JPH0455148B2 - - Google Patents

Info

Publication number
JPH0455148B2
JPH0455148B2 JP61011737A JP1173786A JPH0455148B2 JP H0455148 B2 JPH0455148 B2 JP H0455148B2 JP 61011737 A JP61011737 A JP 61011737A JP 1173786 A JP1173786 A JP 1173786A JP H0455148 B2 JPH0455148 B2 JP H0455148B2
Authority
JP
Japan
Prior art keywords
copper plate
furnace
ppm
copper
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61011737A
Other languages
Japanese (ja)
Other versions
JPS62171967A (en
Inventor
Naoyuki Kanehara
Tetsuo Kohata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1173786A priority Critical patent/JPS62171967A/en
Publication of JPS62171967A publication Critical patent/JPS62171967A/en
Publication of JPH0455148B2 publication Critical patent/JPH0455148B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パワーモジユール基盤の製造方法に
関する。さらに詳しくは、成形銅板とアルミナセ
ラミツクス板との間に、ハンダ合金、金属ペース
ト、メツキ金属等の介在物を何ら存在させること
なく、成形銅板とアルミナセラミツクス板とを直
接接触させた状態で両者を強固に接合することに
よる、パワーモジユール基盤の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a power module base. More specifically, the molded copper plate and the alumina ceramic plate are brought into direct contact with each other without any inclusions such as solder alloy, metal paste, or plating metal being present between the molded copper plate and the alumina ceramic plate. The present invention relates to a method of manufacturing a power module base by firmly joining the base.

〔従来の技術と問題点〕[Conventional technology and problems]

従来のパワーモジユール基盤の製造方法では、
アルミナセラミツクスグリーンシートの表面にモ
リブデンやタングステンなどの有機バインダーを
含んだ金属ペーストを印刷し、雰囲気炉中で加熱
してメタライズさせて、回路を形成していた。次
いでメタライズ層をNiメツキし、ハンダ付けを
行い、銅の放熱板を接合させ、さらにハンダ付
け、Niメツキ、モリブデンやタングステンなど
のスペーサを付加し、Niメツキを順次行つて、
最後にSiチツプを載せる方法がとられてきた。
In the conventional manufacturing method of power module board,
Circuits were formed by printing a metal paste containing an organic binder such as molybdenum or tungsten on the surface of an alumina ceramic green sheet, and metallizing it by heating it in an atmospheric furnace. Next, the metallized layer is plated with Ni, soldered, a copper heat sink is bonded, further soldered, Ni plated, a spacer made of molybdenum or tungsten is added, and Ni plated is sequentially performed.
A method has been adopted in which a Si chip is placed at the end.

しかし、このような従来の方法では、複雑な回
路を形成するための工程を何度も経由するため、
コストの上昇および歩留りの低下が顕著となる欠
点があつた。また、金属ペーストは有機バインダ
ーを含んでいるため、焼成中にバインダーが炉内
で蒸発し、炉内を汚染し、炉材の劣化を促進する
という欠点があつた。
However, such conventional methods involve multiple steps to form a complex circuit.
There were drawbacks such as an increase in cost and a significant decrease in yield. Further, since the metal paste contains an organic binder, the binder evaporates in the furnace during firing, contaminates the inside of the furnace, and promotes deterioration of the furnace material.

〔発明の構成〕[Structure of the invention]

本発明は、上述のような欠点がなく、しかも安
価なパワーモジユール基盤の製造方法を提供せん
とするものである。
SUMMARY OF THE INVENTION The present invention aims to provide a method for manufacturing a power module board that is free from the above-mentioned drawbacks and is inexpensive.

すなわち本発明は、アルミナセラミツクスの表
面に有機バインダーやろう材などを使用すること
なく、清浄なアルミナセラミツクス板上に銅板を
直接接触するように載せ、これらを1060℃から
1065℃までの範囲の温度の炉内に置き、かつこの
炉内の条件を酸素濃度が0.5ppm以上1000ppm以
下で、かつ1.1〜1.6気圧に保持し、アルミナセラ
ミツクスと銅板との界面に反応層を形成させて両
者を接合させることからなる、パワーモジユール
基盤の製造方法を提供せんとするものである。
In other words, in the present invention, a copper plate is placed on a clean alumina ceramic plate so as to be in direct contact with the surface of the alumina ceramic, without using an organic binder or a brazing filler metal, and these are heated at 1060°C.
It is placed in a furnace with a temperature range of up to 1065°C, and the conditions in this furnace are maintained at an oxygen concentration of 0.5 ppm to 1000 ppm and 1.1 to 1.6 atm, and a reaction layer is formed at the interface between the alumina ceramics and the copper plate. It is an object of the present invention to provide a method for manufacturing a power module base, which comprises forming the power module base and joining the two together.

銅は酸素の存在する雰囲気において、還元作用
を示す元素が存在しない場合は、1000℃以上の温
度において酸化銅として安定に存在する。この点
に着目して発明者は、高精度の温度制御と酸化濃
度制御とを同時に行うことにより、銅表面上に酸
化銅を形成させ、かつこれを1060℃以上で1065℃
以下の温度に保持するとともに、炉内圧を1気圧
よりも高することを基本とする、新規なパワーモ
ジユール基盤の製造方法を開発した。
Copper exists stably as copper oxide at temperatures of 1000° C. or higher in an oxygen-containing atmosphere and in the absence of reducing elements. Focusing on this point, the inventors simultaneously performed high-precision temperature control and oxidation concentration control to form copper oxide on the copper surface.
We have developed a new method for manufacturing a power module board, which is based on maintaining the temperature below and increasing the furnace pressure above 1 atm.

上記条件の下で、アルミナセラミツクスと接し
ている銅表面にも酸化銅が形成されている。これ
は、酸素が接触面のわずかなすき間から侵入する
ためである。アルミナセラミツクスと接している
この酸化銅は液相となると同時に、アルミナセラ
ミツクスの表面をぬらし、アルミナセラミツクス
中にある酸素をとりこんで液相中の酸素濃度を上
昇させ、液相領域を拡大していき、結局接触面全
体が反応して接合することになると考えられる。
これは、雰囲気に露出している側の銅板表面より
も、アルミナセラミツクスに接している側の銅板
表面のほうが酸素濃度が富になつていることによ
り起こる現象である。従つて、雰囲気に露出して
いる側の銅板表面にはわずかな酸化被膜が形成さ
れるだけで液相にはならず、実質上この部分は銅
板として存すると考えてよい。
Under the above conditions, copper oxide is also formed on the copper surface that is in contact with the alumina ceramics. This is because oxygen enters through small gaps between the contact surfaces. This copper oxide in contact with the alumina ceramics turns into a liquid phase, wets the surface of the alumina ceramics, takes in the oxygen present in the alumina ceramics, increases the oxygen concentration in the liquid phase, and expands the liquid phase region. , it is thought that the entire contact surface eventually reacts and becomes bonded.
This is a phenomenon that occurs because the surface of the copper plate that is in contact with the alumina ceramics has a richer oxygen concentration than the surface of the copper plate that is exposed to the atmosphere. Therefore, only a slight oxide film is formed on the surface of the copper plate on the side exposed to the atmosphere, but it does not turn into a liquid phase, and it can be considered that this portion substantially exists as a copper plate.

炉内圧が1気圧で雰囲気の温度が1000℃以上の
とき液相が生じ、1065℃から銅の融点未満の温度
で液相領域が接触面全に十に拡大する。しかし、
1.1気圧〜1.6気圧に加圧された雰囲気中では液相
の現れる温度が1000℃よりももつと低くなり、
1060〜1065℃の温度範囲で液相領域が接触面全体
に短時間で十分に拡大するようになる。好ましく
は1.2気圧〜1.5気圧とする。
A liquid phase occurs when the furnace pressure is 1 atm and the ambient temperature is 1000°C or higher, and the liquid phase region fully expands over the entire contact surface at temperatures from 1065°C to below the melting point of copper. but,
In an atmosphere pressurized to 1.1 atm to 1.6 atm, the temperature at which the liquid phase appears becomes lower than 1000℃,
In the temperature range of 1060-1065°C, the liquid phase region sufficiently expands over the entire contact surface in a short period of time. Preferably the pressure is 1.2 atm to 1.5 atm.

酸素濃度は、銅板表面に酸化銅を形成させるこ
とが可能な0.5ppmから1000ppmの範囲の濃度で
あることが必要である。ただし、高濃度酸素雰囲
気中で長時間保持すると銅板が溶融してしまうの
で、酸素濃度は0.5ppm〜100ppmの範囲にコント
ロールすることが望ましい。
The oxygen concentration needs to be in the range of 0.5 ppm to 1000 ppm, which can form copper oxide on the surface of the copper plate. However, since the copper plate will melt if kept in a high concentration oxygen atmosphere for a long time, it is desirable to control the oxygen concentration within the range of 0.5 ppm to 100 ppm.

加熱時間は、温度と酸素濃度に応じて最適な時
間を選択する。1060〜1065℃の温度範囲に保持す
る時間は5分間程度でよい。
The optimum heating time is selected depending on the temperature and oxygen concentration. The time for maintaining the temperature in the range of 1060 to 1065°C may be about 5 minutes.

雰囲気ガスは、中性ガスである窒素を用いるの
が、コスト面から有利である。また、酸素の供給
源としては、大気中の空気を使用することができ
る。すなわち、空気を除湿して、窒素と混合して
炉内に供給すればよい。本発明の方法では、この
ように安価なガスを使用できるので、金属ペース
トを用いたモジユール基盤に比して、価格的にも
有利に製造できる。また、クリーンなガスを使用
することにより、金属ペースト焼成の場合に起こ
るバインダーのミストなどの発生がなくなるの
で、炉内を汚染しない。このようなミストを除く
必要上、従来法ではガスの供給量が多くなるが、
本発明の方法では炉内ガスの清浄度が常に一定で
あるため、ガスの供給量が比較的少量でよい。ま
た、ガス圧を1気圧より高することによつて接合
に必要な温度が低くなるので、省エネルギ効果が
ある。さらに、銅板の軟化による変形が防止され
る。
It is advantageous from a cost standpoint to use nitrogen, which is a neutral gas, as the atmospheric gas. Furthermore, atmospheric air can be used as the oxygen supply source. That is, air may be dehumidified, mixed with nitrogen, and then supplied into the furnace. In the method of the present invention, since such an inexpensive gas can be used, it can be manufactured more cost-effectively than a module board using metal paste. Furthermore, by using clean gas, there is no generation of binder mist, etc. that occurs when firing metal paste, so the inside of the furnace is not contaminated. In order to remove such mist, conventional methods require a large amount of gas to be supplied, but
In the method of the present invention, the cleanliness of the gas in the furnace is always constant, so the amount of gas supplied may be relatively small. Further, by increasing the gas pressure to higher than 1 atm, the temperature required for bonding is lowered, resulting in an energy saving effect. Furthermore, deformation due to softening of the copper plate is prevented.

本発明の方法によつて製造したパワーモジユー
ル基盤は、アルミナセラミツクスに直接銅板が接
合されているため、熱放散性が良好であり、Ni
メツキを施す必要なしに、直接はんだ付けが行え
るので、Siチツプ等を重ねて一体化する場合の製
造工程を簡素化ることができ、製造コストを低下
することができるという利点もある。
The power module board manufactured by the method of the present invention has good heat dissipation properties because the copper plate is directly bonded to the alumina ceramics, and the Ni
Since direct soldering can be performed without the need for plating, it is possible to simplify the manufacturing process when stacking and integrating Si chips, etc., and has the advantage of reducing manufacturing costs.

以下、実施例により説明する。 Examples will be explained below.

実施例 1 酸素を100ppm含む銅板(厚さ0.3mm)を8mm×
6mm角に打ち抜き、96%アルミナ板上に置き、銅
板とアルミナ板が位置ずれをおこさないようにし
て炉内に装入した。窒素雰囲気中で酸素濃度を
150ppm±5ppmに安定させ、炉内の圧力を1.5気
圧とした。温度を上昇させ1060℃に達した後1064
℃まで昇温し、冷却した。この時、1060℃以上の
温度に5分間保持した。炉冷後試料を取り出した
ところ、銅板とアルミナセラミツクスは接合して
いた。
Example 1 Copper plate (thickness 0.3mm) containing 100ppm oxygen 8mm×
It was punched into a 6 mm square, placed on a 96% alumina plate, and charged into a furnace while ensuring that the copper plate and alumina plate did not shift in position. Oxygen concentration in nitrogen atmosphere
It was stabilized at 150ppm±5ppm, and the pressure inside the furnace was set at 1.5 atmospheres. 1064 after increasing the temperature and reaching 1060℃
The temperature was raised to ℃ and then cooled. At this time, the temperature was maintained at 1060°C or higher for 5 minutes. When the sample was taken out after cooling in the furnace, the copper plate and alumina ceramic were bonded.

実施例 2 酸素を7ppm含む無酸素銅(厚さ0.254mm)を8
mm×6mm角に打ち抜き、96%アルミナ板上に置
き、銅板とアルミナ板が位置ずれをおこさないよ
うにして炉内に装入した。窒素雰囲気中で酸素濃
度を1ppm±0.5ppmに安定させ、1065℃で5分
間、1.2気圧に保持した。炉冷後試料を取り出し
たところ、銅板とアルミナセラミツクスは接合し
ていた。
Example 2 8 pieces of oxygen-free copper (0.254 mm thick) containing 7 ppm oxygen
It was punched into a square mm x 6 mm square, placed on a 96% alumina plate, and charged into a furnace so that the copper plate and alumina plate would not be misaligned. The oxygen concentration was stabilized at 1 ppm±0.5 ppm in a nitrogen atmosphere and maintained at 1.2 atm at 1065° C. for 5 minutes. When the sample was taken out after cooling in the furnace, the copper plate and alumina ceramics were bonded.

比較例 1 実施例2と同様の試料を用い、純窒素中1.2気
圧で1060℃にて5分間保持した。炉冷後試料を取
り出したところ、銅板とアルミナセラミツクスは
接合していなかつた。
Comparative Example 1 Using the same sample as in Example 2, it was held at 1060° C. for 5 minutes at 1.2 atmospheres in pure nitrogen. When the sample was taken out after cooling in the furnace, the copper plate and alumina ceramics were not bonded.

比較例 2 実施例2と同様の試料を用い、窒素雰囲気中で
酸素濃度を1200ppm±10ppmに安定させ、1060℃
に30秒間保持した。炉冷後試料を取り出したとこ
ろ、銅板と酸化が激しく黒くなり、一部溶融して
凝固していた。
Comparative Example 2 Using the same sample as in Example 2, the oxygen concentration was stabilized at 1200 ppm ± 10 ppm in a nitrogen atmosphere, and the temperature was heated to 1060°C.
was held for 30 seconds. When the sample was taken out after the furnace had cooled, it was found that the copper plate and oxidation had become intensely black, and some had melted and solidified.

〔発明の効果〕〔Effect of the invention〕

以上の説明から理解されるように、本発明の方
法によれば、金属である銅とアルミナセラミツク
スとを、中間に何も介在せずに容易に接合するこ
とができる。この方法によつて得られた接合体
は、熱放散性を必要とするパワーモジユール基盤
として最適である。
As can be understood from the above description, according to the method of the present invention, metal copper and alumina ceramics can be easily joined without using anything in between. The bonded body obtained by this method is optimal as a power module base that requires heat dissipation properties.

Claims (1)

【特許請求の範囲】 1 成形銅板とアルミナセラミツクス板とを直接
接触させて接合させるパワーモジユール基盤の製
造方法において、1.1気圧〜1.6気圧で、かつ0.5〜
1000ppmの酸素濃度をもつ雰囲気中で、1060〜
1065℃に加熱することによつて、前記成形銅板と
アルミナセラミツクス板とを接合させることを特
徴とする、パワーモジユール基盤の製造方法。2
前記成形銅板がプレス加工により成形された、
10ppm以下の酸素濃度を有する銅板である、特許
請求の範囲第1項に記載の方法。 3 雰囲気ガスに窒素を使用し、雰囲気の酸素は
大気として存在する空気をコンプレツサーにより
加圧圧縮し、かつ乾燥した後、炉内に供給する、
特許請求の範囲第1項または第2項に記載の方
法。
[Scope of Claims] 1. A method for manufacturing a power module board in which a molded copper plate and an alumina ceramic plate are brought into direct contact and bonded, wherein the pressure is 1.1 atm to 1.6 atm, and 0.5 to
In an atmosphere with an oxygen concentration of 1000 ppm, 1060 ~
A method for manufacturing a power module board, characterized in that the molded copper plate and the alumina ceramic plate are joined by heating to 1065°C. 2
The molded copper plate is molded by press working,
The method according to claim 1, wherein the copper plate has an oxygen concentration of 10 ppm or less. 3. Nitrogen is used as the atmospheric gas, and the oxygen in the atmosphere is obtained by compressing the air existing as the atmosphere using a compressor, drying it, and then supplying it to the furnace.
A method according to claim 1 or 2.
JP1173786A 1986-01-22 1986-01-22 Manufacture of power module base Granted JPS62171967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1173786A JPS62171967A (en) 1986-01-22 1986-01-22 Manufacture of power module base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1173786A JPS62171967A (en) 1986-01-22 1986-01-22 Manufacture of power module base

Publications (2)

Publication Number Publication Date
JPS62171967A JPS62171967A (en) 1987-07-28
JPH0455148B2 true JPH0455148B2 (en) 1992-09-02

Family

ID=11786341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1173786A Granted JPS62171967A (en) 1986-01-22 1986-01-22 Manufacture of power module base

Country Status (1)

Country Link
JP (1) JPS62171967A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217475A (en) * 1982-02-06 1983-12-17 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト Method of directly bonding metal piece to oxide ceramic substrate
JPS61270269A (en) * 1985-05-27 1986-11-29 松下電工株式会社 Method of joining ceramic substrate to metal piece

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217475A (en) * 1982-02-06 1983-12-17 ブラウン・ボバリ・ウント・シ−・アクチエンゲゼルシヤフト Method of directly bonding metal piece to oxide ceramic substrate
JPS61270269A (en) * 1985-05-27 1986-11-29 松下電工株式会社 Method of joining ceramic substrate to metal piece

Also Published As

Publication number Publication date
JPS62171967A (en) 1987-07-28

Similar Documents

Publication Publication Date Title
US4540462A (en) Substrate for semiconductor modules and method of manufacture
JPH07202063A (en) Ceramic circuit board
KR20010022102A (en) Device and method for producing a chip-substrate connection
JPH1012935A (en) Electrode bonding structure for thermoelectric conversion element, electrode bonding method therefor theremoelectric conversion module and production thereof
US4811893A (en) Method for bonding copper plate to alumina substrate and process for producing copper/alumina bonded assembly
JP2005205418A (en) Joined structure manufacturing method
KR100374379B1 (en) Substrate
JP2642574B2 (en) Manufacturing method of ceramic electronic circuit board
JPH05347469A (en) Ceramic circuit board
CN115028467B (en) Low-void-rate ceramic copper-clad plate and preparation method thereof
JP4951932B2 (en) Power module substrate manufacturing method
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JPH0455148B2 (en)
JPH09315876A (en) Aluminum-ceramic composite substrate and is production
CN113681107A (en) Welding device for micro-strip plate and substrate and using method
CN112687555A (en) Low-vacuum alloy welding method for nickel-plated pipe-based chip
JP2002043478A (en) Ceramic circuit board
JP4557354B2 (en) Method for manufacturing ceramic copper circuit board
JP2005072456A (en) Electric element module
JP5050070B2 (en) Ceramic copper circuit board and semiconductor device
JPH04230063A (en) Multilayer heat sink
JPH0575577B2 (en)
JP2001210948A (en) Ceramic circuit board
JP2008078566A (en) Manufacturing method of substrate for power module, substrate for power module, and power module
JPH01249669A (en) Ceramic circuit board

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term