JPH045568A - Method for measuring specimen - Google Patents

Method for measuring specimen

Info

Publication number
JPH045568A
JPH045568A JP10714990A JP10714990A JPH045568A JP H045568 A JPH045568 A JP H045568A JP 10714990 A JP10714990 A JP 10714990A JP 10714990 A JP10714990 A JP 10714990A JP H045568 A JPH045568 A JP H045568A
Authority
JP
Japan
Prior art keywords
sample
dilution
measured
measurement
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10714990A
Other languages
Japanese (ja)
Other versions
JP2909140B2 (en
Inventor
Shunji Matsuzaki
駿二 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANARIITEIKARU INSTR KK
Analytical Instruments Ltd
Original Assignee
ANARIITEIKARU INSTR KK
Analytical Instruments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14451756&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH045568(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ANARIITEIKARU INSTR KK, Analytical Instruments Ltd filed Critical ANARIITEIKARU INSTR KK
Priority to JP2107149A priority Critical patent/JP2909140B2/en
Publication of JPH045568A publication Critical patent/JPH045568A/en
Application granted granted Critical
Publication of JP2909140B2 publication Critical patent/JP2909140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To widen the concn. range of specimens with one time of processing by diluting the specimen at different magnifications and measuring the plural specimens. CONSTITUTION:A 1st dilution rate is first so set that a normal concn. range can be measured. A 2nd dilution rate is then set in such a manner that all the concn. ranges of the objects can be measured. A control section 115 reads the 1st, 2nd dilution rates out of a ROM in accordance with the assignment of the objects to be measured. A sample 103, reagent 104 and diluting liquid 106 of the 1st dilution rate are added via dispensers 105, 107 to a reaction vessel 101 and are uniformly mixed by a stirrer 114. A turn table 102 is rotated stepwise and a 2nd reagent 108 is added by a dispenser 109. The measurement of the vessel 101 is executed by an LED 110 and a photosensor 111. The measurement is more effective if the different dilution rates are so set that the measurable concn. ranges of the measuring objects are continuous or partly overlap. The specimens are surely measured with one time of measurement according to this constitution.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は医療検査領域における検体測定方法に関し、特
に、1回の検体測定で確実に目的とする測定対象物の測
定が行える検体測定方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for measuring a specimen in the medical testing field, and in particular, to a method for measuring a specimen that can reliably measure a target object with a single specimen measurement. .

〔従来の技術〕[Conventional technology]

医療検査領域において、血液から得られる情報には多種
多様なものがある。血液中には赤血球。
In the medical testing field, there is a wide variety of information that can be obtained from blood. Red blood cells in the blood.

白血球、血小板等はもとより、その他種々の抗原或いは
抗体が含まれており、これらを目的に合わせて測定する
ことにより、種々の検査を行うことができる。
It contains not only leukocytes and platelets, but also various other antigens and antibodies, and by measuring these according to the purpose, various tests can be performed.

従来、このような血液等の検体の検査を行う方法として
は、抗原或いは抗体等の測定対象物の濃度が測定装置の
測定可能範囲に適合するように、予め検体を適正と想定
される希釈倍率で希釈後、測定を実行する検体測定方法
が一般的に適用されている。ここで検体を希釈して使用
するのは、検体濃度に対して使用する測定装置の測定可
能範囲が狭いためである。一般に未知のサンプルの測定
(或いは定量)を行う場合、所定の方法で大まかな濃度
を調べた後、該サンプル濃度が使用する測定装置の測定
可能範囲になるように調整(希釈)して、測定を実行す
るが、血液等を検体(サンプル)とする場合は、後述す
るように検体の取り得る濃度範囲が想定でき、且つ、所
定の分布を有しているため、予め検体を適正と想定され
る希釈倍率で希釈する方法が適用される。例えば、検体
として血漿を用い、該血漿中の特定の抗原量(測定対象
物の濃度)を検査する場合、例えば、測定に使用する測
定装置の測定可能範囲がO〜5000■/d1.検体の
抗体量のバラツキ範囲(検体が取り得る抗体量の範囲)
が1000〜100000■/d1.抗体量の正常値の
範囲(正常者の抗体量範囲であり、換言すれば、最も分
布頻度の高い範囲)が2000〜10000■/d1と
すると、検体を1/10に希釈することにより測定装置
の測定可能範囲の測定によってO〜50000■/d1
の範囲の抗体量を検査するようにしている。従って、検
体の希釈倍率(ここでは、10倍)は、前述した抗体量
の正常値の範囲(最も分布頻度の高い範囲)に基づいて
決定される。これにより大多数の検体の測定が可能であ
り、且つ、個々の検体毎に濃度調整を行う必要がないた
め、測定を効率的に行うことができる。
Conventionally, the method for testing samples such as blood has been to dilute the sample in advance at an assumed appropriate dilution ratio so that the concentration of the target substance, such as antigen or antibody, fits within the measurable range of the measuring device. A commonly used method is to perform the measurement after diluting the sample. The reason why the sample is diluted is that the measurable range of the measuring device used for the sample concentration is narrow. Generally, when measuring (or quantifying) an unknown sample, first find out the rough concentration using a predetermined method, then adjust (dilute) the sample concentration so that it falls within the measurable range of the measuring device used, and then proceed with the measurement. However, when blood or the like is used as a specimen, the possible concentration range of the specimen can be assumed as described later, and it has a predetermined distribution, so it is assumed that the specimen is suitable in advance. A method of diluting at a dilution ratio is applied. For example, when plasma is used as a sample and the amount of a specific antigen (concentration of a measurement target) in the plasma is tested, the measurable range of the measuring device used for the measurement is 0 to 5000/d1. Variation range of antibody amount in specimen (range of antibody amount that a specimen can have)
is 1000~100000■/d1. If the normal value range of antibody amount (the range of antibody amount in normal people, in other words, the range with the highest distribution frequency) is 2000 to 10000 /d1, the measurement device can be adjusted by diluting the sample to 1/10. O~50000■/d1 by measuring the measurable range of
We try to test for antibody levels in the following range. Therefore, the dilution ratio of the specimen (here, 10 times) is determined based on the above-mentioned normal value range of the antibody amount (the range with the highest distribution frequency). This makes it possible to measure a large number of specimens, and since it is not necessary to adjust the concentration for each individual specimen, the measurement can be carried out efficiently.

〔発明が解決しようとする課題] しかしながら、従来の検体測定方法によれば、最も分布
頻度の高い範囲(正常値の範囲)を測定装置の測定可能
範囲に調整することにより、測定の効率化を図ることが
できるものの、測定した検体が測定装置の測定可能範囲
からはずれた場合、再度適当な濃度に希釈し直して測定
(再検)する必要があるため、手間及び時間かかるとい
う問題点があった。
[Problems to be Solved by the Invention] However, according to the conventional sample measurement method, measurement efficiency can be improved by adjusting the range with the highest distribution frequency (range of normal values) to the measurable range of the measuring device. However, if the measured sample falls outside the measurable range of the measuring device, it is necessary to dilute it to an appropriate concentration and measure it again (re-testing), which takes time and effort. .

また、検体濃度が測定装置の測定可能範囲か否かの判断
は、測定する検体の反応経過を連続モニターして、測定
可能範囲に納まるか否かを予測して判断しているため、
必ずしも判断が完全でなく、更に、測定する検体が異常
に高濃度の場合、所謂、ブローシン現象によって低濃度
の検体のような測定値を示すため、測定した検体が低濃
度であると誤認するという問題点もあった。
In addition, the determination of whether the sample concentration is within the measurable range of the measuring device is made by continuously monitoring the reaction progress of the sample to be measured and predicting whether or not it will fall within the measurable range.
Judgment is not always perfect, and furthermore, if the sample to be measured has an abnormally high concentration, the so-called brocine phenomenon will cause the measured value to appear as if it were a low-concentration sample, leading to the misunderstanding that the sample being measured has a low concentration. There were also problems.

本発明は上記に鑑みてなされたものであって、1回の測
定で確実に検体の測定を実行し、手間及び時間のかかる
再検を回避できることを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to be able to reliably measure a specimen in a single measurement and to avoid retesting, which is laborious and time-consuming.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の目的を達成するため、抗原或いは抗体等
の測定対象物の濃度が測定装置の測定可能範囲に適合す
るように、予め検体を適正と想定される希釈倍率で希釈
後、測定を実行する検体測定方法において、検体を異な
る希釈倍率で希釈して複数の希釈検体を作成し、且つ、
複数の希釈検体を測定する検体測定方法を提供するもの
である。
In order to achieve the above object, the present invention dilutes the sample in advance at a dilution rate assumed to be appropriate so that the concentration of the target substance to be measured, such as an antigen or antibody, fits within the measurable range of the measuring device, and then performs the measurement. In the sample measurement method to be executed, a plurality of diluted samples are created by diluting the sample at different dilution ratios, and
The present invention provides a sample measurement method for measuring a plurality of diluted samples.

〔作用〕[Effect]

本発明の検体測定方法は、検体を異なる希釈倍率で希釈
して複数の希釈検体を作成し、且つ、複数の希釈検体を
測定することにより、1回の処理で測定できる検体の濃
度範囲を広くする。
The sample measurement method of the present invention widens the concentration range of the sample that can be measured in one process by diluting the sample at different dilution ratios to create multiple diluted samples and measuring the multiple diluted samples. do.

〔実施例〕〔Example〕

以下、本発明の検体測定方法を詳細に説明する。 Hereinafter, the method for measuring a sample according to the present invention will be explained in detail.

第1図(a)、 (b)は本発明の検体測定方法を適用
した測定装置の第1の実施例の構成を示し、複数の反応
容器101を円形に配列して装填した回転テーブル10
2と、試料103及び第1の反応試薬104を所定位置
aに停止した反応容器101に分注する試料分注器10
5と、反応容器101に希釈液106を分注して希釈を
行う希釈液分注器107と、反応容器101に第2の反
応試薬108を分注する反応試薬分注器109と、試料
分注器105及び反応試薬分注器109を介して所定の
分注処理を実施した反応容B101の化学変化を測定す
るLEDIIO,フォトセンサ111 (光学的検出手
段)と、前記LEDIIO及びフォトセンサ111によ
って測定した測定データを入力して、演算処理を行うデ
ータ処理部112と、データ処理部112の処理結果を
出力するプリンタ113と、反応容器101中の溶液を
攪拌して均一にするための攪拌プルーブ114と、各分
注器105,107,109の分注処理の制御5回転テ
ーブル102の回転制御 LEDllo及びフォトセン
サ111の測定制御、撹拌プルーブ114の制御等を行
う制御部115とから構成される。
FIGS. 1(a) and 1(b) show the configuration of a first embodiment of a measuring device to which the sample measuring method of the present invention is applied.
2, and a sample dispenser 10 that dispenses the sample 103 and the first reaction reagent 104 into the reaction container 101 stopped at a predetermined position a.
5, a diluent dispenser 107 that dispenses the diluent 106 into the reaction container 101 for dilution, a reaction reagent dispenser 109 that dispenses the second reaction reagent 108 into the reaction container 101, and a sample dispenser A LED IIO and a photosensor 111 (optical detection means) are used to measure chemical changes in the reaction vessel B101 that has been subjected to a predetermined dispensing process via the injection device 105 and the reaction reagent dispenser 109, and the LEDIIO and photosensor 111 A data processing unit 112 that inputs measured measurement data and performs arithmetic processing, a printer 113 that outputs the processing results of the data processing unit 112, and a stirring probe that stirs the solution in the reaction vessel 101 to make it uniform. 114, and a control unit 115 that controls the dispensing process of each dispenser 105, 107, 109, controls the rotation of the rotary table 102, controls the measurement of the LEDllo and photosensor 111, controls the stirring probe 114, etc. .

以上の構成において、■希釈倍率の設定、■制御部の制
御、■測定装置の動作の順に検体測定方法を説明する。
In the above configuration, the sample measuring method will be explained in the following order: (1) setting the dilution ratio, (2) controlling the control unit, and (2) operating the measuring device.

■希釈倍率の設定 第1の実施例では、検体を異なる希釈倍率で希釈して2
個の希釈検体を作成し、且つ、希釈検体の少なくとも1
つは、測定対象物が正常濃度範囲の場合に前述の測定装
置における測定可能範囲となるように設定し、更に、2
個の希釈検体の測定によって得られる測定対象物の測定
可能濃度範囲が、連続或いは一部重なるように希釈倍率
を設定する。
■Setting the dilution ratio In the first example, the sample was diluted with different dilution ratios.
prepare diluted samples, and at least one of the diluted samples.
The first is to set the measurement target to be within the measurable range of the above-mentioned measuring device when the concentration is within the normal concentration range;
The dilution ratio is set so that the measurable concentration ranges of the measurement target obtained by measuring individual diluted samples are continuous or partially overlap.

第2図(a)は2個の希釈検体の希釈倍率の設定を説明
するための図である。例えば、検体中の測定対象物Aの
測定装置による測定可能範囲がO〜100■/准、正常
濃度範囲(正常者の検体中の濃度)が100〜200 
mg/d1.正常値及び異常値を含めて測定対象物Aが
取る濃度範囲(但し、異常値を含めるため必ずしもこの
範囲に納まるものではない)が100〜5000■/面
の場合、先ず、測定装置で正常濃度範囲が測定できるよ
うに第1の希釈倍率を設定する。ここでは、100〜2
0 Off1g/di (正常濃度範囲)を測定可能範
囲で測定するために、検体を10倍に希釈して検体原W
j、濃度でO〜1000mg/d1の範囲をO〜100
■/d1として測定する。次に、測定装置で測定対象物
Aの全ての濃度範囲が測定できるように第2の希釈倍率
を設定する。第1の希釈倍率で作成した希釈検体で前述
したように0〜1000■/dflの範囲の測定を行え
るので、ここでは少なくとも1000〜5000■/d
1の範囲の濃度が測定できるように第2の希釈倍率を設
定する必要がある。従って、検体を50倍に希釈し、検
体原液濃度でO〜5000■/d1を測定装置で測定す
る。即ち、第1の希釈倍率及び第2の希釈倍率による測
定対象物の測定可能範囲は以下のようになり、2個の希
釈検体によって測定対象物Aの濃度範囲を全て測定する
ことが可能となる。
FIG. 2(a) is a diagram for explaining the setting of dilution factors for two diluted samples. For example, the measurable range of the measurement target A in the specimen by the measuring device is 0 to 100/semi, and the normal concentration range (concentration in the specimen of a normal person) is 100 to 200.
mg/d1. If the concentration range of measurement target A, including normal values and abnormal values (however, it does not necessarily fall within this range as abnormal values are included) is 100 to 5000 cm/plane, first, the normal concentration is measured with the measuring device. The first dilution factor is set so that the range can be measured. Here, 100-2
In order to measure 0 Off1g/di (normal concentration range) within a measurable range, the sample was diluted 10 times and used as sample source W.
j, concentration range of O to 1000 mg/d1
■Measure as /d1. Next, a second dilution ratio is set so that the measurement device can measure the entire concentration range of the measurement target A. As mentioned above, measurements can be made in the range of 0 to 1000 μ/dfl using the diluted sample prepared at the first dilution ratio, so here we will use at least 1000 to 5000 μ/dfl.
It is necessary to set the second dilution factor so that concentrations in the range of 1 can be measured. Therefore, the sample is diluted 50 times, and the concentration of the sample stock solution is measured using a measuring device at a concentration of 0 to 5000 .mu./d1. That is, the measurable range of the analyte A with the first dilution ratio and the second dilution ratio is as follows, and it becomes possible to measure the entire concentration range of the analyte A with two diluted samples. .

第1の希釈倍率−−0〜1000■/d第2の希釈倍率
−−−−−0〜5000mg/a上記の希釈倍率による
と2個の希釈検体による測定によって0〜1000■/
d1の範囲が重なっており、この部分の測定に関してダ
ブルで測定されることになる。また、測定対象物Aでは
第1の希釈倍率で正常濃度範囲を全て測定できるように
設定したが、例えば、測定対象物B(正常濃度範囲以外
の条件が測定対象物Aと同一である)で示すように、正
常濃度範囲の一部分をそれぞれ第1及び第2の希釈倍率
の希釈検体で分けて測定するようにしても良い。
First dilution rate - 0 to 1000 µ/d Second dilution rate - 0 to 5000 mg/a According to the above dilution rate, 0 to 1000 µ/d by measurement with two diluted samples.
The ranges of d1 overlap, and this portion will be measured twice. In addition, for measurement target A, settings were made so that the entire normal concentration range could be measured at the first dilution ratio, but for example, for measurement target B (conditions other than the normal concentration range are the same as measurement target A), As shown, a portion of the normal concentration range may be measured separately for the diluted specimens at the first and second dilution ratios.

更に、測定対象物Cで示すように、正常濃度範囲が装置
の測定可能範囲内である場合は、希釈倍率を1倍(即ち
、希釈せずに原液のまま使用)に設定しても良い。
Furthermore, as shown in measurement object C, when the normal concentration range is within the measurable range of the device, the dilution ratio may be set to 1 (that is, the undiluted solution is used without dilution).

第2図(b)は本実施例の測定装置における希釈倍率の
設定例を測定対象物を具体的に挙げて示したものである
FIG. 2(b) shows an example of setting the dilution ratio in the measuring device of the present embodiment by specifically listing the object to be measured.

AFP(アルファフェトプロティン) AFPは身体にガン等の腫瘍がある場合に生成される物
質であり、正常濃度は20ng/m程度以下と極めて少
なく、それ以上を異常と判定する。
AFP (Alpha Fetoprotein) AFP is a substance that is produced when there is a tumor such as cancer in the body, and its normal concentration is extremely low, about 20 ng/m or less, and anything higher than that is considered abnormal.

従って、第1の希釈倍率(1倍)でO〜2000ng、
/mflの測定を行い、第2の希釈倍率(500倍)で
O〜100万ng/mllの範囲の測定を行う。これニ
ヨって、AFPの濃度範囲は0〜100万ng/m!を
全て測定することができる。
Therefore, at the first dilution ratio (1x), O ~ 2000 ng,
/mfl is measured, and the range of O to 1 million ng/ml is measured at the second dilution factor (500 times). The concentration range of AFP is 0 to 1 million ng/m! can all be measured.

11、βz−M(β2−マイクログロブリン)第1の希
釈倍率(1倍) ’T:0〜2200 ug/Qを測定
し、第2の希釈倍率(25倍)で0〜60000μg/
42の範囲を測定する。尚、60000μgelより大
きな濃度は測定不可であるが、測定装置の出力において
明らかに異常な値として処理することができるため、実
用的には問題はない。
11. βz-M (β2-microglobulin) First dilution ratio (1x) 'T: 0 to 2200 ug/Q was measured, and the second dilution ratio (25x) was 0 to 60000 μg/Q.
Measure a range of 42. Although a concentration greater than 60,000 μgel cannot be measured, it can be treated as a clearly abnormal value in the output of the measuring device, so there is no practical problem.

iii、IgC,(IgG抗体) 第1の希釈倍率(1倍)で0〜50oo■/di!を測
定し、第2の希釈倍率(2倍)で0〜10000■/d
1の範囲を測定する。尚、IgGの例では正常濃度範囲
の測定を第1及び第2の希釈倍率の両方で測定すること
ができることになる。
iii, IgC, (IgG antibody) 0 to 50oo■/di at the first dilution factor (1x)! 0 to 10,000 ■/d at the second dilution rate (2x)
Measure the range of 1. In the case of IgG, the normal concentration range can be measured at both the first and second dilution ratios.

尚、第2図(a)、 (b)に示した装置の測定可能範
囲は、使用する装置によって異なるため、この範囲に限
定されるものではない。また、測定対象物の濃度範囲も
異常検体濃度の最大値及び最小値に依存するため、経験
的な数値を挙げたものであり、これに限定されるもので
はない。更に、上記の条件と同一の場合でも、これと異
なる希釈倍率を設定することができるのは勿論である。
Note that the measurable range of the apparatus shown in FIGS. 2(a) and 2(b) differs depending on the apparatus used, and is therefore not limited to this range. Furthermore, since the concentration range of the measurement target also depends on the maximum and minimum values of the abnormal sample concentration, these are empirical values and are not limited thereto. Furthermore, even if the conditions are the same as those described above, it is of course possible to set a different dilution ratio.

■制御部の制御 制御部115は、各分注器10’5,107゜109の
分注処理の制御2回転テーブル102の回転制御、LE
DIIO及びフォトセンサ111の測定制御、撹拌プル
ーブ114の制御等の測定装置全般の制御を担っている
が、ここで特に本発明の要部である希釈倍率に基づいて
希釈処理の制御について説明する。
Control of the control unit The control unit 115 controls the dispensing process of each dispenser 10'5, 107°109, controls the rotation of the rotary table 102, controls the rotation of the rotary table 102,
Although it is responsible for overall control of the measuring device, such as measurement control of the DIIO and photosensor 111, and control of the stirring probe 114, control of the dilution process will be particularly explained based on the dilution ratio, which is the main part of the present invention.

制御部115は、その内部のROM (図示せず)に各
測定対象物の希釈倍率を下記の表に示すように既定値と
して記憶している。
The control unit 115 stores the dilution ratio of each measurement object in its internal ROM (not shown) as default values as shown in the table below.

表 制御部115は所定の入力手段を介して、測定対象物(
測定項目名)が指定されると、例えば、AFPの入力が
あると、該当する第1及び第2の希釈倍率に基づいて試
料103の分注・希釈処理を行う。具体的には、第1の
希釈倍率(1倍)に基づいて、試料103の分注量と、
希釈液1060分注量の比率を演算し、試料分注器10
5を制御して所定位置の反応容器101に試料103を
分注し、その後、希釈液分注器107を制御し、所定量
の希釈液106を分注して希釈を行う(AFPは、希釈
倍率1倍であるので実際には希釈液106の分注量はゼ
ロである)。続いて、所定位置に次の反応容器101が
搬送されると、第2の希釈倍率(500倍)に基づいて
、試料1030分注量と、希釈液106の分注量の比率
を演算し、試料分注器105を制御して所定位置の反応
容器101に試料103を分注し、その後、希釈液分注
器107を制御し、所定量の希釈液106を分注して希
釈を行う。尚、上記2回の分注・希釈処理において試料
103は同一のものが使用される。
The table control unit 115 inputs the measurement object (
When a measurement item name) is specified, for example, when AFP is input, the sample 103 is dispensed and diluted based on the corresponding first and second dilution factors. Specifically, based on the first dilution ratio (1x), the amount of sample 103 to be dispensed and
Calculate the ratio of the amount of diluted liquid 1060 dispensed, and add the sample dispenser 10
5 to dispense the sample 103 into the reaction container 101 at a predetermined position, and then control the diluent dispenser 107 to dispense a predetermined amount of the diluent 106 to perform dilution. Since the magnification is 1x, the amount of diluent 106 actually dispensed is zero). Subsequently, when the next reaction container 101 is transported to a predetermined position, the ratio between the amount of sample 1030 dispensed and the amount of diluted liquid 106 dispensed is calculated based on the second dilution ratio (500 times). The sample dispenser 105 is controlled to dispense the sample 103 into the reaction container 101 at a predetermined position, and then the diluent dispenser 107 is controlled to dispense a predetermined amount of the diluent 106 to perform dilution. Note that the same sample 103 is used in the two dispensing and diluting processes described above.

即ち、制御部115は試料103毎に2種類の希釈倍率
で測定を行うように制御する。
That is, the control unit 115 controls each sample 103 to be measured at two different dilution ratios.

尚、ROMに記憶している第1及び第2の希釈倍率は、
前述したように既定値として使用されるが、所定の入力
手段を介して第1及び第2の希釈倍率が入力された場合
は、入力値に基づいて希釈を行い、測定を実行する。
The first and second dilution factors stored in the ROM are as follows:
As described above, they are used as default values, but if the first and second dilution ratios are input via a predetermined input means, dilution is performed based on the input values and measurement is performed.

■測定装置の動作 先ず、測定を開始する準備処理としてζ試料103、第
1の反応試薬104.第2の反応試薬108、及び、希
釈液106をそれぞれ所定の位置に配置し、入力手段(
図示せず)を介して測定対象物を指定する。制御部11
5の測定対象物の指定に基づいて、ROMより第1及び
第2の希釈倍率を入力する。続いて、所定の測定開始ボ
タンが押下されると、試料分注器105及び希釈液分注
器107を介して、所定位置aに停止した反応容器10
1に第1の希釈倍率に基づいた量の試料103、第1の
反応試薬104.及び1希釈液106を添加し、撹拌プ
ルーブ114て溶液を均一に混合する(第1回目の分注
処理)。制御部115は第1回目の分注処理が終了する
と、回転テーブル102を反応容器1個分だけ回転させ
て、所定位置aの反応容器101を所定位置すに移動さ
せ、新しく所定位置aに移動してきた反応容器101に
第2の希釈倍率に基づいた量の試料103、第1の反応
試薬104.及び、希釈液106を添加し、撹拌プルー
ブ114で溶液を均一に混合する。一方、所定位置すの
反応容器101(第1回目の分注処理で試料103等を
添加した反応容器101)に、反応試薬分注器109を
介して、第2の反応試薬108を添加する(第2回目の
分注処理)。制御部115は第2回目の分注処理が終了
すると、回転テーブル102を回転させて、LEDII
O及びフォトセンサ111で所定位置すの反応容器10
1の測定を行い、所定位置Cに搬送して停止する。同時
にこの回転によって所定位置aの反応容器101が所定
位置すに搬送され停止する。以下、同様に所定値ibの
反応容器101に、反応試薬分注器109を介して、第
2の反応試薬108を添加後、測定を行う。
■Operation of the measuring device First, as a preparation process for starting the measurement, the ζ sample 103, the first reaction reagent 104. The second reaction reagent 108 and the diluent 106 are placed at predetermined positions, and the input means (
(not shown) to specify the object to be measured. Control unit 11
Based on the designation of the object to be measured in step 5, the first and second dilution factors are input from the ROM. Subsequently, when a predetermined measurement start button is pressed, the reaction container 10 stopped at the predetermined position a is
1, a sample 103 in an amount based on the first dilution factor, a first reaction reagent 104. and 1 diluent 106 are added, and the solution is mixed uniformly using the stirring probe 114 (first dispensing process). When the first dispensing process is completed, the control unit 115 rotates the rotary table 102 by one reaction container, moves the reaction container 101 from the predetermined position a to a predetermined position, and moves it to a new predetermined position a. Sample 103 and first reaction reagent 104 .in an amount based on the second dilution factor are placed in reaction container 101 . Then, the diluent 106 is added, and the solution is mixed uniformly with the stirring probe 114. On the other hand, the second reaction reagent 108 is added to the reaction container 101 at a predetermined position (the reaction container 101 to which the sample 103 etc. were added in the first dispensing process) via the reaction reagent dispenser 109 ( second dispensing process). When the second dispensing process is completed, the control unit 115 rotates the rotary table 102 and turns on the LED II.
Reaction vessel 10 in a predetermined position with O and photosensor 111
Measurement 1 is carried out, and the device is transported to a predetermined position C and stopped. At the same time, due to this rotation, the reaction container 101 at the predetermined position a is transported to a predetermined position and stopped. Thereafter, the second reaction reagent 108 is similarly added to the reaction container 101 having a predetermined value ib via the reaction reagent dispenser 109, and then measurement is performed.

第3図は測定開始時に所定位置aに停止している反応容
器101を1番目として数えた順番と試料103及び希
釈倍率の関係を示し、例えば、試料103としてx、y
、zの3つの試料の測定を実施すると、図示の如く、1
番目の反応容器101には試料χが第1の希釈倍率で分
注・希釈されて測定され、2番目の反応容器101には
試料Xが第2の希釈倍率で分注・希釈されて測定され、
3番目の反応容器101には試料Yが第1の希釈倍率で
分注・希釈されて測定され、4番目の反応容器101に
は試料Yが第2の希釈倍率で分注・希釈されて測定され
、5番目の反応容器101には試料Zが第1の希釈倍率
で分注・希釈されて測定され、6番目の反応容器101
には試料Zが第2の希釈倍率で分注・希釈されて測定さ
れる。換言すれば、1つの試料に対して異なる2つに希
釈倍率による測定が行われる。また、この2つの希釈倍
率は前述した方法によって、少なくとも一方の希釈倍率
が測定対象物の正常濃度範囲を測定可能に設定されてお
り、且つ、測定対象物の濃度範囲を必要十分に含むよう
に設定されているため、例えば、AFPの測定で、50
■/d1(正常値)の試料や、或いは、2000■/d
(1000■/d1以上である異常値)の試料があって
も、前述した方法で確実に測定することができる。
FIG. 3 shows the relationship between the order in which the reaction vessel 101 stopped at a predetermined position a is counted as the first one at the start of measurement, the sample 103, and the dilution ratio.
When measuring three samples of , z, as shown in the figure, 1
Sample χ is dispensed and diluted at a first dilution rate into the second reaction vessel 101 for measurement, and sample X is dispensed and diluted at a second dilution rate into the second reaction vessel 101 for measurement. ,
Sample Y is dispensed and diluted at the first dilution rate into the third reaction vessel 101 and measured, and sample Y is dispensed and diluted at the second dilution rate into the fourth reaction vessel 101 for measurement. The sample Z is dispensed and diluted at the first dilution ratio into the fifth reaction container 101 for measurement, and the sixth reaction container 101 is
In this step, the sample Z is dispensed and diluted at the second dilution ratio and measured. In other words, one sample is measured at two different dilution ratios. In addition, these two dilution ratios are set by the method described above so that at least one of the dilution ratios can measure the normal concentration range of the measurement target, and is set so that it sufficiently covers the concentration range of the measurement target. For example, when measuring AFP, 50
■/d1 (normal value) sample or 2000■/d
Even if there is a sample with an abnormal value of 1000 .mu./d1 or more, it can be reliably measured using the method described above.

尚、第1の実施例では、希釈液分注器107を用いて、
希釈液106を反応容器101に分注して、反応容器1
01内で希釈を行う構成としたがこれに限定されるもの
ではなく、例えば、試料103を所定の希釈容器に分注
後、該希釈容器に希釈液106を分注して希釈を行い、
希釈後の試料103を反応容器101に分注する構成で
も良いのは勿論である。
In the first embodiment, the diluent dispenser 107 is used to
Dispense the diluent 106 into the reaction container 101 and add it to the reaction container 1.
Although the configuration is such that dilution is performed within 01, the present invention is not limited to this. For example, after dispensing the sample 103 into a predetermined dilution container, diluting the sample 103 by dispensing the diluent 106 into the dilution container,
Of course, a configuration in which the diluted sample 103 is dispensed into the reaction container 101 may also be used.

第4図(a)、 (b)は本発明の検体測定方法を適用
した測定装置の第2の実施例の構成を示し、第1の実施
例の反応容器101に換えて、同図(b)に示すように
2つの容器部401a、401bを有する2連反応容器
401を用いたものである。その他の構成は第1の実施
例と共通であり、同一の符号で記載するため説明を省略
する。
FIGS. 4(a) and 4(b) show the configuration of a second embodiment of a measuring device to which the sample measuring method of the present invention is applied. ), a double reaction vessel 401 having two vessel parts 401a and 401b is used. The other configurations are the same as those in the first embodiment and are denoted by the same reference numerals, so the explanation will be omitted.

第5図は、2連反応容器401を用いた場合の動作を説
明するための図であり、測定開始時に所定位置aに停止
している2連反応容器401を1番目として数えた順番
と試料103及び希釈倍率の関係を示し、例えば、試料
103としてX、 Y。
FIG. 5 is a diagram for explaining the operation when a double reaction vessel 401 is used, and shows the order in which the double reaction vessel 401 stopped at a predetermined position a at the start of measurement is counted as the first, and the sample. 103 and the dilution factor. For example, as sample 103, X, Y.

Zの3つの試料の測定を実施すると、図示の如く、1番
目の2連反応容器401の容器部401aには試料Xが
第1の希釈倍率で分注・希釈され、1番目の2連反応容
器401の容器部401bには試料Xが第2の希釈倍率
で分注・希釈される。容器部401a、401bの両方
に試料が分注されると、1番目の2連反応容器401の
測定が実施される。即ち、容器部401a、401bの
測定が同時に行われる。同様に、2番目の2連反応容器
401の容器部401aには試料Yが第1の希釈倍率で
分注・希釈され、1番目の2連反応容器401の容器部
401bには試料Yが第2の希釈倍率で分注・希釈され
、同様に、容器部401a401bの測定が同時に行わ
れる。従って、該2連反応容器401を用いることによ
り、容器数と測定できる試料数を対応させることができ
る。換言すれば、1個の反応容器で1つの試料に対して
異なる2つの希釈倍率による測定を行うことができる。
When three samples of Z are measured, as shown in the figure, sample The sample X is dispensed and diluted into the container portion 401b of the container 401 at a second dilution ratio. When the sample is dispensed into both container sections 401a and 401b, the first double reaction container 401 is measured. That is, measurements of the container parts 401a and 401b are performed simultaneously. Similarly, sample Y is dispensed and diluted at the first dilution ratio into the container section 401a of the second double reaction container 401, and sample Y is dispensed and diluted at the first dilution ratio into the container section 401b of the first double reaction container 401. The liquid is dispensed and diluted at a dilution factor of 2, and the measurements of the container portions 401a and 401b are similarly performed at the same time. Therefore, by using the dual reaction vessels 401, the number of vessels can correspond to the number of samples that can be measured. In other words, one sample can be measured at two different dilution ratios in one reaction vessel.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の検体測定方法は、検体を
異なる希釈倍率で希釈して複数の希釈検体を作成し、且
つ、複数の希釈検体を測定するため、1回の測定で確実
に検体の測定を実行することができ、手間及び時間のか
かる再検を回避することができる。
As explained above, in the sample measurement method of the present invention, multiple diluted samples are created by diluting the sample at different dilution ratios, and multiple diluted samples are measured. measurements can be carried out, thereby avoiding laborious and time-consuming re-examinations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、 (b)は本発明の検体測定方法を適用
した測定装置の第1の実施例の構成を示す説明図、第2
図(alは2個の希釈検体の希釈倍率の設定の説明図、
第2図(b)は第1の実施例の測定装置における希釈倍
率の設定例を示す説明図、第3図は反応容器の順番と試
料及び希釈倍率との関係を示す説明図、第4図(a)、
 (b)は本発明の検体測定方法を適用した測定装置の
第2の実施例の構成を示す説明図、第5図は2連反応容
器を用いた場合の動作を示す説明図である。 符号の説明 101−・・−反応容器 102−−−−・回転テーブ
ル103−一−−−−試料 104−−−−第1の反応
試薬105−・−試料分注器 106−−−−希釈液1
07−−−・−希釈液分注器 108−−−−−−一第2の反応試薬 109−−−−−一反応試薬分注器 401 a LED   11 データ処理部 撹拌プルーブ 2連反応容器 40 l b−一容器部 フォトセンサ ブリンク 制御部
FIGS. 1(a) and 1(b) are explanatory diagrams showing the configuration of a first embodiment of a measuring device to which the sample measuring method of the present invention is applied, and FIG.
Figure (al is an explanatory diagram of setting the dilution ratio of two diluted samples,
FIG. 2(b) is an explanatory diagram showing an example of setting the dilution ratio in the measuring device of the first embodiment, FIG. 3 is an explanatory diagram showing the relationship between the order of reaction vessels, the sample, and the dilution ratio, and FIG. (a),
(b) is an explanatory diagram showing the configuration of a second embodiment of the measuring device to which the analyte measuring method of the present invention is applied, and FIG. 5 is an explanatory diagram showing the operation when dual reaction vessels are used. Explanation of symbols 101--Reaction container 102--Rotary table 103-1--Sample 104--First reaction reagent 105--Sample dispenser 106--Dilution liquid 1
07-------Diluent dispenser 108--Second reaction reagent 109--Reaction reagent dispenser 401 a LED 11 Data processing section Stirring probe Dual reaction container 40 l b-1 Container part photo sensor link control part

Claims (2)

【特許請求の範囲】[Claims] (1)抗原或いは抗体等の測定対象物の濃度が測定装置
の測定可能範囲に適合するように、予め検体を適正と想
定される希釈倍率で希釈後、測定を実行する検体測定方
法において 前記検体を異なる希釈倍率で希釈して複数の希釈検体を
作成し、且つ、前記複数の希釈検体を測定することを特
徴とする検体測定方法。
(1) In a sample measurement method in which the sample is diluted in advance at a dilution rate assumed to be appropriate so that the concentration of the target substance such as an antigen or antibody fits within the measurable range of the measuring device, the sample is measured. A method for measuring a specimen, comprising: diluting a sample at different dilution ratios to prepare a plurality of diluted specimens, and measuring the plurality of diluted specimens.
(2)前記請求項1において、 前記異なる希釈倍率は、前記複数の希釈検体の測定によ
って得られる前記測定対象物の測定可能濃度範囲が、連
続或いは一部重なるように設定されることを特徴とする
検体測定方法。
(2) In claim 1, the different dilution ratios are set such that measurable concentration ranges of the measurement target obtained by measuring the plurality of diluted samples are continuous or partially overlap. Specimen measurement method.
JP2107149A 1990-04-23 1990-04-23 Sample measuring method and its apparatus Expired - Fee Related JP2909140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2107149A JP2909140B2 (en) 1990-04-23 1990-04-23 Sample measuring method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107149A JP2909140B2 (en) 1990-04-23 1990-04-23 Sample measuring method and its apparatus

Publications (2)

Publication Number Publication Date
JPH045568A true JPH045568A (en) 1992-01-09
JP2909140B2 JP2909140B2 (en) 1999-06-23

Family

ID=14451756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107149A Expired - Fee Related JP2909140B2 (en) 1990-04-23 1990-04-23 Sample measuring method and its apparatus

Country Status (1)

Country Link
JP (1) JP2909140B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342787A (en) * 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
JP2007033132A (en) * 2005-07-25 2007-02-08 Sysmex Corp Analyzing system, inspection data processor, computer program and analyzer
JP2007198991A (en) * 2006-01-30 2007-08-09 Hitachi High-Technologies Corp Autoanalyzer
WO2016009764A1 (en) * 2014-07-18 2016-01-21 株式会社 日立ハイテクノロジーズ Liquid stirring method
WO2022205600A1 (en) * 2021-03-29 2022-10-06 深圳市科曼医疗设备有限公司 High-concentration sample measurement and time sequence calling method
CN115877012A (en) * 2021-09-27 2023-03-31 深圳市理邦精密仪器股份有限公司 Antigen concentration measuring method and measuring instrument

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110006A1 (en) * 2016-12-15 2018-06-21 株式会社堀場製作所 Method for assessing appropriateness of test substance concentration in concentration measurement using immunoagglutination reaction, and sample analysis device having processing unit for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154792U (en) * 1978-04-20 1979-10-27
JPS63115061A (en) * 1986-10-31 1988-05-19 Sekisui Chem Co Ltd Immunoassay
JPS6469954A (en) * 1987-09-11 1989-03-15 Shino Test Corp Immunological measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54154792U (en) * 1978-04-20 1979-10-27
JPS63115061A (en) * 1986-10-31 1988-05-19 Sekisui Chem Co Ltd Immunoassay
JPS6469954A (en) * 1987-09-11 1989-03-15 Shino Test Corp Immunological measuring method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5342787A (en) * 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
JP2007033132A (en) * 2005-07-25 2007-02-08 Sysmex Corp Analyzing system, inspection data processor, computer program and analyzer
JP2007198991A (en) * 2006-01-30 2007-08-09 Hitachi High-Technologies Corp Autoanalyzer
WO2016009764A1 (en) * 2014-07-18 2016-01-21 株式会社 日立ハイテクノロジーズ Liquid stirring method
CN106471374A (en) * 2014-07-18 2017-03-01 株式会社日立高新技术 Liquid stirring method
US10761000B2 (en) 2014-07-18 2020-09-01 Hitachi High-Tech Corporation Liquid stirring method
WO2022205600A1 (en) * 2021-03-29 2022-10-06 深圳市科曼医疗设备有限公司 High-concentration sample measurement and time sequence calling method
CN115877012A (en) * 2021-09-27 2023-03-31 深圳市理邦精密仪器股份有限公司 Antigen concentration measuring method and measuring instrument

Also Published As

Publication number Publication date
JP2909140B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP6367942B2 (en) Method for detecting prozone effects in photometric assays
US11971425B2 (en) Automatic analysis device and automatic analysis method
CA2904256C (en) Calibration for multi-component assays
JPH0746111B2 (en) Sample analysis method and automatic analyzer using the same
CN108152512A (en) Heparin-binding protein detection kit and preparation method thereof
JPH075178A (en) Method for executing analysis and test and reaction container thereof
JPH045568A (en) Method for measuring specimen
Frigerio et al. Comparing digital detection platforms in high sensitivity immune‐phenotyping of extracellular vesicles
JP5498947B2 (en) Method for adjusting the calibration of a diagnostic test
CN115327143A (en) Sample analysis device and method
EP3865873A1 (en) Method and assay reagent for immunoassay of leucine-rich ?2 glycoprotein
JP2003329551A (en) Price-putting method for standard sample
JP7128196B2 (en) Systems and methods for classification of biological samples for the presence of analytes
Hölzel Analytical variation in immunoassays and its importance for medical decision making
Wan et al. Analytical performance and workflow evaluation of the Roche E170 modular immunoassay analyzer in a pediatric setting
JP2753340B2 (en) Preparation of reaction sample
CN105301090B (en) More component detection method and device are immunized in a kind of any combination formula
JP7420976B2 (en) Automatic analyzer and analysis method
WO2024204825A1 (en) Analysis method for automated analysis device, and automated analysis device
JP3496684B2 (en) Colorimetric analysis using colloidal gold particles
JPH06118000A (en) Clinically inspecting method
Ren et al. Studies on Calibration of C-Reactive Protein Analyzer
JPH0287063A (en) Determining method of prozone in immunoreaction
JPH03118475A (en) Chemical analysis method
JP2008215856A (en) Biosample analyzing method and autoanalyzer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees