JPH0456009A - Improving method for semiconductive layer interface of polyolefin insulated cable - Google Patents

Improving method for semiconductive layer interface of polyolefin insulated cable

Info

Publication number
JPH0456009A
JPH0456009A JP16537390A JP16537390A JPH0456009A JP H0456009 A JPH0456009 A JP H0456009A JP 16537390 A JP16537390 A JP 16537390A JP 16537390 A JP16537390 A JP 16537390A JP H0456009 A JPH0456009 A JP H0456009A
Authority
JP
Japan
Prior art keywords
interface
acid ester
layer
semiconductive layer
aliphatic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16537390A
Other languages
Japanese (ja)
Other versions
JP3081218B2 (en
Inventor
Tatsuki Okamoto
達希 岡本
Tadahiro Hozumi
直裕 穂積
Masayoshi Ishida
政義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP02165373A priority Critical patent/JP3081218B2/en
Publication of JPH0456009A publication Critical patent/JPH0456009A/en
Application granted granted Critical
Publication of JP3081218B2 publication Critical patent/JP3081218B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the dielectric breakdown strength by adding non-ion activating agent in a certain molecular weight to a semiconductive layer material, and thereby performing removal or reduction. CONSTITUTION:To a semiconductive layer material an anion activating agent is added having a molecular weight of 300-20000 such as sorbitane aliphatic acid ester, glycelin aliphatic acid ester, decagrlne aliphatic acid ester, polyglyceline aliphatic acid ester, polypropylene glycol, or pentelystor aliphatic acid ester. This additive is moved dispersively to the connection surface with an insulative substance layer 2, i.e. the interface of the semiconductive layer 3, through utilization of a hot cross-linking temp. in the process of cable manufacture. With heating, the dispersiveness of carbon particles in the semiconductive layer in the neighborhood of the interface of the layer 3, which controls in turn the crystalline structure in the insulative substance layer 2 in the neighborhood of the semiconductive layer interface, and electric irregularity of around one mum on the layer 3 interface is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はポリオレフィン絶縁ケーブルの半導電層界面の
改良方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for improving the interface between semiconducting layers of a polyolefin insulated cable.

(従来技術とその問題点) ポリオレフィンを絶縁に使用したした電力用プラスチッ
クケーブル例えばCVケーブルは、油含浸絶縁紙ケーブ
ル、いわゆるOFケーブルのように油を使用しないこと
から布設工事や保守管理か容易であり、しかも送電損失
も小さい。従って従来の配電用のみではなく超高圧用と
しても実用され始めている。
(Prior art and its problems) Plastic power cables using polyolefin for insulation, such as CV cables, do not use oil unlike oil-impregnated insulated paper cables, so-called OF cables, so they are easy to install and maintain. Yes, and the transmission loss is also small. Therefore, it is beginning to be put into practical use not only for conventional power distribution but also for ultra-high voltage applications.

しかしこのCvケーブルは経年的絶縁劣化か大きいため
、絶縁体に対する設計電位傾度をOFケーブルのそれよ
り小さくせざるを得な(なり、それだけ絶縁層の厚みを
大にする必要かある。その結果OFケーブルに比べて送
電損失の増大を招くのは勿論であるが、それと同時に外
径か大きくなるのを免れ得ないため、輸送や布設工事に
要する費用も大となる。このためケーブル線路の建設コ
ストの大幅な上昇を招くなどの問題がある。
However, this Cv cable has a large insulation deterioration over time, so the design potential gradient for the insulator has to be smaller than that of the OF cable (therefore, it is necessary to increase the thickness of the insulating layer accordingly. As a result, OF Of course, it causes an increase in power transmission loss compared to cables, but at the same time, the outer diameter inevitably increases, so the costs for transportation and installation work are also large.For this reason, the construction cost of cable lines is There are problems such as a significant increase in

そこでこの問題の解決について従来から研究かなされ、
前記のような経年的絶縁劣化即ちV−を特性の垂下か、
第1図に示す断面図のように製造時半導電層(1)の面
上に残る不整、例えば絶縁体層(2)中に突き出た形の
半導電性突起(3)における電界集中にもとづくもので
あることか明らかにされ(なお図中(4)は導体)、そ
の除去方法も提案されている。
Therefore, research has been carried out to solve this problem,
Is the insulation deterioration over time, that is, V-, as mentioned above, due to the drooping of the characteristics?
As shown in the cross-sectional view shown in Figure 1, irregularities that remain on the surface of the conductive layer (1) during manufacturing, such as electric field concentration at semiconductive protrusions (3) protruding into the insulating layer (2), may occur. It has been clarified that it is a conductor ((4) in the figure is a conductor), and a method for its removal has also been proposed.

しかし従来の方法では、半導電層と絶縁体層の界面には
、第2図のように1ミクロン前後の平均界面粗さ、即ち
絶縁耐壊の起点となる電気的不整(5)が残ることか明
らかにされ、この電気的不整を除去または低減すること
によって、更なる絶縁破壊強度の向上を図りうろことが
明らかにされた。
However, with conventional methods, an average interface roughness of around 1 micron remains at the interface between the semiconducting layer and the insulating layer, as shown in Figure 2, which is the starting point of dielectric breakdown (5). It has been revealed that the dielectric breakdown strength can be further improved by eliminating or reducing this electrical misalignment.

(発明の目的) 本発明は上記1ミクロン前後の半導電層界面の電気的不
整の低減に効果的な方法を提供し、より一層の絶縁破壊
強度の向上などを図りうるようにして、ポリオレフィン
絶縁ケーブルの一層の高性能化を実現しうるようにした
ものである。
(Objective of the Invention) The present invention provides an effective method for reducing electrical irregularities at the interface of a semiconducting layer of about 1 micron, and further improves dielectric breakdown strength. This makes it possible to realize even higher performance cables.

(問題点を解決するための本発明の手段)本発明の特徴
とするところは次の点にある。即ち半導電層材中に、分
子量か300〜20000の非イオン活性剤、例えばソ
ルビタン脂肪酸エステル、グリセリン脂肪酸エステル、
デカグリン脂肪酸エステル、ポリグリセリン脂肪酸エス
テル、ポリプロピレングリコール、ペンタエリストール
脂肪酸エステルなどの非イオン活性剤を添加する。そし
てこの添加剤をケーブル製造時における、高温の熱架橋
温度を利用して、第1図の絶縁体層(2)との接続面、
即ち半導電層(3)の界面に拡散移動させることを特徴
とするものである。即ち加熱により、半導電層(3)の
界面近傍の半導電層中のカーボン粒子の分散性が制御さ
れ、これにより半導電層界面近傍のポリオレフィン絶縁
体層(2)中の結晶構造が制御されて、半導電層(3)
の界面上の1ミクロン前後の電気的不整が低減されるよ
うにしたことを特徴とするものである。次に本発明の実
験例について説明する。
(Means of the present invention for solving the problems) The present invention is characterized by the following points. That is, in the semiconductive layer material, a nonionic activator with a molecular weight of 300 to 20,000, such as sorbitan fatty acid ester, glycerin fatty acid ester,
Nonionic active agents such as decaglin fatty acid ester, polyglycerin fatty acid ester, polypropylene glycol, and pentaerythritol fatty acid ester are added. Then, this additive is applied to the connection surface with the insulating layer (2) in Figure 1 by utilizing the high thermal crosslinking temperature during cable manufacturing.
That is, it is characterized by being diffused and moved to the interface of the semiconductive layer (3). That is, heating controls the dispersibility of carbon particles in the semiconducting layer near the interface of the semiconducting layer (3), thereby controlling the crystal structure in the polyolefin insulating layer (2) near the interface of the semiconducting layer. , semiconducting layer (3)
The electrical irregularity of about 1 micron on the interface is reduced. Next, an experimental example of the present invention will be explained.

(実験例) 実験には三相同時押出し法により製造された絶縁体層(
2)の厚さか3.5mmのモデルケーブルを使用した。
(Experiment example) In the experiment, an insulator layer (
2) A model cable with a thickness of 3.5 mm was used.

添加剤の効果を見るため原材料と製造条件を全く同一と
し、一方は、半導電層材(エチレン酢酸ビニール共重合
体にカーボン粒子を添加したもの)に添加剤としてソル
ビタン脂肪酸エステルを2wt%添加し、他方は無添加
としてケーブルを製造したところ、第1表の結果を得た
。また第3図(A) (B)は第1表の結果を求めた添
加時と無添加時の電子顕微鏡写真、第4図(A)(B)
および第5図(A) (B)は、電子顕微鏡写真(50
00倍)をコンピュータ解析して求めた添加時と無添加
時の界面粗さ分布、および界面粗さの定量評価結果であ
る。
In order to see the effects of additives, the raw materials and manufacturing conditions were exactly the same, and on the other hand, 2 wt% of sorbitan fatty acid ester was added as an additive to a semiconductive layer material (ethylene vinyl acetate copolymer with carbon particles added). , and the other was produced without additives, and the results shown in Table 1 were obtained. Figures 3 (A) and (B) are electron micrographs of the additive and non-additive conditions used to obtain the results shown in Table 1, and Figure 4 (A) and (B)
and Figures 5(A) and 5(B) are electron micrographs (50
These are the interfacial roughness distributions with and without addition, determined by computer analysis of 00 times), and the quantitative evaluation results of the interfacial roughness.

第  1  表 以上から明らかなように本発明によれば平面界面粗さを
約%強に著しく低減することかでき、これらによって1
%ワイブル絶縁破壊強度を約20%向上させうろことが
判る。
As is clear from Table 1 and above, according to the present invention, the planar interface roughness can be significantly reduced to just over 1%.
% Weibull dielectric breakdown strength was improved by about 20%.

(発明の効果) 以上のように本発明によれば、半導電層界面の電気的不
整の発生を著しく抑制することかできるので、ポリオレ
フィン絶縁ケーブルの絶縁破壊強度を向上でき、ケーブ
ルの絶縁厚さを決める設計電位の傾きを大きくして絶縁
膜を小さくでき、ケーブルの熱的機械的特性の向上を図
りつると同時に、同一の導体径でも多くの電力を輸送で
きる。
(Effects of the Invention) As described above, according to the present invention, it is possible to significantly suppress the occurrence of electrical irregularities at the interface of a semiconducting layer, thereby improving the dielectric breakdown strength of a polyolefin insulated cable and reducing the insulation thickness of the cable. The insulating film can be made smaller by increasing the slope of the design potential that determines the electrical potential, which improves the thermal and mechanical properties of the cable, and at the same time allows more power to be transported with the same conductor diameter.

またケーブルの外径を小さくできるので、製造に必要な
原材料の低減を可能とするのみでな(、ケーブルドラム
で決定されているケーブルの単位長さを大きくでき、結
果として非常に高価なケーブルの接続工事量およびマン
ホール工事量が低減される。
In addition, the outer diameter of the cable can be made smaller, which not only reduces the amount of raw materials required for manufacturing (but also increases the unit length of the cable, which is determined by the cable drum), resulting in the use of very expensive cables. The amount of connection work and manhole work is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来のポリオレフィン絶縁ケーブ
ルの断面図、および部分断面図、第3図。 第4図および第5図は実験結果図である。 (1)・・・半導電層、 (2)・・・絶縁体層、 (3)・・・半導電 性突起、 (4)・・・導体、 (5)・・・半導電層界面の1 ミクロン程度以下の不整。 代 理 人
1 and 2 are cross-sectional views of a conventional polyolefin insulated cable, and FIG. 3 is a partial cross-sectional view. FIGS. 4 and 5 are experimental results. (1)...Semiconducting layer, (2)...Insulator layer, (3)...Semiconducting protrusion, (4)...Conductor, (5)...Semiconducting layer interface Irregularities of 1 micron or less. agent

Claims (1)

【特許請求の範囲】[Claims] ポリオレフィン絶縁ケーブルの半導電層材中に分子量3
00〜20000の非イオン性界面活性剤を混入し、こ
れをケーブル製造時生ずる熱を利用して絶縁体層との接
触面へ拡散移動させて、半導電層界面の粗さを低減する
ようにしたことを特徴とするポリオレフィン絶縁ケーブ
ルの半導電層界面改良方法。
Molecular weight 3 in the semiconducting layer material of polyolefin insulated cable
A nonionic surfactant of 00 to 20,000 is mixed in, and this is diffused and moved to the contact surface with the insulating layer using the heat generated during cable manufacturing to reduce the roughness of the semiconducting layer interface. A method for improving the semiconducting layer interface of a polyolefin insulated cable.
JP02165373A 1990-06-22 1990-06-22 Method for improving semiconductive layer interface of polyolefin insulated cable Expired - Fee Related JP3081218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02165373A JP3081218B2 (en) 1990-06-22 1990-06-22 Method for improving semiconductive layer interface of polyolefin insulated cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02165373A JP3081218B2 (en) 1990-06-22 1990-06-22 Method for improving semiconductive layer interface of polyolefin insulated cable

Publications (2)

Publication Number Publication Date
JPH0456009A true JPH0456009A (en) 1992-02-24
JP3081218B2 JP3081218B2 (en) 2000-08-28

Family

ID=15811145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02165373A Expired - Fee Related JP3081218B2 (en) 1990-06-22 1990-06-22 Method for improving semiconductive layer interface of polyolefin insulated cable

Country Status (1)

Country Link
JP (1) JP3081218B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644558A1 (en) * 1993-09-21 1995-03-22 Alcatel Cable Câble insulative structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644558A1 (en) * 1993-09-21 1995-03-22 Alcatel Cable Câble insulative structure
FR2710447A1 (en) * 1993-09-21 1995-03-31 Alcatel Cable Isolation structure for cable.

Also Published As

Publication number Publication date
JP3081218B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
JPH0456009A (en) Improving method for semiconductive layer interface of polyolefin insulated cable
JP2800079B2 (en) DC power cable
JP4227244B2 (en) Insulated cable for direct current using a semiconductive composition
JP7440557B2 (en) Semi-conductive paint and its manufacturing method, and power cable terminal treatment method
JPH0765633A (en) Dc cable
JP2604771B2 (en) DC power cable
JPH1118270A (en) Cable connection and terminal sections
JPS6356651B2 (en)
JPH0532846B2 (en)
JPS61235444A (en) Semiconductive resin composition
JPH10321043A (en) Dc cable
Li et al. Breakdown Performance of Compound Structure of Semi-conductive Layer and Insulating Layer for Submarine Cable
JPH0260004A (en) Rubber/plastic insulated power cable
JPS6264855A (en) Electrically conductive shielding compound and crosslinked polyethylene cable obtained by using the same
CN117558508A (en) Processing method of high-current-resistant polypropylene insulated cable
JPH01274307A (en) Conductive composite for power cable
JPH0199428A (en) Dc cable connector
JPS597170B2 (en) Insulated cable with internal conductive layer
JPH02273413A (en) Rubber-plastic insulated power cable
JPH08180736A (en) Power cable and its manufacture
JPH0298014A (en) Direct current cable
JPH0465031A (en) Direct current cable
JPH036605B2 (en)
JPS62177805A (en) Dc power cable
JPS6110812A (en) Method of producing crosslinked polyolefin insulated power cable

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees