JPH0456731A - Production of grain-oriented silicon steel sheet excellent in iron loss characteristic - Google Patents

Production of grain-oriented silicon steel sheet excellent in iron loss characteristic

Info

Publication number
JPH0456731A
JPH0456731A JP16278090A JP16278090A JPH0456731A JP H0456731 A JPH0456731 A JP H0456731A JP 16278090 A JP16278090 A JP 16278090A JP 16278090 A JP16278090 A JP 16278090A JP H0456731 A JPH0456731 A JP H0456731A
Authority
JP
Japan
Prior art keywords
annealing
tension
coating
steel sheet
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16278090A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iida
飯田 嘉明
Yoshinobu Fukushima
福島 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16278090A priority Critical patent/JPH0456731A/en
Publication of JPH0456731A publication Critical patent/JPH0456731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To provide remarkably low iron loss characteristics to a grain-oriented silicon steel sheet by first applying flattening annealing to a grain-oriented silicon steel sheet and then subjecting this sheet, simultaneously or independently, to stress relief annealing for removing the strain resulting from flattening annealing and coating baking annealing. CONSTITUTION:First, as a tension necessary to remove coil set in flattening annealing, a tension of 0.3-1.0kgf/mm<2> is applied to the cross section of a strip and continuous heat treatment is exerted at 650-850 deg.C for 10-60sec. Then, coating is applied to the flattened strip and a tension of <=0.3kgf/mm<2> introducing no strain to the strip is given, and this steel sheet is subjected to continuous annealing treatment which doubles as coating baking annealing and stress relief annealing at 750-900 deg.C for 10-60sec.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、磁気特性、特に鉄損特性に優れた一方向性珪
素鋼板の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a grain-oriented silicon steel sheet having excellent magnetic properties, especially iron loss properties.

〈従来の技術〉 主として、変圧器の鉄芯材料として使用される一方向性
珪素鋼板には優れた磁気特性と絶縁皮膜特性を兼備する
ことが要求される。近年、省エネルギーの観点から、磁
気特性のうち特に鉄損特性が良好であることが望まれて
いる。
<Prior Art> Unidirectional silicon steel sheets, which are mainly used as iron core materials for transformers, are required to have both excellent magnetic properties and insulating film properties. In recent years, from the viewpoint of energy saving, it has been desired to have particularly good iron loss properties among magnetic properties.

一方向性珪素i板はスラブに鋳造後、熱延、冷延焼鈍を
経て、コイル状に巻取られた状態で1200゜C程度の
高温で長時間焼鈍される.この高温長時間焼鈍の段階で
、(110)(001)すなわちゴス方位を有する2次
再結晶組織の形成と絶縁皮膜の一部を成すフォルステラ
イト皮膜の形成が行われる。コイルには高温長時間の焼
鈍によりコイルセット(巻きぐせ)がついているためこ
れを除去して平坦化するため、通常800゜C程度でス
トラングに張力を付与しつつ連続熱処理する平坦化焼鈍
が施される。その際、平坦化焼鈍に先立って絶縁皮膜の
他の一部を成す張力コーティングが塗布され、平坦化焼
鈍と同時にこのコーティングが焼付けられる。
The unidirectional silicon i-plate is cast into a slab, hot-rolled, cold-rolled and annealed, then wound into a coil and annealed at a high temperature of about 1200°C for a long period of time. At this stage of high-temperature, long-time annealing, a secondary recrystallized structure having (110)(001), ie, Goss orientation, is formed and a forsterite film forming a part of the insulating film is formed. The coil has coil sets (curling curls) due to long-term annealing at high temperatures, so in order to remove these and flatten the coil, flattening annealing is usually performed at about 800°C, which is a continuous heat treatment while applying tension to the strang. be done. In this case, a tension coating forming another part of the insulating film is applied prior to the planarization annealing, and this coating is baked simultaneously with the planarization annealing.

〈発明が解決しようとする課題〉 従来技術では、コイルセットを矯正するに十分な張力を
ストラングに付与しつつ熱処理されるので、いわば熱間
加工状態となり、ストリップに歪が残留する。この歪は
磁気特性特に鉄損特性を劣化させる。このような成品コ
イルを変圧器鉄心に成形して使用する場合、巻鉄心では
800゜C程度で歪取焼鈍されるので、鉄損特性の劣化
化は軽減するが十分には改善されないし、積鉄心では歪
取焼鈍されないので鉄損特性は劣化したまま使用される
ことになる。また巻鉄心の場合850℃を超える十分な
高温で歪取焼鈍すれば歪は十分除去されるが、その際張
力コーティングを形成している化学成分、例えばPやC
「が鋼板中に拡散して不純物となり、かえって鉄損特性
を劣化させるほか絶縁皮膜が破壊され、鋼板との密着性
や!@縁性が損なわれる。
<Problems to be Solved by the Invention> In the prior art, the strang is heat-treated while applying sufficient tension to straighten the coil set, resulting in a so-called hot working state, and distortion remains in the strip. This distortion deteriorates the magnetic properties, especially the iron loss properties. When such a finished coil is formed into a transformer core and used, the wound core is strain-relief annealed at about 800°C, which reduces the deterioration of iron loss characteristics, but does not improve it sufficiently. Since the iron core is not subjected to strain relief annealing, it is used with deteriorated iron loss characteristics. In addition, in the case of wound iron cores, strain can be sufficiently removed if strain relief annealing is performed at a sufficiently high temperature exceeding 850°C, but in this case, the chemical components forming the tension coating, such as P and C.
It diffuses into the steel plate and becomes an impurity, which not only deteriorates the iron loss characteristics but also destroys the insulation film, impairing the adhesion to the steel plate.

本発明は、一方向性珪素鋼板の平坦化焼鈍において、歪
の残留の生しない従って鉄損特性の劣化を伴わない焼鈍
方法を提供することを目的とするものである。
An object of the present invention is to provide an annealing method for flattening a unidirectional silicon steel sheet that does not cause residual strain and therefore does not cause deterioration of iron loss characteristics.

〈課題を解決するための手段〉 従来、平坦化焼鈍とコーティング焼付焼鈍は同時に同一
条件で処理されていたが、本発明では先ず平坦化焼鈍を
施し、次いで平坦化焼鈍で導入された歪を除去する歪取
焼鈍とコーティング焼付焼鈍を同時にまたは別々に処理
しようとするものである。
<Means for solving the problem> Conventionally, flattening annealing and coating baking annealing were performed simultaneously under the same conditions, but in the present invention, flattening annealing is first performed, and then the strain introduced by flattening annealing is removed. It is intended to perform strain relief annealing and coating baking annealing simultaneously or separately.

すなわち本発明は、一方向性珪素鋼板の平坦化焼鈍にお
いて、先ず0.3〜1.0 kgf/s−の張力を付与
しつつ650−850℃で10〜60sec保持する1
回目の連続焼鈍を施し、次いで張力コーティングを塗布
し0 、3 kg f /mm2以下の張力を付与しつ
つ750〜900℃で、かつ1回目の焼鈍温度より50
℃以上高い温度で10〜60式保持する2回目の連続焼
鈍を施すことを特徴とする特許 板の製造方法である。
That is, in the present invention, in the flattening annealing of a unidirectional silicon steel plate, firstly, a tension of 0.3 to 1.0 kgf/s is applied and held at 650 to 850°C for 10 to 60 seconds.
Continuous annealing is performed for the first time, and then a tension coating is applied at 750 to 900 °C while applying a tension of 0.3 kg f /mm2 or less, and 50 °C from the first annealing temperature.
This method of manufacturing a patent plate is characterized by performing a second continuous annealing at a temperature higher than 10°C for 10 to 60 degrees.

〈作 用〉 先ず、平坦化焼鈍ではコイルセットを除去するに必要な
張力として、ストリンプ断面に対し0.3〜1.0 k
gf/*−を付与し、650〜850 ”Cの温度範囲
でlO〜60secの連続熱処理を施す。
<Function> First, in flattening annealing, the tension required to remove the coil set is 0.3 to 1.0 k to the strip cross section.
gf/*- and subjected to continuous heat treatment for 10 to 60 seconds at a temperature range of 650 to 850''C.

張力が0.3kgf/一未満ではコイルセット除去が不
十分であり、一方1.0kgf/一を超えると歪が大き
くなりすぎて次の歪取焼鈍で除去できない。
If the tension is less than 0.3 kgf/1, the removal of the coil set is insufficient, while if it exceeds 1.0 kgf/1, the strain becomes too large to be removed in the subsequent strain relief annealing.

また平坦化焼鈍温度の下限は、650“Cより低いと平
坦化が不十分になることから限定される.平坦化焼鈍温
度より歪取焼鈍温度を50゜C以上高めなければ歪除去
効果が得られないことから、後述する歪取焼鈍温度の上
限900゜Cより50゜C低い850゜Cを平坦化焼鈍
の上限とする。
In addition, the lower limit of the flattening annealing temperature is limited because flattening will be insufficient if it is lower than 650"C.The strain relief effect will not be obtained unless the strain relief annealing temperature is increased by 50°C or more than the flattening annealing temperature. Therefore, the upper limit of the flattening annealing is set at 850°C, which is 50°C lower than the upper limit of the strain relief annealing temperature of 900°C, which will be described later.

次いで、平坦化されたス・トリップにコーティングを塗
布し、ストリップに歪を導入しない0.3kgr/一以
下の張力を付与し、750℃以上900℃以下の温度で
lOだ60方間コーティング焼付焼鈍と歪取焼鈍を兼ね
た連続焼鈍処理を施す。
The coating is then applied to the flattened strip, and the coating is baked and annealed for 60 hours at a temperature of 750° C. to 900° C. under a tension of 0.3 kgr/1 or less, which does not introduce strain to the strip. A continuous annealing treatment that also serves as strain relief annealing is performed.

焼鈍温度を限定する理由は次のとおりである。The reason for limiting the annealing temperature is as follows.

歪取兼コーティング焼付焼鈍の下限は、750゜Cより
低いとコーティングの張力効果が得られないことと歪除
去効果が不十分になることから限定される。またその上
限は、900℃より高いとコーティングが破壊されるこ
とから限定される。
The lower limit of strain relief and coating baking annealing is limited because if the temperature is lower than 750°C, the tension effect of the coating will not be obtained and the strain relief effect will be insufficient. Further, the upper limit is limited because the coating will be destroyed if the temperature is higher than 900°C.

また歪取焼鈍は1回目の焼鈍温度より50゜C以上高い
温度で処理しないと残留歪の除去は十分に達成されない
Further, residual strain cannot be sufficiently removed unless strain relief annealing is performed at a temperature 50°C or more higher than the first annealing temperature.

また本発明においては、1回目の焼鈍処理と2回目の焼
鈍処理の間に歪取焼鈍を独立に挟み、すなわち平坦化焼
鈍→歪取焼鈍→コーティング焼付焼鈍の順に処理するこ
とも可能である.この場合には、歪取焼鈍は高温になる
程有利であり、上限温度を1200℃にできる。
In the present invention, it is also possible to independently insert strain relief annealing between the first annealing treatment and the second annealing treatment, that is, to perform the treatment in the order of flattening annealing → strain relief annealing → coating baking annealing. In this case, the higher the stress relief annealing is, the more advantageous it is, and the upper limit temperature can be 1200°C.

焼鈍の均熱時間はいずれにおいても10sec以上であ
れば目的を達成できる.しかし60電を超えて保持して
もその効果は飽和されるので上限を60secとした。
In any case, the objective can be achieved as long as the soaking time for annealing is 10 seconds or more. However, even if it is held for more than 60 volts, the effect is saturated, so the upper limit was set to 60 sec.

次に実験結果に基づいて本発明を説明する。Next, the present invention will be explained based on experimental results.

コイル状で仕上焼鈍した0.23mm厚の一方向性珪素
鋼板を、先ず表面に付着している未反応分離剤を水洗ブ
ラッシングにより除去した.次いで600〜900℃の
範囲でコイル毎に温度を変え、0.6kg『/一の張力
を付与しつつ10sec間の連続熱処理を施した。次い
で張力コーティングを塗布し、700〜900゜Cの範
囲でコイル毎に温度を変え0.2kgf/tJの張力を
付与しつつ10派間の連続熱処理を施した。
First, the unreacted separating agent adhering to the surface of a 0.23 mm thick unidirectional silicon steel plate that had been finish annealed in a coil shape was washed with water and brushed. Next, the temperature was changed for each coil in the range of 600 to 900° C., and continuous heat treatment was performed for 10 seconds while applying a tension of 0.6 kg/1. Next, a tension coating was applied, and continuous heat treatment was performed at 10 temperatures while changing the temperature for each coil in the range of 700 to 900°C and applying a tension of 0.2 kgf/tJ.

これらのコイルにつき、ストリップ状での形状観察、切
板サンプルを採取してのコーティング特性の評価および
鉄損特性の測定を実施した。
Regarding these coils, we observed their shape in strip form, took cut samples to evaluate their coating properties, and measured their iron loss properties.

その結果、第1図に示すように、点線で囲んだ温度開城
で、低い鉄損、良好な形状、良好なコーティング特性の
得られることが判明した。
As a result, as shown in FIG. 1, it was found that low iron loss, good shape, and good coating properties could be obtained at the temperature opening indicated by the dotted line.

一方、水洗ブラッシング後のコイルに、従来法すなわち
コーティングを塗布後、平坦化とコーティング焼付を兼
ねた連続熱処理を、ストリップに0.6kgf/ml)
張力を付与しフッ800℃110灘間施した成品では、
鉄損W+7zs。=0.93w/kg、良好な形状とコ
ーティング特性であった。
On the other hand, the coil after washing and brushing was subjected to the conventional method, that is, after applying the coating, continuous heat treatment was applied to the strip, which also served as flattening and baking the coating (0.6 kgf/ml).
For products that have been subjected to tensioning and fusing at 800°C for 110 days,
Iron loss W+7zs. =0.93w/kg, good shape and coating properties.

従来法に比較して本発明法では、格段に優れた鉄損特性
の得られていることが明らかである。
It is clear that the method of the present invention provides much better iron loss characteristics than the conventional method.

〈実施例〉 実施例I スラブ鋳造から仕上焼鈍までの工程を公知技術で処理し
た0、20myn厚の一方向性珪素鋼板のコイルに対し
、先ず表面の未反応分離剤を水洗プランジングにより除
去した。このコイルを2分割し、1半を本発明の条件ず
なわち0.4kgf/■−の張力を付与しつつ700’
C120secの連続焼鈍を施し、次いで張力コーティ
ングを塗布し、さらに0.1kgf/−の張力を付与し
つつ820℃11Osec連続焼鈍を施した。
<Example> Example I First, the unreacted separating agent on the surface of a coil of 0.20 myn thick unidirectional silicon steel sheet that had been processed using known techniques from slab casting to final annealing was removed by water washing plunging. . This coil was divided into two parts, and one half was subjected to the conditions of the present invention, that is, 700' while applying a tension of 0.4 kgf/■-.
Continuous annealing was performed at C120 sec, then a tension coating was applied, and continuous annealing was performed at 820°C for 11 Osec while applying a tension of 0.1 kgf/-.

他の1半を従来法すなわち張力コーティングを塗布し、
ついで0 、4 kg f / mjの張力を付与しつ
つ820℃110secの連続焼鈍を施した。
The other half was applied using the conventional method, that is, tension coating.
Then, continuous annealing was performed at 820° C. for 110 seconds while applying a tension of 0.4 kg f/mj.

その結果、いずれのコイルでも良好なストリップ形状と
コーティング特性が得られたが、鉄損特性は従来法では
WI7/811 =0.91w/kgであるのに対し、
本発明法ではWIT/S。=0.81w/kgと格段に
優れたものであった。
As a result, good strip shape and coating characteristics were obtained for both coils, but the iron loss characteristics were WI7/811 = 0.91w/kg in the conventional method, whereas
In the method of the present invention, WIT/S. =0.81w/kg, which was extremely excellent.

実施例2 公知技術によって仕上焼鈍までの工程を処理した0、3
0mm厚の一方向性珪素鋼板のコイルに対し、先ず水洗
ブラッシングにより未反応分離剤を除去した。次いでこ
のコイルを2分割し、1半を本発明法すなわち0.5k
gf/wjの張力を付与しっつ800℃520secの
連続焼鈍を施し、次いで張力コーティングを塗布したの
ち0.1kgf/−の張力を付与しっつ900’C12
0Sccの連続焼鈍を施した。
Example 2 0 and 3 processed through the steps up to final annealing using known technology
First, unreacted separating agent was removed from a coil made of a unidirectional silicon steel plate having a thickness of 0 mm by water washing and brushing. Next, this coil was divided into two parts, and one half was processed using the method of the present invention, that is, 0.5k.
Apply a tension of gf/wj and perform continuous annealing at 800°C for 520 seconds, then apply a tension coating, then apply a tension of 0.1kgf/- and apply a static 900'C12
Continuous annealing was performed at 0 Scc.

コイルの他の1半を、従来法すなわち先ず張力コーティ
ングを塗布し、次いで0.6kgf/−の張力を付与し
つつ840℃130secの連続焼鈍を施した。
The other half of the coil was subjected to a conventional method, that is, first, a tension coating was applied, and then continuous annealing was performed at 840° C. for 130 seconds while applying a tension of 0.6 kgf/−.

その結果、いずれのコイルでも良好なストリップ形状と
コーティング特性が得られたが、鉄を員特性については
従来法でlA’B7s。−1,13w/kgであるのに
対し、本発明法ではW177s。−1,02w/kgで
あり、格段に優れたものであった。
As a result, good strip shape and coating properties were obtained for all coils, but the conventional method had better strip properties than 1A'B7s. -1.13w/kg, whereas in the method of the present invention, W177s. -1.02w/kg, which was extremely excellent.

〈発明の効果〉 本発明は、従来平坦化とコーティング焼付を兼ねた連続
焼鈍を、平坦化焼鈍および歪取コーティング焼付を兼ね
た連続焼鈍に分けて処理することにより、著しく低い鉄
損特性を一方向性珪素鋼板に付与することを可能にした
。従って、変圧器のエネルギーロスを格段に少なくする
ことが可能になり、工業的価値は大きい。
<Effects of the Invention> The present invention achieves extremely low iron loss characteristics at once by dividing the conventional continuous annealing that combines flattening and coating baking into continuous annealing that also serves as flattening annealing and strain relief coating baking. This makes it possible to apply this to grain-oriented silicon steel sheets. Therefore, it becomes possible to significantly reduce energy loss in the transformer, which is of great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、平坦化焼鈍、歪取兼コーティング焼付焼鈍の
温度と、ストリップ形状、コーティング特性、鉄1員特
性との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the temperature of flattening annealing, strain relief/coating baking annealing, strip shape, coating properties, and iron one-member properties.

Claims (1)

【特許請求の範囲】[Claims]  一方向性珪素鋼板の平坦化焼鈍において、先ず0.3
〜1.0kgf/mm^3の張力を付与しつつ650〜
850℃で10〜60sec保持する1回目の連続焼鈍
を施し、次いで張力コーティングを塗布し0.3kgf
/mm^2以下の張力を付与しつつ750〜900℃で
、かつ1回目の焼鈍温度より50℃以上高い温度で10
〜60sec保持する2回目の連続焼鈍を施すことを特
徴とする鉄損特性に優れた一方向性珪素鋼板の製造方法
In flattening annealing of unidirectional silicon steel sheet, first 0.3
650~ while applying a tension of ~1.0kgf/mm^3
The first continuous annealing was performed at 850°C for 10 to 60 seconds, and then a tension coating was applied and the weight was 0.3 kgf.
/mm^2 or less at a temperature of 750 to 900℃, and at a temperature 50℃ or more higher than the first annealing temperature.
A method for manufacturing a unidirectional silicon steel sheet having excellent core loss characteristics, characterized by performing a second continuous annealing for ~60 seconds.
JP16278090A 1990-06-22 1990-06-22 Production of grain-oriented silicon steel sheet excellent in iron loss characteristic Pending JPH0456731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16278090A JPH0456731A (en) 1990-06-22 1990-06-22 Production of grain-oriented silicon steel sheet excellent in iron loss characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16278090A JPH0456731A (en) 1990-06-22 1990-06-22 Production of grain-oriented silicon steel sheet excellent in iron loss characteristic

Publications (1)

Publication Number Publication Date
JPH0456731A true JPH0456731A (en) 1992-02-24

Family

ID=15761072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16278090A Pending JPH0456731A (en) 1990-06-22 1990-06-22 Production of grain-oriented silicon steel sheet excellent in iron loss characteristic

Country Status (1)

Country Link
JP (1) JPH0456731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196536A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196536A (en) * 2013-03-29 2014-10-16 Jfeスチール株式会社 Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet

Similar Documents

Publication Publication Date Title
JP5980216B2 (en) Method for producing insulating coating on directional electromagnetic flat steel product and electromagnetic flat steel product coated with the insulating coating
EP0926250B1 (en) Grain-oriented electromagnetic steel sheet having excellent film characteristics and magnetic characteristics, its production method and decarburization annealing setup therefor
JPH02274815A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP2698501B2 (en) Method for forming insulating film on unidirectional silicon steel sheet
JPH0456731A (en) Production of grain-oriented silicon steel sheet excellent in iron loss characteristic
JPS585969B2 (en) Manufacturing method of low core loss unidirectional silicon steel sheet
JP4029543B2 (en) Final finish annealing method for directional silicon steel strip
JP3415379B2 (en) Insulating coating on grain-oriented silicon steel sheet and method of forming the same
JPH02125815A (en) Manufacture of grain-oriented silicon steel sheet having superior magnetic characteristic
JPS63125620A (en) Flattening annealing method for grain oriented silicon steel sheet having excellent magnetic characteristic and film adhesiveness
JPH0375354A (en) Production of grain-oriented silicon steel sheet with superlow iron loss free from deterioration in characteristic due to stress relief annealing
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
WO2023121273A1 (en) Grain oriented electrical steel sheet and manufacturing method of same
JP3426959B2 (en) Method for increasing tension of unidirectional electrical steel sheet coating
JPH0733547B2 (en) Method of manufacturing bidirectional electrical steel sheet with high magnetic flux density
KR100328032B1 (en) A Method for Manufacturing Non-Oriented Ultra-Thin Gauge Sillicon Steel Sheet
JP3632318B2 (en) Annealing method for grain-oriented electrical steel sheet
JP5200363B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JPS6223984A (en) Very thin tensile film for improving compressive stress characteristic of magnetostriction of grain-oriented silicon steel sheet
JPS6263616A (en) Manufacture of grain oriented electrical sheet having low iron loss
JP3253111B2 (en) Manufacturing method of unidirectional silicon steel sheet
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH04289121A (en) Production of thin grain-oriented silicon steel sheet having stable magnetic property
JPH045727B2 (en)