precipitation-treated material, and FIG. 2 is a photograph of the material not subjected to the precipitation treatment. This photograph was subjected to an image analysis device, and the particle size distribution of the precipitates was statistically processed to determine the size (maximum value) of the Mg2Si precipitates.

導電率の測定は、JIS H0505r非金属材料の体
積抵抗率及び導電率測定方法」により求めた。
The conductivity was measured according to JIS H0505r "Method for Measuring Volume Resistivity and Conductivity of Nonmetallic Materials."

機械的性質は、JIS Z 2201 r金属材料引張
試験片」4号試験片によった。これらの結果を第1表に
示した。
Mechanical properties were determined using JIS Z 2201 r Metal Material Tensile Test Piece No. 4 test piece. These results are shown in Table 1.

第1表の結果から、発明材料であるN011〜らは、M
g2Si析出物の大きさはいずれも 5μm以下、引張
強さが10kgf/mta 2以上、0,2%耐力が6
kg/+am 2以上及び導電率が60%以上のlAC
3値が得られた。
From the results in Table 1, it can be seen that the inventive materials N011~ et al.
The size of g2Si precipitates is 5μm or less, the tensile strength is 10kgf/mta2 or more, and the 0.2% proof stress is 6
lAC with kg/+am 2 or more and conductivity of 60% or more
Three values were obtained.

これに対して、比較材料のNo、6はMg含有量が8.
22%と低いため、耐力が5.8kgf/mm2と僅か
に低(、MgzSi析出物の大きさが8μ■となり導電
率59.2%と低くなった。N o、 7はMg含有量
が1,02%と高いため、M g 2 S i析出物の
大きさが10μmとなり、導電率が59.8%と低くな
った。No、8は、Si含有量が0.24%と低いため
、引張強さが9.8kgf/ mm 2と僅かに低くな
った。No、9は、Si量が0.98%と高いため、M
g2Si析出物の大きさが10μm及び単体Si析出物
が存在し、導電率が58.6%と低くなった。No、l
OはB含有量が0.0040%と高いためB化合物が残
存し、導電率が58,7%と低くなった。No、11〜
15は、Mn5(: 1S7 i、V、Zrの含有量が
それぞれ高く、いずれも導電率が80%以下となった。
On the other hand, comparative material No. 6 has an Mg content of 8.
22%, the yield strength was slightly low at 5.8 kgf/mm2 (the size of the MgzSi precipitates was 8 μ■, and the conductivity was low at 59.2%. No. 7 had a Mg content of 1 ,02%, the size of M g 2 Si precipitates was 10 μm, and the conductivity was low at 59.8%.No. 8 had a low Si content of 0.24%, so The tensile strength was slightly lower at 9.8 kgf/mm2.No.9 has a high Si content of 0.98%, so M
The size of the g2Si precipitates was 10 μm and there were single Si precipitates, and the electrical conductivity was as low as 58.6%. No, l
O has a high B content of 0.0040%, so B compounds remain, resulting in a low conductivity of 58.7%. No, 11~
No. 15 had high contents of Mn5 (: 1S7 i, V, and Zr), and the conductivity was 80% or less in all cases.

No、1Bは、M n −、(:rSTi、V、Zr含
有量の和か0.0105%と高く、導電率か58%と低
くなった。
In No. 1B, the sum of M n −, (: rSTi, V, and Zr contents was high at 0.0105%, and the electrical conductivity was low at 58%.

実施例2 第1表に示したアルミニウム合金組成のNo。Example 2 No. of the aluminum alloy composition shown in Table 1.

2ないしら材を、実施例1と同じ方法で鋳造、面側した
後、均質化処理、析出処理を第2表に示す条件で行った
後、450℃で押出加工を行った後、480℃に2時間
保持した後水中に焼入れ後、280℃で8時間の時効処
理を行って試験材を得た。これらを実施例1と同様に各
種試験を行い、その結果を第2表に示した。
After casting and facing the shiraishi material in the same manner as in Example 1, homogenization treatment and precipitation treatment were performed under the conditions shown in Table 2, extrusion processing was performed at 450°C, and then at 480°C. After being held in water for 2 hours and quenched in water, a test material was obtained by aging at 280° C. for 8 hours. These were subjected to various tests in the same manner as in Example 1, and the results are shown in Table 2.

発明例のNo、17〜23は、いずれもMg2Si析出
物の大きさが5μ−以下であり、引張強さが11.9k
gf/gm2以上、0.2%耐力が6.9kgf’/m
m’以上及び導電率が60%以上lAC3値が得られた
Invention examples Nos. 17 to 23 all have the size of Mg2Si precipitates of 5μ or less and the tensile strength of 11.9k.
gf/gm2 or more, 0.2% proof stress is 6.9kgf'/m
A lAC3 value of m' or more and a conductivity of 60% or more was obtained.

これに対し、比較例のNo、24は均質化処理温度が4
00℃と低いため、M g 2 S i析出物の大きさ
が10μmとなり、導電率が55.8%と低く、又、耐
力が5.3kgf/mg’と低くなった。
On the other hand, in comparative example No. 24, the homogenization temperature was 4.
Since the temperature was as low as 00°C, the size of the M g 2 Si precipitates was 10 μm, the electrical conductivity was as low as 55.8%, and the yield strength was as low as 5.3 kgf/mg'.

N o、25は析出処理温度が250℃と低いため、M
g2Si析出物の大きさがIOμ団となり、導電率が5
5.2%と低くなった。No、28〜29は、アルミニ
ウム合金組成が異なるが、それぞれ析出処理温度が45
0℃と高いため、MgzSi析出物の大きさが15〜2
0μmと大きくなり、導電率が55.9〜57.8%と
低くなった。
Since the precipitation treatment temperature for No. 25 is as low as 250°C, M
The size of g2Si precipitates becomes IOμ group, and the conductivity is 5.
It was as low as 5.2%. Nos. 28 to 29 have different aluminum alloy compositions, but the precipitation treatment temperature is 45%.
Because the temperature is as high as 0°C, the size of MgzSi precipitates is 15 to 2
The conductivity was as low as 55.9 to 57.8%.

C発明の効果] このようにして、本発明は、M g 2 S i含有量
をそれぞれ0.3〜0.8%に規制したアルミニウム合
金をボロン処理することによって、遷移金属元素を極微
量に制限し、均質化処理後析出処理することによって、
Mg2Si析出物を微細することにより、導電率が60
%以上のlAC3値が得られ、管路申送電線に用いられ
る有用なアルミニウム合金が得られた。
C Effect of the Invention] In this way, the present invention reduces transition metal elements to extremely small amounts by boron-treating an aluminum alloy whose Mg2Si content is regulated to 0.3 to 0.8%. By restricting and precipitating after homogenization,
By making the Mg2Si precipitates fine, the conductivity can be increased to 60
% or more was obtained, and an aluminum alloy useful for use in conduit power transmission lines was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の析出処理材の電子顕微鏡写真、第2図
は析出処理をしないものの電子顕微鏡写真、第3図並び
に第4図は本発明を適用した送電線の断面図である。 l・・・内部円筒導体、2・・・外部円筒導体、3・・
・撚線導体。 特許出願人 住友軽金属工業株式会社 代理人 弁理士 小 松 秀 岳 代理人 弁理士 旭     宏
FIG. 1 is an electron micrograph of a precipitation-treated material of the present invention, FIG. 2 is an electron micrograph of a material not subjected to precipitation treatment, and FIGS. 3 and 4 are cross-sectional views of a power transmission line to which the present invention is applied. l...Inner cylindrical conductor, 2...Outer cylindrical conductor, 3...
・Twisted conductor. Patent Applicant Sumitomo Light Metal Industries Co., Ltd. Agent Patent Attorney Hide Komatsu Agent Patent Attorney Hiroshi Asahi

Claims (2)

【特許請求の範囲】[Claims] (1)Mg:0.3〜0.8%(重量%以下同様)、S
i:0.3〜0.8%、Fe:≦0.10%、B:0.
0003〜0.0030%を含有し、Mn、Cr、Ti
、V、Zrの遷移金属をいずれも0.0030%以下で
、かつ、これらの合計を0.0100%以下及び他の不
純物の合計を0.0050%以下とし、残部が実質的に
Alからなり、Mg_2Si析出物が5μm以下である
ことを特徴とする高導電性Al−Mg−Si系合金管。
(1) Mg: 0.3 to 0.8% (same as below weight%), S
i: 0.3-0.8%, Fe: ≦0.10%, B: 0.
0003~0.0030%, Mn, Cr, Ti
, V, and Zr are all 0.0030% or less, and the total of these is 0.0100% or less, and the total of other impurities is 0.0050% or less, and the balance is substantially composed of Al. , a highly conductive Al-Mg-Si alloy tube, characterized in that Mg_2Si precipitates are 5 μm or less.
(2)Mg:0.3〜0.8%、Si:0.3〜0.8
%、Fe:≦0.10%、B:0.0003〜0.00
30%を含有し、Mn、Cr、Ti、V、Zrの遷移金
属をいずれも0.0030%以下で、かつ、これらの合
計を0.0100%以下及び他の不純物の合計を0.0
050%以下とし、残部が実質的にAlからなるアルミ
ニウ合金を450〜600℃で8〜24時間均質化処理
した後、300〜400℃にて8〜24時間の析出処理
をした後、通常の条件で熱間押出、焼入れ及び時効処理
を行うことを特徴とする高導電性Al−Mg−Si系合
金管の製造方法。
(2) Mg: 0.3-0.8%, Si: 0.3-0.8
%, Fe:≦0.10%, B:0.0003-0.00
30%, Mn, Cr, Ti, V, Zr transition metals are all 0.0030% or less, and the total of these is 0.0100% or less, and the total of other impurities is 0.0
After homogenizing the aluminum alloy at 450 to 600°C for 8 to 24 hours and precipitating it at 300 to 400°C for 8 to 24 hours, A method for manufacturing a highly conductive Al-Mg-Si alloy tube, characterized by performing hot extrusion, quenching, and aging treatment under certain conditions.
JP2165766A 1990-06-26 1990-06-26 Highly conductive Al-Mg-Si alloy tube manufacturing method Expired - Fee Related JPH0621310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165766A JPH0621310B2 (en) 1990-06-26 1990-06-26 Highly conductive Al-Mg-Si alloy tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165766A JPH0621310B2 (en) 1990-06-26 1990-06-26 Highly conductive Al-Mg-Si alloy tube manufacturing method

Publications (2)

Publication Number Publication Date
JPH0456744A true JPH0456744A (en) 1992-02-24
JPH0621310B2 JPH0621310B2 (en) 1994-03-23

Family

ID=15818638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165766A Expired - Fee Related JPH0621310B2 (en) 1990-06-26 1990-06-26 Highly conductive Al-Mg-Si alloy tube manufacturing method

Country Status (1)

Country Link
JP (1) JPH0621310B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141542A (en) * 1990-09-28 1992-05-15 Tostem Corp Extruding aluminum alloy
EP0823489A1 (en) * 1996-08-06 1998-02-11 Pechiney Rhenalu AlMgMn alloy product for welded structures with improved corrosion resistance
JP2002309329A (en) * 2001-04-10 2002-10-23 Aisin Keikinzoku Co Ltd Al-Mg-Si ALLOY EXTRUSION SHAPE MATERIAL HAVING EXCELLENT HEAT CONDUCTIVITY
KR100723630B1 (en) * 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
CN109201769A (en) * 2018-09-13 2019-01-15 河北欧通有色金属制品有限公司 A kind of processing method and chromium-zirconium-copper microporous pipe of chromium-zirconium-copper microporous pipe
CN110691858A (en) * 2017-06-07 2020-01-14 株式会社Uacj Hollow aluminum alloy tubular profile and piping material for heat exchanger
CN111041295A (en) * 2019-11-28 2020-04-21 国网山东省电力公司经济技术研究院 Conductive monofilament and preparation method thereof
CN113151717A (en) * 2021-03-24 2021-07-23 辽宁忠旺集团有限公司 6063 aluminum alloy casting and production process thereof
CN114703408A (en) * 2022-03-22 2022-07-05 国网河南省电力公司电力科学研究院 High-conductivity high-strength rare earth aluminum alloy composite material for splicing fitting and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162260A (en) * 1983-03-04 1984-09-13 Sumitomo Electric Ind Ltd Production of heat-resisting aluminum alloy for electrical conduction
JPH01255637A (en) * 1988-04-05 1989-10-12 Sky Alum Co Ltd Aluminum alloy for conducting electricity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162260A (en) * 1983-03-04 1984-09-13 Sumitomo Electric Ind Ltd Production of heat-resisting aluminum alloy for electrical conduction
JPH01255637A (en) * 1988-04-05 1989-10-12 Sky Alum Co Ltd Aluminum alloy for conducting electricity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141542A (en) * 1990-09-28 1992-05-15 Tostem Corp Extruding aluminum alloy
EP0823489A1 (en) * 1996-08-06 1998-02-11 Pechiney Rhenalu AlMgMn alloy product for welded structures with improved corrosion resistance
FR2752244A1 (en) * 1996-08-06 1998-02-13 Pechiney Rhenalu PRODUCT FOR WELDED CONSTRUCTION IN ALMGMN ALLOY WITH IMPROVED CORROSION RESISTANCE
JP2002309329A (en) * 2001-04-10 2002-10-23 Aisin Keikinzoku Co Ltd Al-Mg-Si ALLOY EXTRUSION SHAPE MATERIAL HAVING EXCELLENT HEAT CONDUCTIVITY
KR100723630B1 (en) * 2006-03-02 2007-06-04 지성알미늄주식회사 A motor vehicle air conditioner al-alloy material, manufacture method, and the air-conditioner sub-cool materials
CN110691858A (en) * 2017-06-07 2020-01-14 株式会社Uacj Hollow aluminum alloy tubular profile and piping material for heat exchanger
CN109201769A (en) * 2018-09-13 2019-01-15 河北欧通有色金属制品有限公司 A kind of processing method and chromium-zirconium-copper microporous pipe of chromium-zirconium-copper microporous pipe
CN111041295A (en) * 2019-11-28 2020-04-21 国网山东省电力公司经济技术研究院 Conductive monofilament and preparation method thereof
CN113151717A (en) * 2021-03-24 2021-07-23 辽宁忠旺集团有限公司 6063 aluminum alloy casting and production process thereof
CN114703408A (en) * 2022-03-22 2022-07-05 国网河南省电力公司电力科学研究院 High-conductivity high-strength rare earth aluminum alloy composite material for splicing fitting and preparation method thereof

Also Published As

Publication number Publication date
JPH0621310B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP6698735B2 (en) Aluminum wire for automobile
Karabay Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors
Karabay Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting
EP2987880B1 (en) Aluminum alloy wire and aluminum alloy twisted wire, covered electric wire, and wire harness using the same
WO2017162198A1 (en) Lightweight, high-conductivity, heat-resistant, iron-containing aluminum wire and preparation process therefor
JP2012524837A (en) Aluminum alloy material having high stretchability for cable and method for producing the same
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
CN111636018A (en) High-thermal-conductivity aluminum alloy and casting method thereof
JP2010163675A (en) Aluminum alloy wire rod
CN111826558A (en) Aluminum-magnesium-silicon alloy monofilament and preparation method thereof
JP2018003154A (en) Copper alloy, copper alloy ingot, and copper alloy solution material
JPH0456744A (en) High conductivity al-mg-si alloy tube and its manufacture
JP3317328B2 (en) Copper alloy
JPH0380862B2 (en)
JP4201434B2 (en) Method for producing high-strength aluminum alloy extruded material with excellent corrosion resistance
CN103757485A (en) Al-Fe-Cu-Mg aluminum alloy and low-voltage cable manufactured by alloy
JP4228166B2 (en) Seamless copper alloy tube with excellent fatigue strength
JPH10317114A (en) Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
CN103730185A (en) Al-Fe-Cu-Mg aluminum alloy and electric wire made of the same
KR102344357B1 (en) Aluminum alloy for cable&#39;s conductor
RU2667271C1 (en) Heat-resistant conductive ultrafine-grained aluminum alloy and method for production thereof
JPS6239235B2 (en)
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPH09316585A (en) Power transmission tube and its production
JPH02200750A (en) Aluminum alloy stock excellent in electric conductivity and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees