JPH036605B2 - - Google Patents

Info

Publication number
JPH036605B2
JPH036605B2 JP57182140A JP18214082A JPH036605B2 JP H036605 B2 JPH036605 B2 JP H036605B2 JP 57182140 A JP57182140 A JP 57182140A JP 18214082 A JP18214082 A JP 18214082A JP H036605 B2 JPH036605 B2 JP H036605B2
Authority
JP
Japan
Prior art keywords
layer
protrusion
electric field
cables
semiconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57182140A
Other languages
Japanese (ja)
Other versions
JPS5973809A (en
Inventor
Tatsuki Okamoto
Hiromasa Fukagawa
Toshikatsu Tanaka
Yoshitaka Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP18214082A priority Critical patent/JPS5973809A/en
Publication of JPS5973809A publication Critical patent/JPS5973809A/en
Publication of JPH036605B2 publication Critical patent/JPH036605B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリオレフイン絶縁体中に存在する、
電極表面の突起や凹凸にもとづく電界集中を効果
的に緩和できる、拡散層による界面電界緩和方法
に関するもので、特に半導電層を備えた架橋ポリ
エチレンケーブルの半導電層と絶縁体層の界面に
生ずる、電界集中にもとづく絶縁劣化の改善に大
きな効果を発揮するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention resides in a polyolefin insulator,
This relates to an interfacial electric field mitigation method using a diffusion layer that can effectively alleviate electric field concentration caused by protrusions and irregularities on the electrode surface, especially at the interface between the semiconducting layer and the insulating layer of a crosslinked polyethylene cable equipped with a semiconducting layer. , which is highly effective in improving insulation deterioration caused by electric field concentration.

ポリオレフインを絶縁に使用した電力用プラス
チツクケーブル例えばXLPEケーブルは、他の種
類のケーブル特に従来広く使用されている油含浸
絶縁紙ケーブル、所謂OFケーブルのように油を
使用しないことから、布設工事や保守管理が容易
でありしかも送電損失も小さい。このため近年特
に都市地域における配電用として広く普及しつつ
あるが、最近この実績を踏まえて超高電圧用な
ど、更に高電圧化されたXLPEケーブルの開発が
進められつつあり、その一部は既に実用化されて
いる。
Electric power plastic cables that use polyolefin for insulation, such as XLPE cables, do not use oil like other types of cables, especially oil-impregnated insulated paper cables, so-called OF cables, which have been widely used in the past, so they are easier to install and maintain. It is easy to manage and has low power transmission losses. For this reason, in recent years it has become widely used for power distribution, especially in urban areas.Recently, based on this track record, even higher voltage XLPE cables, such as those for ultra-high voltage, are being developed, and some of them have already been developed. It has been put into practical use.

しかしながら現在のXLPE電力ケーブル等では
そのV−t特性、即ち印加電圧に対する絶縁寿命
特性は、第1図中に示す曲線aのように垂下特性
を示し、曲線bに示すOFケーブルに対して経年
的な絶縁劣化が大きい。従つて絶縁体に対する設
計電位傾度をOFケーブルのそれより小さくせざ
るを得なくなり、それだけ絶縁層の厚みを大とし
なければならない。その結果OFケーブルに比べ
て送電損失の増大を招くのは勿論であるが、それ
と同時に外径が大きくなるのをまぬがれ得ないた
め、輸送や布設工事等に大きな隘路をもたらす欠
点があり、それだけOFケーブルに対して不利と
なる。
However, with current XLPE power cables, etc., the V-t characteristics, that is, the insulation life characteristics with respect to applied voltage, exhibit a drooping characteristic as shown in curve a shown in Figure 1, and differ over time compared to OF cables shown in curve b. Insulation deterioration is large. Therefore, the design potential gradient for the insulator must be made smaller than that of the OF cable, and the thickness of the insulating layer must be increased accordingly. As a result, it goes without saying that power transmission loss increases compared to OF cables, but at the same time, the outer diameter inevitably increases, which creates major bottlenecks in transportation and installation work. This is disadvantageous for cables.

ところでこのようなXLPEケーブル等における
上記のようなv−t特性の垂下の大きな要因が、
半導電層と絶縁体層との界面における不整、特に
ケーブルの断面を示す第2図のように、製造時半
導電層1の面上に残る、絶縁体層2中に突き出た
形の半導電性突起3における電界の集中にあるこ
とが、現在までの研究により明らかにされてい
る。なお第2図中5は導体である。そこで従来か
ら製造条件の改良などにより、半導電性突起の生
成を防ぐ努力がなされているが、皆無にすること
は技術的に非常に難かしく、現状ではその改良は
極限に来ていると云つても過言ではない。従つて
XLPEケーブル等の一層の高電圧化の達成のため
には、従来にない新しい方法が講じられることが
必要である。
By the way, the main reason for the above-mentioned drooping of the v-t characteristics in such XLPE cables, etc. is,
Irregularities at the interface between the semiconducting layer and the insulating layer, especially semiconducting irregularities that remain on the surface of the conductive layer 1 during manufacturing and protrude into the insulating layer 2, as shown in Figure 2, which shows a cross section of the cable. Research to date has revealed that this is due to the concentration of the electric field at the sex protrusion 3. Note that 5 in FIG. 2 is a conductor. Therefore, efforts have been made to prevent the formation of semiconductive protrusions by improving manufacturing conditions, etc., but it is technically extremely difficult to eliminate them completely, and it is said that improvements have now reached their limits. It is no exaggeration to say so. Accordingly
In order to achieve even higher voltages in XLPE cables, etc., it is necessary to take new methods that have not been seen before.

本発明はXLPEケーブル等にとつて最も有害と
されている半導電性突起を、ケーブルの製造工程
に殆ど改変を加えることなく無害化できる新しい
構造を提供し、XLPEケーブル等の高電圧化を図
りうるようにしたものである。次に図面を用いて
その詳細を説明する。
The present invention provides a new structure that can make semiconductive protrusions, which are considered to be the most harmful to XLPE cables, harmless without making any changes to the cable manufacturing process, and aims to increase the voltage of XLPE cables. It is made to be moisturized. Next, the details will be explained using the drawings.

半導電性突起3が有害であるのは、それが絶縁
体層2中に突出しており、その先端の電界強度が
その周囲の絶縁体層2の電界強度より甚しく大き
くなるためである。即ち今突起3の長さをl,突
起3の先端の曲率半径をr(l≫r),突起3の近
傍における絶縁体層2の電界強度をEpとすれば、
突起先端の電界強度Enaxは Enax=Ep・l/2r1/〔lo(l/r)−2 (1) によつて与えられ、例えばl=1000μm,r=
5μmとすると、 Enax10.Ep となり、EnaxはEpに比例する。従つて少なくとも
半導電性突起近傍の絶縁体層2の電界強度Epを低
下できれば、これに伴つて突起3の先端の電界強
度を小さくでき、これによる絶縁体層2の劣化を
防いで、設計電位傾度を従来より高くできる。
The semiconducting protrusion 3 is harmful because it protrudes into the insulating layer 2 and the electric field strength at its tip is much greater than the electric field strength in the surrounding insulating layer 2. That is, if the length of the protrusion 3 is l, the radius of curvature of the tip of the protrusion 3 is r (l≫r), and the electric field strength of the insulator layer 2 near the protrusion 3 is E p , then
The electric field strength E nax at the tip of the protrusion is given by E nax = E p・l/2r1/[l o (l/r)−2 (1), for example, l=1000μm, r=
If it is 5 μm, E nax is 10.E p , and E nax is proportional to E p . Therefore, if the electric field strength E p of the insulator layer 2 near the semiconducting protrusion can be reduced, the electric field strength at the tip of the protrusion 3 can be reduced accordingly, and the deterioration of the insulator layer 2 due to this can be prevented and the design can be improved. The potential gradient can be made higher than before.

本発明の特徴とするところは、半導電層1との
界面からの拡散により、第3図に示すケーブルの
部分拡大断面図、および第4図に示す比誘電率と
半導電層1の面からの距離との関係図のように、
絶縁体層2の構成材より高い誘電率を持つ物質に
より、突起3を埋込んだ連続的な誘電率の勾配を
もつ拡散層4を形成し、突起3の周囲の絶縁体層
2の比誘電率を増加させることにより、電界強度
Epを低下させるようにした点にあり、その実施に
当つては例えば次の方法がとられるものである。
The feature of the present invention is that due to diffusion from the interface with the semiconducting layer 1, the partial enlarged sectional view of the cable shown in FIG. As shown in the relationship diagram with the distance of
A diffusion layer 4 with a continuous dielectric constant gradient in which the protrusion 3 is embedded is formed using a substance having a higher dielectric constant than the constituent material of the insulator layer 2, and the dielectric constant of the insulator layer 2 around the protrusion 3 is By increasing the rate of electric field strength
The point is that E p is lowered, and for example, the following method is used to implement this.

予め半導電層1の構成材中に混入したり、ケー
ブル製造時における半導電層1の押出し成形過程
において注入するなどの適宜方法により、半導電
層1の構成材中に絶縁体層2の構成材であるポリ
オレフインより高い比誘電率〔5〜6〕をもち、
しかも架橋ポリオレフイン中へ拡散浸透性を有す
るベンジンアルコール、またはl−シヨウノウを
添加するか、或いは絶縁体層2の押出し成形時成
形された絶縁体層2の面上に塗着して、従来と同
様な方法によりケーブルの製造を行う。そして絶
縁体層2の熱架橋時における温度により、自動的
に半導体層界面から、絶縁体層2より高い誘電率
をもつた物質を、その拡散浸透性を利用して絶縁
体層中に拡散させて半導電層界面近傍の絶縁体の
誘電率を高め、この高誘電率層4により半導電性
突起3が覆われるようにして、突起3の近傍の電
界強度を低下させ、結果的に突起3の有害性を低
下させるようにしたものである。
The structure of the insulating layer 2 is added to the constituent material of the semiconductive layer 1 by an appropriate method such as mixing it into the constituent material of the semiconductive layer 1 in advance or injecting it during the extrusion molding process of the semiconductive layer 1 during cable manufacturing. It has a higher dielectric constant [5 to 6] than the material polyolefin,
Moreover, by adding benzine alcohol or l-sulfur which has diffusion permeability into the crosslinked polyolefin, or by coating it on the surface of the formed insulating layer 2 during extrusion molding of the insulating layer 2, it is possible to perform the same process as before. Cables are manufactured using a method that Then, depending on the temperature during thermal cross-linking of the insulator layer 2, a substance having a higher dielectric constant than the insulator layer 2 is automatically diffused from the semiconductor layer interface into the insulator layer using its diffusion permeability. The dielectric constant of the insulator near the interface of the semiconducting layer is increased, and the semiconducting protrusion 3 is covered with this high dielectric constant layer 4, thereby reducing the electric field strength near the protrusion 3, and as a result, the protrusion 3 It is designed to reduce the harmfulness of

このようにすれば比誘電率の増加率をCとした
とき、半導電層1と絶縁体層2の界面付近の電界
強度ESは、(2)式のようにほゞ比誘電率の増加率C
に反比例して低減するので、 ESEp/C (2) 半導電性突起3を無害化できる。
In this way, when the rate of increase in the relative permittivity is C, the electric field strength E S near the interface between the semiconducting layer 1 and the insulating layer 2 will be approximately equal to the increase in the relative permittivity as shown in equation (2). Rate C
Since it is reduced in inverse proportion to E S E p /C (2), the semiconductive protrusion 3 can be rendered harmless.

第5図は最も電界強度が大となる第3図の導体
5側の半導電層1の界面、即ち内部半導電層界面
の電界強度を、絶縁体層2の構成材中への浸透拡
散力を有し、しかも熱架橋時構成材と化学結合す
る性質をもつ高誘電率物質であるベンジルアルコ
ール、を用いて改善した結果を示すところの電界
強度と内部半導電層面からの距離との関係例図で
ある。その改善前の曲線aと改善後の状態を示す
曲線bとを対比して明らかなように、拡散層4の
厚さを半導電性突起3の高さを(界面欠陥の存在
距離範囲L)より大きめに作ることによつて、突
起3付近の電界を減少させて無害化できることが
判る。さたl−シヨウノウを添加した場合にもほ
ぼ同様な結果が得られることが判つた。一般に従
来の製造技術によつて生ずる半導電性突起3の高
さは100μm以下であるので、拡散層4の厚さを
100μm程度とすることによつて無害化できる。な
おこの場合高誘電率物質の拡散層4によつて損失
角(tanδ)の増加が考えられるが、絶縁体層2の
厚さは一般に数mm程度以上であるので、tanδの増
加は殆ど無視でき、これによる損失の増加は問題
とならない。
FIG. 5 shows the electric field strength at the interface of the semiconducting layer 1 on the conductor 5 side in FIG. An example of the relationship between the electric field strength and the distance from the internal semiconducting layer surface showing the improved results using benzyl alcohol, a high dielectric constant material that has the property of chemically bonding with the constituent materials during thermal crosslinking. It is a diagram. As is clear from comparing the curve a before the improvement and the curve b showing the state after the improvement, the thickness of the diffusion layer 4 and the height of the semiconductive protrusion 3 (the range L of the interfacial defect existing distance) It can be seen that by making the protrusion larger, the electric field near the protrusion 3 can be reduced and rendered harmless. It was found that almost the same results were obtained when Sata l-Shiyouno was added. Generally, the height of the semiconductive protrusion 3 produced by conventional manufacturing technology is 100 μm or less, so the thickness of the diffusion layer 4 is
It can be made harmless by setting it to about 100 μm. In this case, the loss angle (tan δ) may increase due to the diffusion layer 4 made of a high dielectric constant material, but since the thickness of the insulating layer 2 is generally several mm or more, the increase in tan δ can be almost ignored. , the increase in loss caused by this is not a problem.

従つて本発明によれば(1)設計電位傾度を向上さ
せて、従来より径が小さく運搬布設に有利な
XLPEケーブルの提供が可能となり、高電圧化を
推進できる。(2)従来のケーブル製造工程に殆ど改
変を加える必要がないので製作上非常に有利であ
る。(3)拡散と同時に架橋を行うので、界面の電界
緩和効果を安定かつ長期化でき信頼性が高い。(4)
拡散物質の選定により拡散層を自由に制御して、
所望の特性をもつたケーブルを得ることができる
などの各種のすぐれた効果が得られるもので、こ
の本発明は以上説明した3層(内部半導電層、絶
縁体層、外部半導電層)同時押出し方法によるケ
ーブルの製造のみでなく、半導電層をテープ巻き
によつて形成する製造方法に対しても、例えば半
導電層を形成するテープ中に拡散すべき高誘電率
物質を添加しておくなどの方法によつて適用でき
る。
Therefore, according to the present invention, (1) the design potential gradient is improved, and the diameter is smaller than before, which is advantageous for transportation and installation.
It is now possible to provide XLPE cables, promoting higher voltage. (2) There is no need to make any changes to the conventional cable manufacturing process, which is very advantageous in manufacturing. (3) Since crosslinking is performed at the same time as diffusion, the electric field relaxation effect at the interface can be stabilized and prolonged, resulting in high reliability. (Four)
Freely control the diffusion layer by selecting the diffusion material,
Various excellent effects can be obtained, such as being able to obtain a cable with desired characteristics, and the present invention is capable of simultaneously forming the three layers (inner semiconducting layer, insulating layer, and outer semiconducting layer) described above. In addition to manufacturing cables using an extrusion method, for manufacturing methods in which a semiconductive layer is formed by tape winding, for example, a high dielectric constant substance to be diffused into the tape forming the semiconductive layer is added. It can be applied by methods such as

以上の説明から明らかなように、本発明によれ
ば架橋ポリエチレンその他プラスチツク絶縁体中
に存在する電極表面の突起や凹凸にもとづく電界
集中を効果的に緩和できるすぐれた利点を有する
もので、特に架橋ポリエチレンを絶縁体層として
用いるXLPEケーブルの設計電位傾度の向上によ
る外径の縮少化などに著しい効果を発揮するもの
である。
As is clear from the above description, the present invention has the excellent advantage of effectively alleviating electric field concentration caused by protrusions and irregularities on the electrode surface that exist in cross-linked polyethylene and other plastic insulators. This has a remarkable effect on reducing the outer diameter of XLPE cables that use polyethylene as the insulating layer by improving the design potential gradient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のXLPEケーブルとOFケーブル
のv−t特性の一例図、第2図は従来のXLPEケ
ーブルの断面図、第3図は本発明によるXLPEケ
ーブルの部分拡大断面図、第4図は高誘電率物質
の拡散による半径方向における比誘電率と半導電
層の面からの距離との関係図、第5図は本発明に
よる内部半導電層界面の電界緩和状況を示す電界
強度と外部半導電層界面からの距離の関係図であ
る。 1…半導電層、2…絶縁体層、3…半導電性突
起、4…高誘電率物質拡散層、5…導体。
Fig. 1 is an example of the v-t characteristics of a conventional XLPE cable and an OF cable, Fig. 2 is a sectional view of a conventional XLPE cable, Fig. 3 is a partially enlarged sectional view of an XLPE cable according to the present invention, and Fig. 4 5 is a diagram showing the relationship between the relative dielectric constant in the radial direction due to the diffusion of a high dielectric constant material and the distance from the surface of the semiconducting layer, and FIG. FIG. 3 is a relationship diagram of distance from a semiconducting layer interface. DESCRIPTION OF SYMBOLS 1... Semiconductive layer, 2... Insulator layer, 3... Semiconductive protrusion, 4... High dielectric constant material diffusion layer, 5... Conductor.

Claims (1)

【特許請求の範囲】[Claims] 1 導体と、内部半導電層と、ポリオレフイン絶
縁体層と、外部半導電層とから形成された架橋プ
ラスチツク電力ケーブルにおいて、前記内部およ
び外部半導電層中にベンジンアルコール、または
l−シヨウノウを添加し、これを熱架橋時ポリオ
レフイン絶縁体層中に拡散させて、連続的な誘電
率の勾配をもつ拡散層を設けたことを特徴とする
架橋プラスチツク電力ケーブル。
1. In a cross-linked plastic power cable formed from a conductor, an inner semiconducting layer, a polyolefin insulating layer, and an outer semiconducting layer, benzine alcohol or l-sulfur is added to the inner and outer semiconducting layers. , which is diffused into a polyolefin insulating layer during thermal crosslinking to provide a diffusion layer with a continuous dielectric constant gradient.
JP18214082A 1982-10-19 1982-10-19 Method of alleviating electric field of polyolefin insulatorlayer boundary by diffused layer Granted JPS5973809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18214082A JPS5973809A (en) 1982-10-19 1982-10-19 Method of alleviating electric field of polyolefin insulatorlayer boundary by diffused layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18214082A JPS5973809A (en) 1982-10-19 1982-10-19 Method of alleviating electric field of polyolefin insulatorlayer boundary by diffused layer

Publications (2)

Publication Number Publication Date
JPS5973809A JPS5973809A (en) 1984-04-26
JPH036605B2 true JPH036605B2 (en) 1991-01-30

Family

ID=16113043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18214082A Granted JPS5973809A (en) 1982-10-19 1982-10-19 Method of alleviating electric field of polyolefin insulatorlayer boundary by diffused layer

Country Status (1)

Country Link
JP (1) JPS5973809A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5470082U (en) * 1977-10-28 1979-05-18

Also Published As

Publication number Publication date
JPS5973809A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US4997995A (en) Extra-high-voltage power cable
US4963695A (en) Power cable with metallic shielding tape and water swellable powder
EP3207546B1 (en) Dielectric material with enhanced breakdown strength
US3885085A (en) High voltage solid extruded insulated power cables
US3773965A (en) Electric cables
KR102238971B1 (en) Termination connection box for DC cable
KR20160084920A (en) Joint box
US4481259A (en) Electric cable with insulation of biaxially oriented, polymeric tape with a coating of grease
JPH036605B2 (en)
US2717917A (en) High voltage insulated conductor and method of manufacturing the same
US2102974A (en) Electric cable
KR102342534B1 (en) Apparatus for trimming compressing sleeve
JPH103823A (en) Direct current power cable insulated by cross-linked polyethylene
JPH0620530A (en) Water tree resistant cable
JP3014542B2 (en) Method of connecting crosslinked rubber / plastic insulated power cable and electric field relaxation tape used therefor
JP3081218B2 (en) Method for improving semiconductive layer interface of polyolefin insulated cable
KR20170035774A (en) Conductor compression sleeve and ultra high voltage DC power cable system using the same
JPH1118270A (en) Cable connection and terminal sections
JPS6151362B2 (en)
JPH0126006Y2 (en)
JPH0127223Y2 (en)
JPH09106714A (en) Superconducting cable
JPH0429448Y2 (en)
JPS6111409B2 (en)
JPH10334748A (en) Solid insulated cable and its manufacture