JPH0456088B2 - - Google Patents
Info
- Publication number
- JPH0456088B2 JPH0456088B2 JP15420987A JP15420987A JPH0456088B2 JP H0456088 B2 JPH0456088 B2 JP H0456088B2 JP 15420987 A JP15420987 A JP 15420987A JP 15420987 A JP15420987 A JP 15420987A JP H0456088 B2 JPH0456088 B2 JP H0456088B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- cold
- steel
- annealing
- graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 48
- 239000010959 steel Substances 0.000 claims description 48
- 238000000137 annealing Methods 0.000 claims description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 35
- 238000005097 cold rolling Methods 0.000 claims description 26
- 229910002804 graphite Inorganic materials 0.000 claims description 25
- 239000010439 graphite Substances 0.000 claims description 25
- 239000010960 cold rolled steel Substances 0.000 claims description 16
- 229910000859 α-Fe Inorganic materials 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 238000005098 hot rolling Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 229910001567 cementite Inorganic materials 0.000 description 8
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 8
- 229910000677 High-carbon steel Inorganic materials 0.000 description 6
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005096 rolling process Methods 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 238000012733 comparative method Methods 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000005087 graphitization Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 238000005496 tempering Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Steel (AREA)
Description
<産業上の利用分野>
この発明は、炭素を多く含有する鋼でありなが
ら軟鋼板並の深絞り性を有していて複雑な形状へ
の成形加工が可能であり、しかも簡単な処理によ
つて高い硬度や優れた耐摩耗性を発揮し得る高炭
素冷延鋼板を、格別な設備を必要とすることなく
安定に製造する方法に関するものである。
<背景技術>
一般に、小物容器、乗用車などの車両部品等、
硬度や耐摩耗性が要求される高炭素鋼板は球状化
処理状態で出荷され、所望形状に成形加工を施し
た後に熱処理して硬化せしめられて使用されるこ
とが多い。
しかしながら、高炭素鋼板は球状化処理状態で
あつても軟鋼板よりは相当に硬く、その加工性は
到底軟鋼板並とは行かないことから、複雑な形状
に成形使用とすると割れを発生してしまうと言う
不都合があつた。もつとも、高炭素鋼板の成形性
の悪さは上述のような硬さに起因するだけではな
く、塑性異方性、即ち値が1.0以下と低い値を
示すことにも大きな原因があつた。即ち、一般の
冷延鋼板の値は1.3〜2.2程度であるのに対し
て、高炭素冷延鋼板では0.6〜1.0程度の低い値
しか示さないからである。
<発明が解決しようとする問題点>
そこで、本発明者は、上述の如き硬度や耐摩耗
性等の要求に応えるための“高炭素鋼板”に見ら
れる不本意な成形加工性を改善し、高い硬度や耐
摩耗性を損なうことなく、しかも複雑な形状への
成形加工が可能な“優れた絞り性”をも兼備した
鋼板を工業的規模で安定して提供することの可能
性を求め、様々な観点からの研究を重ねた。
ところで、本発明者等は先に「鋼材の成形性阻
害の要因がセメンタイト層の存在にあるが、鋼材
中のP及びS含有量を相関的に規制すると共に
Mn含有量をも制限するとα鉄中の第2相がセメ
ンタイトからグラフアイトに変化し易くなり、所
定加工度での冷間加工と特定条件の焼鈍との組み
合わせのみで延性及び加工性に優れた鋼材が得ら
れる」との知見に基づいた
『フエライト相とグラフアイト相が主体の組織
を有する“延性と加工性に優れた鋼材”』
に関する提案と行つたことから(特開昭60−
52551号)、該手段の適用による高硬度・高耐摩耗
性と加工性とを兼備した鋼板の製造を試みたが、
先に提案した手段をそのまま適用した場合には得
られる鋼板の値は不満足で、厳しい深絞り加工
や穴拡げ加工を行う場合には加工性が不足する欠
点があつた。
<問題点を解決する手段>
本発明者等は、上述のような各種問題点を踏ま
えた上で、鋼板に高硬度・高耐摩耗性を確保する
ためには高いC含有量は欠かせないとの観点に立
つて、該高炭素鋼板に優れた絞り性(値)を安
定して付与せしめ得る手段を見出すべく更に研究
を重ねた結果、以下に示される新たな知見を得る
に至つたのである。即ち、
(a) 高炭素鋼のMn,sol.Al及びN含有量を所定
範囲に調整するか、更に特定の元素を添加した
熱延鋼板に、まず所定圧下率の冷間圧延と特定
条件の焼鈍を施すと、フエライト母相中の第2
相がグラフアイト主体の組織となり(熱間圧延
後、或いはこれをそのまま焼鈍した状態では第
2相はセメンタイトFe3Cとなる)、比較的柔
らかくて展伸性に富む組織が得られる。
(b) ただ、このままでは絞り性(値)が安定し
て改善されると言うわけには行かないが、上記
処理に続き更に1回以上の冷間圧延と焼鈍とを
特定の条件で実施すると、前記フエライトとグ
ラフアイトの組織から冷間圧延につて冷延集合
組織が発達すると共に、続く焼鈍により値に
好ましい再結晶集合組織を形成され、従来品に
ない高い値、低い降伏応力並びに高い伸びが
得られることとなる。従つて、これらの処理に
より、Cを多く含有する鋼でありながら軟鋼板
並の絞り性を有すると共に、成形後の熱処理に
より十分な硬度が確保されて高い耐摩耗性等を
発揮する鋼板を安定生産することが可能とな
る。
(c) なお、前述した冷間圧延前の組織が“フエラ
イト+セメンタイト”では値に好ましい集合
組織は発達せず、“フエライト+グラフアイト”
組織であるときに始めて、C含有量にかかわら
ず冷間圧延と焼鈍とで値に好ましい集合組織
が発達する。これは、セメンタイトは硬いため
フエライトの変形を抑制するが黒鉛は軟らかい
のでフエライトの変形を抑制し得ず、このため
“フエライト+グラフアイト”組織では軟鋼
(低C鋼)と同等の集合組織が発達するためで
あると考えられる。
この発明は、上記知見に基づいてなされたもの
であり、
C:0.08〜0.95%(以下、成分割合を表わす%
は重量%とする)、
Mn:0.50%以下、sol.Al:0.20%以下、
N:0.0130%以下
を含むか、或いは更に、
B:0.0005〜0.0050%、
Si:1.2%以下、
Ni:5.0%以下
のうちの1種以上をも含有し、
Fe及び他の不可避的不純物:残り
から成る鋼を熱間圧延した後、圧下率20〜70%で
冷間圧延してから500〜750℃で2時間以上の焼鈍
を施してフエライトとグラフアイトを主体とする
組織となし、更に圧下率50〜90%で冷間圧延した
後600〜850℃で焼鈍することによつて、優れた絞
り性を有すると共に、成形後等に簡単な熱処理で
もつて高い硬度を付与せしめ得る高炭素冷延鋼板
を安定製造できるようにした点、
に特徴を有するものである。
ここで、本発明の高炭素冷延鋼板の製造方法に
おいて、素材鋼の成分含有割合及び処理条件を前
記の如くに限定した理由を説明する。
A 素材鋼の成分含有割合
() C
C成分は、鋼板は硬度や耐摩耗性を確保する作
用があるが、一般にC含有量は低いほど絞り性が
良好となる。そして、C含有量が0.08%未満にな
ると十分な硬度や耐摩耗性が得られない上、この
ような鋼については本発明で規定する手段を適用
しなくても値が高い。
一方、0.95%を越えてCを含有させると硬質と
なり過ぎて冷間圧延ができなくなることから、C
含有量は0.08%〜0.95%と定めた。
() Mn
Mn成分は、鋼板に必要な強度を付与すること
に加えて、鋼の熱間加工性を確保する作用がある
が、0.50%を超えて含有させると鋼成分としての
Cはセメンタイトとして安定となり、グラフアイ
トを形成し難くなることから、Mn成分は0.50%
以下と定めた。
() sol.Al
sol.Al成分は、多い方がグラフアイトの形成が
容易になるので添加するのが望ましい。しかし、
0.20%を超えて含有させると鋼中介在物が増加し
て鋼板の加工性劣化を招くことから、sol.Al含有
量は0.20%以下と限定した。
() N
Nは鋼中に不可避的に含有される不純物元素で
あるが、その含有量が0.0130%(130ppm)を超
えると鋼板の伸び値が劣化することから、N含有
量は0.0130%以下と限定した。
() Si,及びNi
Si及びNiには鋼中Cのグラフアイト化を容易
化する作用があるので、必要に応じて1種又は2
種添加される成分である。
このうち、Siは通常の炭素鋼に0.2%程度含ま
れている元素であり、これを更に増加するとグラ
フアイト化が生じ易くなるが、1.2%を超えて含
有させると靱性の劣化を招くことから、Siを添加
する場合には1.2%以下と制限した。
一方、Niの場合には、5.0%を越えて含有させ
るとグラフアイト化促進効果が飽和する上、コス
ト上昇が甚だしいことから、Niを添加する場合
には5.0%以下と制限した。
() B
Bはグラフアイトの分散に影響を及ぼすの元素
であり、グラフアイトの析出を微細化して鋼板成
形後の熱処理でのグラフアイト消失を容易化し、
高硬度・高耐摩耗性の確保を確実化ならしめる作
用を有していることから、必要に応じて添加され
る成分であるが、その含有量が0.0005%未満では
前記作用に所望の効果が得られず、一方、0.0050
%を超えて含有させるとスラブの割れ等を生じる
恐れがある。従つて、Bを添加する場合には、そ
の含有量は0.0005〜0.0050%と定めた。
なお、鋼の不可避的不純物たるP及びSの含有
量はできるだけ少ない方が良いが、SiやNiを多
量に添加すると通常のP及びS含有量レベルでも
グラフアイト化が起きることから、本発明の目的
からはこれら不純物量をあえて限定する必要がな
い。
また、上記成分の他に、強度等の改善を目指
し、要求される性能、用途、成品種別に応じて
Cu,Nb,Zr,Ti,Ca等を微量添加すると言う
慣用手段を適用して良いことは言うまでもない。
B 処理条件
本発明の方法では、上記成分塑性の鋼に通常の
熱延及び酸洗を施した後(但し、熱延時の巻取温
度は低い方が良く、また酸洗の後に焼鈍処理を施
して軟質化しておいても良い。特に、C含有量の
多い硬質鋼では冷間圧延が難しいのでこの予備焼
鈍は有効である)、第1次の冷間圧延及び焼鈍、
並びに第2次の冷延及び焼鈍が施されるが、その
処理条件を限定したのは次の理由による。
() 第1回目の冷間圧延の圧下率
第1回目の冷間圧延の狙いは、熱延板中のセメ
ンタイトを破壊することにある。そして、このセ
メンタイト破壊によつて鋼板組織に空洞ができ、
グラフアイト形成の準備がなされる。しかしなが
ら、その圧下率が10%未満では前記空洞の形成が
十分でなく、一方、70%を超える圧下率では空洞
形成効果が飽和するだけで圧延負荷が大きくなり
過ぎることから、第1回目冷間圧延の圧下率は20
〜70%と限定した。
() 第1次の焼鈍条件
第1回目の冷間圧延に続いて実施される第1次
の焼鈍は、グラフアイトを形成させるためのもの
であるが、焼鈍温度が500℃未満であつたり、750
℃を超える場合にはグラフアイト化の進行が困難
である上、焼鈍時間が2時間未満では十分なグラ
フアイト化が達成できない。従つて、均一なグラ
フアイト形成を確保するため、第1次の焼鈍は
500〜750℃の温度で2時間以上実施することと定
めた。
() 第2回目冷間圧延の圧下率
第2回目の冷間圧延の狙いは、冷間圧延集合組
織の形成にある。そして、この際の圧下率が50%
未満では集合組織形成が不十分で鋼板製品の値
が低下し、一方、90%超える圧下率を加えてもそ
れ以上に値が向上しないにも係わらず負荷ばか
りが大きくなることから、第2回目冷間圧延の圧
下率は50〜90%と限定した。
なお、この第2回目冷間圧延が施される中間素
材は、前記の処理により鋼組織が“フエライト+
グラフアイト”となつていて軟質なので、通常の
軟鋼冷延鋼板並の圧延性を有している。
() 第2次の焼鈍条件
第2回目の冷間圧延後に実施される第2次の焼
鈍は、冷間圧延組織を再結晶させて軟質化し、
値に好ましい再結晶集合組織を形成することを目
的として施される。しかしながら、この場合の焼
鈍温度が600℃未満では再結晶が起きず、一方、
焼鈍温度が850℃を超えるとγ相が出て値が低
下することから、第2次焼鈍の温度は600〜850℃
と定めた。なお、この場合には均熱保持時間は格
別に重要ではなく、箱焼鈍或いは連続焼鈍の何れ
を採用しても良い。
なお、上述の第2回目冷間圧延及び第2次焼鈍
に相当する処理は2回以上繰り返して実施しても
差し支えないが、本発明ではコスト面を考慮して
1回の実施に止めることとした。
また、前述した圧延や焼鈍工程の間に、必要に
応じて表面調整のための処理や腰折れ防止のため
の処置などを実施して良いことは言うまでもな
い。
そして、第2次焼鈍を施した鋼板は、通常の如
くスキンパス圧延等が施されて出荷される。
ところで、上述のようにして製造された薄板成
品は、通常、絞り加工等の成形加工が施されて所
定形状製品とされるが、その後、熱処理によつて
硬化すれば優れた強度や耐摩耗性を発揮するよう
になる。この際の熱処理温度は750〜1100℃とす
るのが良く、加熱保持後は油冷或いは水冷等で急
冷して低温変態組織となして硬度を確保するのが
良い。この場合には、その後100〜600℃で焼戻し
を行うことが推奨される。
このようにして製造された成形部品は、硬度が
高くかつ耐摩耗性に優れているので、その応用分
野は極めて広いものとなる。
次に、この発明を実施例により、比較例と対比
しながら具体的に説明する。
<実施例>
実施例 1
まず、常法により、C:0.65%、Si:0.20%、
Mn:0.20%、P:0.009%、S:0.006%、sol.
Al:0.03%、N:0.0048%を含むと共に、残部が
実質的にFeより成る成分組成の鋼を溶製してス
ラブとなし、続いてこれを1100℃に加熱後、仕上
温度約820℃、巻取温度600℃で熱間圧延して熱延
鋼板とした。
次いで、酸洗を施した上記熱延鋼板に、一部を
除いて圧下率が70%までの種々の値で冷間圧延を
加え、引き続いて650℃で15時間のバツチ焼鈍を
施し、更に圧下率15%〜90%での冷間圧延を再度
施した後、820℃で1分間の連続焼鈍、或いは690
℃で16時間のバツチ焼鈍を行つた。
次に、このようにして得られた各鋼板からJIS5
号引張試験片を採取し、鋼板の3方向について引
張試験を行つて値調べた。
この値の調査結果を第1図及び第2図に示
す。なお、第1図は、第2次冷圧率を66%と一定
にした場合の2次焼鈍後の値に及ぼす1次冷圧
率の影響を示しており、一方、第2図は1次冷圧
率を55%と一定にした場合の同様な結果を示して
いる。また、図中の△印は820℃で1分間の連続
焼鈍を行つたものの、そして○印は690℃で16時
間のバツチ焼鈍を行つたものの値である。
前記第1図に示される結果からも、1次冷圧率
が20%〜70%の範囲内のものが高い値を示すこ
とが確認できる。そして、第1図には第2次焼鈍
の温度が820℃(△印)と690℃(○印)の両方の
データが示されているが、本発明の規定範囲内で
の該焼鈍温度の差による値への影響は格別に認
められない。
また、第2図に示される結果からは、第2次冷
圧率は50〜90%で1.2以上の優れた値が得られ
ることを確認できる。
実施例 2
常法によつて第1表に示す成分組成の鋼を溶製
し、これに第2表で示される処理を施して冷延鋼
板となした。
次に、得られた冷延鋼板からJIS5号引張試験片
を3方向に採取し引張試験を行つた。
第2表には、降伏強度、引張強さ、伸び及び
値の3方向における平均値を示した。
第2表に示される結果からも、本発明で規定れ
る条件通りに製造された鋼板は何れも、Si含有量
が少ない場合には降伏強度が20Kgf/mm2前後、引
張強さが30〜35Kgf/mm2、伸びが40%以上、
<Industrial Application Field> This invention is a steel that contains a large amount of carbon but has deep drawability comparable to that of a mild steel plate, can be formed into complex shapes, and can be processed easily. The present invention relates to a method for stably producing a high carbon cold rolled steel sheet that exhibits high hardness and excellent wear resistance without requiring special equipment. <Background technology> Generally, small containers, vehicle parts such as passenger cars, etc.
High carbon steel sheets that require high hardness and wear resistance are often shipped in a spheroidized state, and after being formed into a desired shape, they are heat treated and hardened before use. However, even in the spheroidized state, high carbon steel sheets are considerably harder than mild steel sheets, and their workability is far from comparable to that of mild steel sheets, so cracks may occur when used to form complex shapes. I had the inconvenience of putting it away. However, the poor formability of high carbon steel sheets is not only due to the hardness mentioned above, but also due to plastic anisotropy, which has a low value of 1.0 or less. That is, while the value of general cold-rolled steel sheets is about 1.3 to 2.2, high carbon cold-rolled steel sheets only show a low value of about 0.6 to 1.0. <Problems to be Solved by the Invention> Therefore, the present inventors improved the undesirable formability found in "high carbon steel sheets" in order to meet the above-mentioned demands for hardness, wear resistance, etc. We sought the possibility of stably providing steel sheets on an industrial scale that have "excellent drawability" that allows them to be formed into complex shapes without sacrificing high hardness or wear resistance. We conducted repeated research from various perspectives. By the way, the present inventors have previously stated that ``The presence of a cementite layer is a factor that inhibits the formability of steel materials, but it is possible to
If the Mn content is also restricted, the second phase in α-iron will easily change from cementite to graphite, and only a combination of cold working at a predetermined degree of workability and annealing under specific conditions will result in excellent ductility and workability. Based on the knowledge that ``steel materials with excellent ductility and workability'' having a structure mainly composed of ferrite and graphite phases were proposed and carried out (Japanese Patent Laid-Open No. 1983-1999),
No. 52551), an attempt was made to manufacture a steel plate with high hardness, high wear resistance, and workability by applying this method, but
If the previously proposed method was applied as is, the values of the steel plate obtained were unsatisfactory, and there was a drawback of insufficient workability when performing severe deep drawing or hole enlarging. <Means for solving the problems> Based on the various problems mentioned above, the present inventors have discovered that a high C content is essential in order to ensure high hardness and high wear resistance in steel sheets. From this point of view, we conducted further research to find a means to stably impart excellent drawability (value) to the high carbon steel sheet, and as a result, we obtained the new knowledge shown below. be. In other words, (a) Either the Mn, sol.Al and N contents of high carbon steel are adjusted to a specified range, or a hot rolled steel sheet to which specific elements are added is first subjected to cold rolling at a specified reduction rate and under specific conditions. When annealing is performed, the secondary phase in the ferrite matrix is
The phase becomes a structure consisting mainly of graphite (after hot rolling or in a state where this is annealed as it is, the second phase becomes cementite Fe 3 C), and a relatively soft and extensible structure is obtained. (b) However, it cannot be said that the drawability (value) will be stably improved as it is, but if the above treatment is followed by one or more cold rolling and annealing under specific conditions. A cold rolling texture develops from the ferrite and graphite structure during cold rolling, and a recrystallized texture favorable for values is formed by subsequent annealing, resulting in high values, low yield stress, and high elongation not found in conventional products. will be obtained. Therefore, through these treatments, it is possible to create a stable steel sheet that has drawability comparable to that of a mild steel sheet even though it contains a large amount of C, and also ensures sufficient hardness through heat treatment after forming and exhibits high wear resistance. It becomes possible to produce. (c) In addition, if the structure before cold rolling is "ferrite + cementite", a texture favorable for the value will not develop, and "ferrite + graphite" will not develop.
It is only when the texture is favorable that a texture with favorable values develops upon cold rolling and annealing, regardless of the C content. This is because cementite is hard and suppresses the deformation of ferrite, but graphite is soft and cannot suppress the deformation of ferrite. Therefore, in the "ferrite + graphite" structure, a texture similar to that of mild steel (low C steel) develops. This is thought to be for the purpose of This invention was made based on the above knowledge, and C: 0.08 to 0.95% (hereinafter, % representing the component ratio).
% by weight), Mn: 0.50% or less, sol.Al: 0.20% or less, N: 0.0130% or less, or in addition, B: 0.0005 to 0.0050%, Si: 1.2% or less, Ni: 5.0% The steel containing one or more of the following, Fe and other unavoidable impurities: After hot rolling, the steel is cold rolled at a reduction rate of 20-70% and then heated at 500-750°C. It has excellent drawability by being annealed for more than hours to create a structure mainly composed of ferrite and graphite, and then cold-rolled at a reduction rate of 50-90% and then annealed at 600-850℃. In addition, the present invention is characterized in that it is possible to stably produce a high carbon cold rolled steel sheet that can be imparted with high hardness even by simple heat treatment after forming. Here, in the method for manufacturing a high carbon cold-rolled steel sheet of the present invention, the reason why the content ratio of the raw material steel and the processing conditions are limited as described above will be explained. A Component content ratio of raw material steel () C The C component has the effect of ensuring the hardness and wear resistance of the steel plate, but generally the lower the C content, the better the drawability. If the C content is less than 0.08%, sufficient hardness and wear resistance cannot be obtained, and such steels have high values even without applying the measures specified in the present invention. On the other hand, if C is added in excess of 0.95%, it becomes too hard and cannot be cold rolled.
The content was set at 0.08% to 0.95%. () Mn In addition to imparting the necessary strength to the steel sheet, the Mn component has the effect of ensuring the hot workability of the steel, but if it is contained in excess of 0.50%, the C as a steel component will act as cementite. The Mn content is 0.50% because it becomes stable and difficult to form graphite.
It was determined as follows. () sol.Al It is desirable to add the sol.Al component because the larger the amount, the easier it is to form graphite. but,
If the content exceeds 0.20%, inclusions in the steel will increase and the workability of the steel plate will deteriorate, so the sol.Al content was limited to 0.20% or less. () N N is an impurity element that is unavoidably contained in steel, but if its content exceeds 0.0130% (130 ppm), the elongation value of the steel plate will deteriorate, so the N content should be 0.0130% or less. Limited. () Si and Ni Since Si and Ni have the effect of facilitating the graphite formation of C in steel, one or two types of Si and Ni can be used as needed.
Seeds are the ingredients that are added. Of these, Si is an element that is contained in about 0.2% in ordinary carbon steel, and if it is further increased, graphite formation is likely to occur, but if it is contained in excess of 1.2%, it will lead to a deterioration of toughness. , when adding Si, it was limited to 1.2% or less. On the other hand, in the case of Ni, if the content exceeds 5.0%, the effect of promoting graphite formation will be saturated and the cost will increase significantly, so when Ni is added, it is limited to 5.0% or less. () B B is an element that affects the dispersion of graphite, making the precipitation of graphite finer and facilitating the disappearance of graphite during heat treatment after forming the steel sheet.
This component is added as needed because it has the effect of ensuring high hardness and high wear resistance, but if its content is less than 0.0005%, the desired effect will not be achieved. Not obtained, while 0.0050
If the content exceeds %, cracks in the slab may occur. Therefore, when B is added, its content is determined to be 0.0005 to 0.0050%. Note that it is better to keep the content of P and S, which are unavoidable impurities in steel, as low as possible, but if large amounts of Si or Ni are added, graphitization will occur even at normal P and S content levels. For the purpose, there is no need to limit the amount of these impurities. In addition to the above ingredients, we also aim to improve strength, etc., and add
It goes without saying that the conventional means of adding trace amounts of Cu, Nb, Zr, Ti, Ca, etc. may be applied. B Processing Conditions In the method of the present invention, after the above-mentioned plastic steel is subjected to normal hot rolling and pickling (however, the lower the coiling temperature during hot rolling, the better, and after pickling, annealing treatment is performed. (This preliminary annealing is effective because cold rolling is difficult in hard steel with a high C content.), first cold rolling and annealing,
Second cold rolling and annealing are performed, but the processing conditions are limited for the following reason. () Reduction ratio of the first cold rolling The aim of the first cold rolling is to destroy the cementite in the hot rolled sheet. This cementite destruction creates cavities in the steel sheet structure,
Preparation is made for graphite formation. However, if the rolling reduction rate is less than 10%, the formation of the cavities is not sufficient, while if the rolling reduction rate exceeds 70%, the cavity formation effect is saturated and the rolling load becomes too large. The rolling reduction ratio is 20
Limited to ~70%. () First annealing conditions The first annealing carried out following the first cold rolling is for forming graphite, but the annealing temperature is less than 500 ° C. 750
If the annealing time exceeds .degree. C., graphitization is difficult to proceed, and if the annealing time is less than 2 hours, sufficient graphitization cannot be achieved. Therefore, to ensure uniform graphite formation, the first annealing is
It was specified that the test should be carried out at a temperature of 500 to 750°C for 2 hours or more. () Reduction rate of second cold rolling The aim of the second cold rolling is to form a cold rolling texture. And the reduction rate at this time is 50%
If the reduction rate is less than 90%, the texture formation will be insufficient and the value of the steel sheet product will decrease.On the other hand, even if the reduction rate exceeds 90%, the value will not improve any more but the load will increase. The reduction ratio of cold rolling was limited to 50 to 90%. The intermediate material subjected to this second cold rolling has a steel structure of "ferrite+" due to the above treatment.
Graphite" and is soft, so it has rollability comparable to that of ordinary mild cold-rolled steel sheets. () Secondary annealing conditions Secondary annealing carried out after the second cold rolling. recrystallizes the cold-rolled structure to soften it,
It is applied for the purpose of forming a recrystallized texture favorable to the value. However, in this case, if the annealing temperature is less than 600℃, recrystallization will not occur;
If the annealing temperature exceeds 850℃, γ phase appears and the value decreases, so the temperature of the second annealing is 600 to 850℃.
It was determined that In this case, the soaking time is not particularly important, and either box annealing or continuous annealing may be employed. It should be noted that the processes corresponding to the second cold rolling and second annealing described above may be repeated two or more times, but in the present invention, they are carried out only once in consideration of cost. did. Furthermore, it goes without saying that during the rolling and annealing steps described above, treatments for surface conditioning, measures to prevent buckling, etc. may be carried out as necessary. Then, the steel plate subjected to the second annealing is subjected to skin pass rolling or the like as usual before being shipped. By the way, the thin plate products manufactured as described above are usually subjected to forming processing such as drawing to form products into a predetermined shape, but if they are then hardened by heat treatment, they have excellent strength and wear resistance. will be able to demonstrate this. The heat treatment temperature at this time is preferably 750 to 1100°C, and after holding the heat, it is preferable to rapidly cool it with oil cooling or water cooling to form a low-temperature transformed structure and ensure hardness. In this case, it is recommended that tempering be performed subsequently at 100-600°C. The molded parts manufactured in this way have high hardness and excellent wear resistance, so their application fields are extremely wide. Next, the present invention will be specifically explained using Examples and in comparison with Comparative Examples. <Example> Example 1 First, C: 0.65%, Si: 0.20%,
Mn: 0.20%, P: 0.009%, S: 0.006%, sol.
Steel containing Al: 0.03%, N: 0.0048%, and the remainder substantially consisting of Fe is melted into a slab, which is then heated to 1100℃, finishing at a temperature of approximately 820℃, A hot-rolled steel sheet was obtained by hot rolling at a coiling temperature of 600°C. Next, the pickled hot-rolled steel sheet was cold rolled at various reduction rates up to 70%, except for some parts, and then batch annealed at 650°C for 15 hours, and further reduced. After cold rolling again at a rate of 15% to 90%, continuous annealing at 820℃ for 1 minute or 690℃
Batch annealing was performed at ℃ for 16 hours. Next, from each steel plate obtained in this way, JIS5
A No. 1 tensile test piece was taken, and tensile tests were conducted in three directions of the steel plate to investigate the values. The investigation results of this value are shown in Figs. 1 and 2. Furthermore, Figure 1 shows the influence of the primary cold reduction ratio on the value after secondary annealing when the secondary cold reduction ratio is kept constant at 66%, while Figure 2 shows the effect of the primary cold reduction ratio on the value after the secondary annealing. Similar results are shown when the cold compression ratio is kept constant at 55%. Further, the △ mark in the figure indicates the value obtained by continuous annealing at 820°C for 1 minute, and the ◯ mark indicates the value obtained by batch annealing at 690°C for 16 hours. From the results shown in FIG. 1, it can be confirmed that the primary cold compression ratio within the range of 20% to 70% shows a high value. Fig. 1 shows data for secondary annealing temperatures of both 820°C (△ mark) and 690°C (○ mark), but the annealing temperature is within the specified range of the present invention. No particular influence on the value due to the difference is observed. Moreover, from the results shown in FIG. 2, it can be confirmed that an excellent value of 1.2 or more can be obtained at a secondary cold compression ratio of 50 to 90%. Example 2 Steel having the composition shown in Table 1 was melted by a conventional method and subjected to the treatments shown in Table 2 to obtain a cold rolled steel plate. Next, JIS No. 5 tensile test pieces were taken from the obtained cold-rolled steel sheet in three directions and subjected to a tensile test. Table 2 shows yield strength, tensile strength, elongation, and average values in three directions. From the results shown in Table 2, all steel plates manufactured according to the conditions specified in the present invention have a yield strength of around 20 Kgf/mm 2 and a tensile strength of 30 to 35 Kgf when the Si content is low. /mm 2 , elongation is 40% or more,
【表】【table】
【表】
(注) *印は、本発明の条件から外れていることを
示す。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
【表】
(注) *印は、本発明の条件から外れていることを示
す。
値が1.2以上を示していて、優れた成形性を
有していることが分かり、またSi含有量が多い場
合には特性が多少低下するものの良好な成形性を
有することが確認できる。
これに対して、比較法13では1次焼鈍での均熱
時間が短いのでグラフアイト化が十分でなく、
値の低い冷延鋼板しか得られていない。また、比
較法14では、1次冷間圧延を実施していないため
r値は更に低くなつている。
一方、比較法15及び16では、素材鋼のMn含有
量が高いため1次焼鈍によつてはグラフアイト相
が発達せず、しかも2次焼鈍を施してもグラフア
イト相の発生が見られないことから、得られる冷
延鋼板は硬質となる上にr値も低くなつている。
なお、比較法17で得られる鋼板はJISで規定さ
れるS45C相当仕様材であるが、十分な成形性を
示さないことが分かる。
参考例 1
前記第2表に示した方法で得られた冷延鋼板の
内、本発明例1及び11、並びに比較例17で得られ
たものについて、それぞれを845℃で15分間保持
した後油冷し、次いで200℃で30分間保持後空冷
する焼戻し処理を施してから硬度を測定した。
この結果を第3表に示した。[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.
The value is 1.2 or more, indicating that the material has excellent moldability, and it can be confirmed that it has good moldability, although the properties are somewhat degraded when the Si content is high. On the other hand, in Comparative Method 13, the soaking time in the first annealing is short, so graphite formation is not sufficient.
Only cold-rolled steel sheets with low values have been obtained. Furthermore, in Comparative Method 14, the r value is even lower because primary cold rolling is not performed. On the other hand, in Comparative Methods 15 and 16, the graphite phase does not develop during primary annealing due to the high Mn content of the steel material, and no graphite phase is observed even after secondary annealing. Therefore, the obtained cold-rolled steel sheet is not only hard but also has a low r value. Although the steel plate obtained by Comparative Method 17 has specifications equivalent to S45C specified by JIS, it is clear that it does not exhibit sufficient formability. Reference Example 1 Among the cold-rolled steel sheets obtained by the methods shown in Table 2 above, those obtained in Invention Examples 1 and 11 and Comparative Example 17 were each kept at 845°C for 15 minutes and then oiled. The hardness was measured after cooling and tempering by holding at 200°C for 30 minutes and cooling in air. The results are shown in Table 3.
【表】
第3表に示される結果からも明らかなように、
焼入れ・焼戻し後の冷延鋼板の硬度はJIS規格品
たる比較法17によつて得られたものが最も高い
が、本発明法1によるものよりもやや低い本発明
法11で得られたものであつても、上記JIS規格品
と同等の十分に高い硬度を示すことが分かる。
<効果の総括>
以上に説明した如く、この発明によれば、軟鋼
板並の優れた絞り性を有する上、簡単な熱処理に
よつて高い硬度や優れた耐摩耗性を発揮する高炭
素冷延鋼板が安定確実に製造でき、鋼板の適用分
野を更に拡大することが可能となるなど、産業上
有用な効果がもたらされるのである。[Table] As is clear from the results shown in Table 3,
The hardness of the cold-rolled steel sheet after quenching and tempering is the highest in the JIS standard product obtained by Comparative Method 17, but the hardness obtained by Inventive Method 11 is slightly lower than that by Inventive Method 1. It can be seen that even if there is a hardness, it shows sufficiently high hardness equivalent to the JIS standard product mentioned above. <Summary of Effects> As explained above, according to the present invention, a high-carbon cold-rolled material that not only has excellent drawability comparable to that of mild steel sheet but also exhibits high hardness and excellent wear resistance through simple heat treatment. Industrially useful effects are brought about, such as making it possible to produce steel plates stably and reliably and further expanding the fields of application of steel plates.
第1図は、第1次の冷間圧延圧下率と成品鋼板
の値との関係を示すグラフである。第2図は、
第2次の冷間圧延圧下率と成品鋼板の値との関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between the first cold rolling reduction ratio and the value of the finished steel sheet. Figure 2 shows
It is a graph which shows the relationship between the secondary cold rolling reduction ratio and the value of a finished steel plate.
Claims (1)
冷間圧延してから500〜750℃で2時間以上の焼鈍
を施してフエライトとグラフアイトを主体とする
組織となし、更に圧下率50〜90%で冷間圧延した
後600〜850℃で焼鈍することを特徴とする、絞り
性の良好な高炭素冷延鋼板の製造方法。 2 重量割合にて C:0.08〜0.95%、Mn:0.50%以下、 sol.Al:0.20%以下、N:0.0130%以下 を含むと共に、 Si:1.2%以下、 Ni:5.0%以下 の内の1種以上をも含有し、 Fe及び他の不可避的不純物:残り から成る鋼を熱間圧延した後、圧下率20〜70%で
冷間圧延してから500〜750℃で2時間以上に焼鈍
を施してフエライトとグラフアイトを主体とする
組織となし、更に圧下率50〜90%で冷間圧延した
後600〜850℃で焼鈍することを特徴とする、絞り
性の良好な高炭素冷延鋼板の製造方法。 3 重量割合にて C:0.08〜0.95%、Mn:0.50%以下、 sol.Al:0.20%以下、B:0.0005〜0.0050%、 N:0.0130%以下、 Fe及び他の不可避的不純物:残り から成る鋼を熱間圧延した後、圧下率20〜70%で
冷間圧延してから500〜750℃で2時間以上の焼鈍
を施してフエライトとグラフアイトを主体とする
組織となし、更に圧下率50〜90%で冷間圧延した
後600〜850℃で焼鈍することを特徴とする、絞り
性の良好な高炭素冷延鋼板の製造方法。 4 重量割合にて C:0.08〜0.95%、Mn:0.50%以下、 sol.Al:0.20%以下、B:0.0005〜0.0050%、 N:0.0130%以下 を含むと共に、 Si:1.2%以下、 Ni:5.0%以下 の内の1種以上をも含有し、 Fe及び他の不可避的不純物:残り から成る鋼の熱間圧延した後、圧下率20〜70%で
冷間圧延してから500〜750℃で2時間以上の焼鈍
を施してフエライトとグラフアイトを主体とする
組織となし、更に圧下率50〜90%で冷間圧延した
後600〜850℃で焼鈍することを特徴とする、絞り
性の良好な高炭素冷延鋼板の製造方法。[Claims] 1 Steel consisting of C: 0.08 to 0.95%, Mn: 0.50% or less, sol.Al: 0.20% or less, N: 0.0130% or less, Fe and other unavoidable impurities: the remainder After hot rolling, it is cold rolled at a reduction rate of 20 to 70%, then annealed at 500 to 750°C for 2 hours or more to create a structure mainly composed of ferrite and graphite, and then further rolled at a reduction rate of 50 to 70%. A method for producing a high carbon cold rolled steel sheet with good drawability, which is characterized by cold rolling at 90% and then annealing at 600 to 850°C. 2 Contains C: 0.08 to 0.95%, Mn: 0.50% or less, sol.Al: 0.20% or less, N: 0.0130% or less, Si: 1.2% or less, Ni: 5.0% or less in terms of weight percentage. Fe and other unavoidable impurities: After hot rolling, the steel is cold rolled at a reduction rate of 20 to 70% and then annealed at 500 to 750°C for 2 hours or more. A high-carbon cold-rolled steel sheet with good drawability, which is characterized by being processed to form a structure consisting mainly of ferrite and graphite, and then cold-rolled at a reduction rate of 50-90% and then annealed at 600-850°C. manufacturing method. 3 Consists of weight percentage: C: 0.08-0.95%, Mn: 0.50% or less, sol.Al: 0.20% or less, B: 0.0005-0.0050%, N: 0.0130% or less, Fe and other unavoidable impurities: the remainder After hot rolling the steel, it is cold rolled at a reduction rate of 20 to 70%, then annealed at 500 to 750°C for 2 hours or more to create a structure consisting mainly of ferrite and graphite, and then further reduced to 50%. A method for producing a high carbon cold rolled steel sheet with good drawability, characterized by cold rolling at ~90% and then annealing at 600~850°C. 4 Contains C: 0.08-0.95%, Mn: 0.50% or less, sol.Al: 0.20% or less, B: 0.0005-0.0050%, N: 0.0130% or less, Si: 1.2% or less, Ni: 5.0% or less of Fe and other unavoidable impurities: After hot-rolling the steel, cold-rolling at a reduction rate of 20-70% and then heating at 500-750°C. It is characterized by being annealed for 2 hours or more to form a structure consisting mainly of ferrite and graphite, and then cold rolled at a reduction rate of 50 to 90% and then annealed at 600 to 850 °C. A method for producing good high carbon cold rolled steel sheets.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15420987A JPS63317629A (en) | 1987-06-20 | 1987-06-20 | Manufacture of cold rolled high carbon steel sheet having satisfactory drawability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15420987A JPS63317629A (en) | 1987-06-20 | 1987-06-20 | Manufacture of cold rolled high carbon steel sheet having satisfactory drawability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63317629A JPS63317629A (en) | 1988-12-26 |
JPH0456088B2 true JPH0456088B2 (en) | 1992-09-07 |
Family
ID=15579229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15420987A Granted JPS63317629A (en) | 1987-06-20 | 1987-06-20 | Manufacture of cold rolled high carbon steel sheet having satisfactory drawability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63317629A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0830241B2 (en) * | 1987-07-20 | 1996-03-27 | 川崎製鉄株式会社 | Steel sheet having excellent workability and toughness and good hardenability, and a method for producing the same |
JPH02107742A (en) * | 1988-10-14 | 1990-04-19 | Kawasaki Steel Corp | Steel stock excellent in workability and hardenability |
JPH04214839A (en) * | 1990-12-14 | 1992-08-05 | Sumitomo Metal Ind Ltd | High carbon thin steel sheet good in formability and its manufacture |
JP2718332B2 (en) * | 1992-09-29 | 1998-02-25 | 住友金属工業株式会社 | Method for producing high carbon steel strip with good formability |
JP7366121B2 (en) * | 2019-03-25 | 2023-10-20 | 日本製鉄株式会社 | Steel plate for hot stamping |
-
1987
- 1987-06-20 JP JP15420987A patent/JPS63317629A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS63317629A (en) | 1988-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016035235A1 (en) | Material for cold-rolled stainless steel sheets | |
JP2010077512A (en) | Method for producing cold-rolled steel sheet | |
JPH01230715A (en) | Manufacture of high strength cold rolled steel sheet having superior press formability | |
JP3468048B2 (en) | Manufacturing method of high carbon cold rolled steel sheet with excellent formability | |
JPH0456088B2 (en) | ||
JP2503224B2 (en) | Method for manufacturing thick cold-rolled steel sheet with excellent deep drawability | |
JP3105380B2 (en) | Manufacturing method of cold-rolled steel sheet for deep drawing with excellent dent resistance and surface distortion resistance | |
JPH02163318A (en) | Production of high-tension cold rolled steel sheet having excellent press formability | |
EP0539962A1 (en) | Method of manufacturing a cold rolled steel sheet exhibiting an excellent resistance to cold-work embrittlement and a small planar anisotropy | |
JPH02290917A (en) | Production of cold rolled ferritic stainless steel sheet | |
JP3336079B2 (en) | High-strength cold-rolled steel sheet excellent in deep drawability and chemical conversion property and method for producing the same | |
JP3347210B2 (en) | Manufacturing method of high strength steel sheet for precision punching | |
JP2545316B2 (en) | Method for manufacturing high strength cold rolled steel sheet with excellent strength and ductility characteristics | |
CN109097698A (en) | Automobile synchronizer tooth ring cold rolling alloyed steel strip 16MnCr5 rolling mill practice | |
TWI711706B (en) | Automobile steel material with high yield strength and method of manufacturing the same | |
JPS639578B2 (en) | ||
JP2012167374A (en) | Method for manufacturing cold-rolled steel sheet | |
JP3043901B2 (en) | Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability | |
JP3401290B2 (en) | Manufacturing method of high strength cold rolled steel sheet with excellent deep drawability | |
JPH03150316A (en) | Production of cold rolled steel sheet for deep drawing | |
JPS63179046A (en) | High-strength sheet metal excellent in workability and season cracking resistance and its production | |
JP3843478B2 (en) | Manufacturing method of thin steel sheet with excellent deep drawability | |
JPH0394020A (en) | Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness | |
JPH0225518A (en) | Production of hot-rolled steel sheet having excellent deep drawability | |
JPH07103424B2 (en) | Method for producing hot rolled steel sheet with excellent deep drawability |