JPH045481A - Multiple stage compressor - Google Patents

Multiple stage compressor

Info

Publication number
JPH045481A
JPH045481A JP10480890A JP10480890A JPH045481A JP H045481 A JPH045481 A JP H045481A JP 10480890 A JP10480890 A JP 10480890A JP 10480890 A JP10480890 A JP 10480890A JP H045481 A JPH045481 A JP H045481A
Authority
JP
Japan
Prior art keywords
pressure side
cylinder
compression
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10480890A
Other languages
Japanese (ja)
Inventor
Meiji Odagiri
小田切 明治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP10480890A priority Critical patent/JPH045481A/en
Publication of JPH045481A publication Critical patent/JPH045481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To keep operation efficiency good, and prevent lubrication oil from being emulsified by setting a low pressure side compression part at a non- compression operation condition for a predetermined period after starting. CONSTITUTION:A crank case 2 forming part of a compressor main body 1 is connected with a low pressure side compression part first cylinder 3 and a high pressure side compression part second cylinder 4. A control circuit 35 executes a program stored preliminarily based on detection data of a pressure switch 34 and a time limiting signal from a time limiting device 33 to put a three-way electromagnetic valve 27 and a two-way electromagnetic valve 29 on/off for actuating a low pressure unloader device 19 and a high pressure unloader device 20, so operation of the compressor main body 1 is controlled. The cylinder 3 is set at a non-compression operation condition for a predetermined period after starting because the low pressure unloader device 19 is released. Generation of a large temperature difference is prevented between the compressor main body 1 and compression gas at the time of starting to restrict generation of drain, thereby lubrication oil can be prevented from being emulsified.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高圧の圧縮気体を得るため等に用いられる多
段圧m機に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-stage pressure m machine used for obtaining high-pressure compressed gas.

(従来の技術) 機械の動力源などとして用いられる圧縮気体は、近年益
々高圧のものか要求される傾向にある。これに対処する
ため、従来多段圧縮機か多く用いられている。この多段
圧縮機の一例としては、圧縮機本体にピストンなどの圧
縮部材を潤滑油て摺動自在に収納した低圧側圧縮部およ
び高圧側圧縮部を設け、低圧側圧縮部に該低圧側圧縮部
の吸入弁を開放状態に維持する低圧側アンロータ装置を
手動操作可能に設け、高圧側圧縮部にタンクを連接する
と共に高圧側アンロータ装置を設けたものかあり、この
ものては低圧側圧縮部で気体を中間圧に圧縮した後、高
圧側圧縮部て高圧に圧縮してタンクに貯留し各種機械な
どに高圧の圧縮気体を供給することかできる。また、こ
の多段圧縮機は、タンクの内圧か最高圧力になるとモー
タなどの駆動手段を回転させた状態て各アンローダ装置
を作動して非圧縮運転を行なわせ、タンクの内圧か最低
圧力になると各アンローダ装置の作動を停止させて再度
圧縮運転を行なわせてタンクの内圧を一定に維持してい
る。
(Prior Art) In recent years, compressed gas used as a power source for machines, etc., is increasingly required to be of high pressure. To deal with this, multi-stage compressors have traditionally been used. As an example of this multi-stage compressor, the compressor body is provided with a low-pressure side compression section and a high-pressure side compression section in which compression members such as pistons are slidably housed with lubricating oil, and the low-pressure side compression section is provided with a low-pressure side compression section. A low-pressure side unrotor device that maintains the suction valve in an open state is manually operable, and a tank is connected to the high-pressure side compression section and a high-pressure side unrotor device is also provided. After the gas is compressed to an intermediate pressure, it is compressed to a high pressure in the high-pressure side compression section and stored in a tank, so that the high-pressure compressed gas can be supplied to various machines. In addition, when the internal pressure of the tank reaches the maximum pressure, this multistage compressor rotates the drive means such as a motor and operates each unloader device to perform non-compression operation, and when the internal pressure of the tank reaches the minimum pressure, each The operation of the unloader device is stopped and compression operation is performed again to maintain the internal pressure of the tank constant.

ところで、多段圧縮機は、一般に気体圧縮を行なって運
転を停止した後再圧縮運転を行なう場合、圧縮機本体と
圧縮気体の温度差の関係等により気体中の水蒸気か凝結
した水分が潤滑油に混ざってしまい潤滑油か乳化するこ
とかある。そこで、これを避けるために、従来例えば圧
縮運転停止の後に再圧縮運転を行なうのに先立って、あ
らかじめ手動操作により低圧側アンローダ装置を作動さ
せて低圧側圧縮部を非圧縮運転状態にして高圧側圧縮部
のみで気体を圧縮し、ある程度圧縮機本体か暖まった段
階て低圧側アンローダ装置の作動を停止させて低圧側圧
縮部および高圧側圧縮部の両方て圧縮運転を行なって潤
滑油か乳化するのを防止するようにしていた。
By the way, in general, when a multi-stage compressor performs gas compression and then stops operation and then performs recompression operation, water vapor in the gas or condensed water may enter the lubricating oil due to the temperature difference between the compressor body and the compressed gas. The lubricant may become emulsified if mixed together. Therefore, in order to avoid this, conventionally, for example, before starting recompression operation after stopping compression operation, the low pressure side unloader device is operated manually in advance to put the low pressure side compression section into a non-compression operation state, and then the high pressure side Gas is compressed only in the compression section, and once the compressor body has warmed up to a certain extent, the operation of the low-pressure side unloader device is stopped and both the low-pressure side compression section and the high-pressure side compression section perform compression operation to emulsify the lubricating oil. I was trying to prevent this from happening.

(発明か解決しようとする課題) しかしながら、上述した従来の多段圧N機ては、潤滑油
乳化防止を、その都度低圧側アンローダ装置を手動操作
して行なうため、作業か煩雑になるという問題かあった
。また、低圧側アンロータ装置を作動して高圧側圧縮部
のみて気体圧縮を行なう場合、低圧側圧縮部および高圧
側圧縮部を用いて気体圧縮する場合に比べ得られる圧縮
気体量は数分の1程度(例えば1/4)になるか、上述
した多段圧縮機ては手動操作により低圧側アンロータ装
置の作動を停止させるようにしているのて、潤滑油乳化
防止対策のために一旦低圧倒アンロータ装置を作動させ
ると、低圧倒アンローダ装置を作動させた状態て運転を
継続させてしまい易く、このような場合所定量の圧縮気
体を得るうえて多くのエネルギを要することとなり、運
転効率を悪化させる虞かあった。
(Problem to be solved by the invention) However, in the conventional multi-stage pressure N machine described above, the lubricating oil emulsification prevention is performed by manually operating the low-pressure side unloader device each time, which makes the work complicated. there were. Furthermore, when the low-pressure side unrotor device is operated to compress gas only using the high-pressure side compression section, the amount of compressed gas obtained is a fraction of that when compressing gas using the low-pressure side compression section and the high-pressure side compression section. In the multi-stage compressor mentioned above, the operation of the low-pressure side unrotor device is manually stopped. If the unit is activated, it is easy to continue operation with the low-overload unloader device activated, and in such a case, a large amount of energy is required to obtain the specified amount of compressed gas, which may deteriorate operational efficiency. There was.

本発明は、上記問題点に鑑みてなされたもので、潤滑油
の乳化防止を運転効率を良好に維持して実施できる多段
圧縮機を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a multistage compressor that can prevent emulsification of lubricating oil while maintaining good operating efficiency.

(課題を解決するための手段) 上記目的を達成するために、第1の発明は、圧縮機本体
の起動時に低圧側圧縮部を非圧縮運転状に設定し、かつ
高圧側圧縮部を圧M運転状態に設定し、所定時間経過後
に低圧側圧縮部を圧縮運転状態に設定する制御手段を設
けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the first invention sets the low-pressure side compression section to a non-compression operation state when starting the compressor main body, and sets the high-pressure side compression section to a pressure M The present invention is characterized in that a control means is provided for setting the low-pressure side compression section to the compression operation state after a predetermined period of time has elapsed.

上記目的を達成するために、第2の発明は、圧縮機本体
の起動時に低圧側圧縮部を非圧縮運転状に設定し、かつ
高圧側圧縮部を圧縮運転状態に設定し、圧縮機本体また
は圧縮気体の温度か所定温度に達した後に低圧側圧縮部
を圧縮運転状態に設定する制御手段を設けたことを特徴
とする。
In order to achieve the above object, the second invention sets the low-pressure side compression section to a non-compression operation state and the high-pressure side compression section to a compression operation state when starting the compressor main body, and sets the compressor main body or The present invention is characterized in that a control means is provided for setting the low-pressure side compression section to a compression operation state after the temperature of the compressed gas reaches a predetermined temperature.

(作用) 第1の発明は、上記のように構成したので、圧縮運転が
行なわれた後タンクの内圧か最低圧力に達すると制御手
段か低圧側圧縮部を非圧縮運転状態に設定して高圧側圧
縮部のみて気体圧縮し、圧縮機本体と発生する圧縮気体
との間に大きな温度差を生ずるのを抑えられてトレンか
発生することかなくなり潤滑油が乳化するのを防止でき
る。また、所定時間か経過した段階て人手に頼らずに制
御手段か低圧側圧縮部の非圧縮運転を停止させるので、
煩雑な作業を伴わずに低圧側圧縮部および高圧側圧縮部
による空気圧縮を行なえ、かつ低圧側圧縮部および高圧
側圧縮部による空気圧縮を手動によらずに再開すること
により操作忘れ等を防止できてエネルギ損失を抑えられ
る。
(Function) Since the first invention is configured as described above, when the internal pressure of the tank reaches the minimum pressure after the compression operation is performed, the control means sets the low-pressure side compression part to the non-compression operation state to increase the pressure. The gas is compressed only in the side compression section, and a large temperature difference between the compressor body and the generated compressed gas is suppressed, so that no tren is generated and the lubricating oil is prevented from emulsifying. In addition, since the non-compressing operation of the low pressure side compression section is stopped by the control means without relying on human hands after a predetermined period of time has elapsed,
Air compression can be performed using the low-pressure side compression section and high-pressure side compression section without any complicated work, and air compression using the low-pressure side compression section and high-pressure side compression section can be resumed without manual operation, preventing forgetting operations. This reduces energy loss.

第2の発明は、上記のように構成したのて、圧縮運転か
行なわれた後タンクの内圧か最低圧力に達すると制御手
段か低圧側圧縮部を非圧縮運転状態に設定して高圧側圧
縮部のみで気体圧縮するのて、圧縮機本体と発生する圧
縮気体との間に大きな温度差を生ずるのを抑えられてト
レンか発生することかなくなり潤滑油か乳化するのを防
止できる。また、圧縮機本体または圧縮気体の温度か所
定温度に達した段階で人手に頼らずに制御手段か低圧側
圧縮部の非圧縮運転を停止させるのて、煩雑な作業を伴
わずに低圧側圧縮部および高圧側圧縮部による空気圧縮
な行なえ、かつ低圧側圧縮部および高圧側圧縮部による
空気圧縮を手動によらずに再開することにより操作忘れ
等を防止できてエネルギ損失を抑えられる。
The second invention is configured as described above, and when the internal pressure of the tank or the minimum pressure is reached after compression operation is performed, the control means sets the low pressure side compression section to a non-compression operation state and performs high pressure side compression. Since the gas is compressed only in the compressor section, a large temperature difference between the compressor body and the generated compressed gas can be suppressed, and the generation of a tren can be prevented, and lubricating oil can be prevented from emulsifying. In addition, when the temperature of the compressor body or the compressed gas reaches a predetermined temperature, the control means or non-compressing operation of the low pressure side compression section is stopped without relying on human hands, so low pressure side compression can be performed without any complicated work. By allowing air compression to be performed by the low pressure side compression part and the high pressure side compression part, and by restarting the air compression by the low pressure side compression part and the high pressure side compression part without manual operation, it is possible to prevent forgetting operations, etc., and to suppress energy loss.

(実施例) 以下に、本発明の第1の実施例である多段空気圧縮機を
第1図ないし第3図に基いて説明する。
(Example) A multi-stage air compressor which is a first example of the present invention will be described below with reference to FIGS. 1 to 3.

図において、圧縮機本体lの一部を成すクランクケース
2には低圧側圧縮部の第1のシリンダ3と高圧側圧縮部
の第2のシリンダ4とか連設されている。′!s1のシ
リンダ3と第2のシリンダ4にそれぞれ内装されたピス
トン5,6はコンロット7.8を介し、モータ9で駆動
される図示しないクランク軸に連結されれており、また
各シリンダヘット10.11には吸入室12.13と吐
出室14.Isか設けられている。低圧側の吐出室]4
と高圧側の吸入室】3とは中間配管16て連結され、高
圧側の吐出室15は導管I7てタンク18に連結されて
おり、低圧側の吸入室12から吸入された空気は第1の
シリンダ3て中間圧に圧縮され、その後吐出室14から
中間配管16を通って高圧側の吸入室13に送られ、第
2のシリンダ4て更に高圧に圧縮されて導管17を介し
てタンク18に貯留される。
In the figure, a first cylinder 3 of a low-pressure side compression section and a second cylinder 4 of a high-pressure side compression section are connected to a crankcase 2 forming a part of a compressor body 1. ′! Pistons 5 and 6 installed in the cylinder 3 and second cylinder 4 of s1, respectively, are connected to a crankshaft (not shown) driven by a motor 9 via connecting rods 7.8, and each cylinder head 10. 11 has a suction chamber 12.13 and a discharge chamber 14. Is is provided. Discharge chamber on low pressure side] 4
and the high-pressure side suction chamber] 3 are connected to each other through an intermediate pipe 16, and the high-pressure side discharge chamber 15 is connected to a tank 18 through a conduit I7, and the air sucked from the low-pressure side suction chamber 12 is connected to the first The cylinder 3 is compressed to an intermediate pressure, and then sent from the discharge chamber 14 through the intermediate pipe 16 to the suction chamber 13 on the high pressure side, and the second cylinder 4 is further compressed to a high pressure and sent to the tank 18 via the conduit 17. stored.

低圧側の吸入室12および高圧側の吸入室13にはそれ
ぞれ低圧アンロータ装置19、高圧アンロータ装置20
か設けられている。低圧アンローダ装置19および高圧
アンロータ装置20には、アンロータばね21.22に
より上方に付勢されるアンローダピストン23.24か
低圧側および高圧側の各吸入弁25.26に先端部を臨
ませて設けられている。低圧側のアンローダピストン2
3は、タンク18に連結した三方電磁弁27に導管28
て連接されタンク18の圧縮空気を上方に受けたときに
吸入弁25を押圧して開放状態にすることかでき、また
高圧側のアンローダピストン24は三方電磁弁29を介
し、導管28に接続した導管3oに連結され三方電磁弁
29および三方電磁弁27を介して上方にタンク18の
圧縮空気を受けたときに吸入弁26を押圧して開放状態
にすることかできるようになっている。
A low pressure unrotor device 19 and a high pressure unrotor device 20 are provided in the low pressure side suction chamber 12 and the high pressure side suction chamber 13, respectively.
Or is provided. The low-pressure unloader device 19 and the high-pressure unrotor device 20 are provided with an unloader piston 23.24 that is urged upward by an unrotor spring 21.22, and its tip end faces each of the low-pressure side and high-pressure side suction valves 25.26. It is being Low pressure side unloader piston 2
3 is a conduit 28 connected to a three-way solenoid valve 27 connected to the tank 18.
When the compressed air from the tank 18 is received upwardly, the suction valve 25 can be pressed and opened, and the high-pressure side unloader piston 24 is connected to the conduit 28 through a three-way solenoid valve 29. When compressed air from the tank 18 is received upward through a three-way solenoid valve 29 and a three-way solenoid valve 27 connected to the conduit 3o, the suction valve 26 can be pressed to open.

また、31はモータ9の電源側に設けられた電磁開閉器
で、この電磁開閉器31はスイッチ32によりオン、オ
フされるようになっている。電磁開閉器3Jの下流側に
は三方電磁弁29の閉詩間を計測し、所定時間か経過す
るとそのことを示す限時信号を出力する限時装置33か
設けられている。なお、所定時間は、第1のシリンダ3
および第2のシリンダ4による圧縮運転を停止した後第
2のシリンダ4のみで圧縮運転を行なったときにこの第
2のシリンダ4の圧縮運転時点から、この圧縮運転で圧
縮機本体1か暖まって潤滑油か乳化しない温度に達する
時点までの時間となるようにあらかしめ設定しである。
Further, 31 is an electromagnetic switch provided on the power supply side of the motor 9, and this electromagnetic switch 31 is turned on and off by a switch 32. On the downstream side of the electromagnetic switch 3J, a time limit device 33 is provided that measures the closing time of the three-way electromagnetic valve 29 and outputs a time signal indicating this when a predetermined period of time has elapsed. Note that the predetermined time is the first cylinder 3
When compression operation is performed only with the second cylinder 4 after the compression operation of the second cylinder 4 is stopped, the compressor main body 1 warms up from the time of the compression operation of the second cylinder 4. The time is roughly set so that the lubricating oil reaches a temperature at which it does not emulsify.

また、タンク18には、このタンク18の内圧を検出す
る圧力スイッチ34か設けられており、この圧力スイッ
チ34、三方電磁弁27、三方電磁弁29および限時装
置33に接続して制御回路35か設けられている。
The tank 18 is also provided with a pressure switch 34 that detects the internal pressure of the tank 18, and is connected to the pressure switch 34, the three-way solenoid valve 27, the three-way solenoid valve 29, and the timer 33, and is connected to the control circuit 35. It is provided.

制御回路35は、マイコンて構成されており、圧力スイ
ッチ34の検出データ、限時装置33からの限時信号に
基づいてあらかしめ格納しであるフロクラムを実行して
、三方電磁弁27および三方電磁弁29をオン・オフ動
作させて本圧縮機の運転を制御する。この制御内容を第
3図のフローチャートに基づいて説明する。
The control circuit 35 is constituted by a microcomputer, and executes a flocram which is stored in advance based on the detection data of the pressure switch 34 and the time limit signal from the time limit device 33, and controls the three-way solenoid valve 27 and the three-way solenoid valve 29. Controls the operation of this compressor by turning it on and off. The details of this control will be explained based on the flowchart shown in FIG.

スイッチ32かオンされると電磁開閉器31かオンして
モータ9か起動され、タンク18の内圧Pか最高圧力に
達するまて圧縮運転か行なわれ(ステラブSl(以下、
Slという。以下、同様)、S2)、内圧Pか最高圧力
に達すると三方電磁弁27をオンしく開き)低圧アンロ
ーダ装置19および高圧アンロータ装置120を作動さ
せて各吸入弁25.26を開放状態に維持させて内圧P
か再起動圧力(最低圧力)に達するまてアンローダ運転
を行なわせ(S3、S4、S5、S6)、内圧Pか再起
動圧力に達すると三方電磁弁27をオフして(閉して)
アンロード運転を一旦解除する(S7)と共に、三方電
磁弁29をオンしく閉し)かつ三方電磁弁27をオンし
て(開いて)第2のシリンダ4を起動(再起動)し、(
S8、S9)第2のシリンダ4に圧縮運転をさせつつ第
1のシリンダ3をアンロード運転させる( s io)
。この際S8の処理と同時に限時装置33の計測か開始
され、この計測時間かあらかじめ設定された時間に達す
ると限時装置33から送られる限時信号を入力して三方
電磁弁27および三方電磁弁29をオフして(S11.
S12.513)タンク18の内圧Pか最高圧力に達す
るまて圧縮運転(ロート運転)を行ない(S14.51
5)、タンク18の内圧Pか最高圧力に達すると85に
戻って処理を行なう。また、Sllての処理で計測時間
があらかじめ設定された時間に達せず限時信号か入力さ
れてないと判定すると内圧Pか最高圧力に達しているか
どうかを判定しく516)、内圧Pか最高圧力に達して
いない場合S10に戻って処理を行ない、内圧Pか最高
圧力に達すると三方電磁弁29をオフして(S17)S
5に戻って処理を行なう。なお、本実施例てはこのよう
な制御を行なう制御回路35および前記限時装置33か
制御手段を構成している。
When the switch 32 is turned on, the electromagnetic switch 31 is turned on and the motor 9 is started, and compression operation is performed until the internal pressure P of the tank 18 reaches the maximum pressure (Sterab Sl (hereinafter referred to as STELAB SL)).
It's called SL. The same applies hereinafter), S2), when the internal pressure P reaches the maximum pressure, the three-way solenoid valve 27 is turned on)) The low pressure unloader device 19 and the high pressure unrotor device 120 are operated to maintain each suction valve 25, 26 in the open state. internal pressure P
The unloader is operated (S3, S4, S5, S6) until the restart pressure (minimum pressure) is reached, and when the internal pressure P or the restart pressure is reached, the three-way solenoid valve 27 is turned off (closed).
Once the unload operation is canceled (S7), the three-way solenoid valve 29 is turned on (closed) and the three-way solenoid valve 27 is turned on (opened) to start (restart) the second cylinder 4, and (
S8, S9) Make the first cylinder 3 perform unloading operation while causing the second cylinder 4 to perform compression operation (s io)
. At this time, measurement by the timer 33 is started at the same time as the processing in S8, and when this measurement time reaches a preset time, a timer signal sent from the timer 33 is input to turn the three-way solenoid valve 27 and the three-way solenoid valve 29 on. Turn it off (S11.
S12.513) Compression operation (funnel operation) is performed until the internal pressure P of the tank 18 reaches the maximum pressure (S14.51
5) When the internal pressure P of the tank 18 reaches the maximum pressure, the process returns to 85 for processing. In addition, if it is determined that the measurement time has not reached the preset time and no time limit signal has been input in Sll processing, it will be determined whether the internal pressure P or the maximum pressure has been reached (516), and the internal pressure P or the maximum pressure will be determined. If the internal pressure P has not reached the maximum pressure, the process returns to S10, and when the internal pressure P reaches the maximum pressure, the three-way solenoid valve 29 is turned off (S17).
Return to step 5 and perform the process. In this embodiment, the control circuit 35 that performs such control and the time limit device 33 constitute a control means.

以上のように構成された空気圧縮機の作用を説明する。The operation of the air compressor configured as above will be explained.

スイッチ32かオンされて電磁開閉器31かオンしてモ
ータ9か起動されると、タンク18の内圧Pか最高圧力
に達するまで圧縮運転か行なわれ、内圧Pか最高圧力に
達すると三方電磁弁27がオンされてアンロータ装置1
9.20か作動し吸入弁25.26か開放状態に維持さ
れ第1のシリンダ3および第2のシリンダ4か共にアン
ロード運転される。タンク18の内圧Pか再起動圧力に
達すると三方電磁弁27かオフされて第1のシリンダ3
および第2のシリンダ4が圧縮運転状態に設定されると
共に、三方電磁弁29かオンしく閉し)かつ三方電磁弁
27かオンして(開いて)第1のシリンダ3の吸入弁2
5を押圧して開放状態にしてこの第1のシリンダ3をア
ンロード運転(非圧縮運転)状態に設定し、第2のシリ
ンダ4により空気を圧縮し圧縮で発生する熱により圧縮
機本体1を暖めつつ圧縮空気をタンク18に貯留する。
When the switch 32 is turned on, the electromagnetic switch 31 is turned on, and the motor 9 is started, compression operation is performed until the internal pressure P of the tank 18 reaches the maximum pressure, and when the internal pressure P reaches the maximum pressure, the three-way solenoid valve 27 is turned on and the unrotor device 1
9.20 is operated, the suction valves 25 and 26 are kept open, and both the first cylinder 3 and the second cylinder 4 are operated in an unloaded state. When the internal pressure P of the tank 18 reaches the restart pressure, the three-way solenoid valve 27 is turned off and the first cylinder 3
Then, the second cylinder 4 is set to the compression operation state, the three-way solenoid valve 29 is turned on (closed), and the three-way solenoid valve 27 is turned on (opened), and the suction valve 2 of the first cylinder 3 is turned on (opened).
The first cylinder 3 is set to the unload operation (non-compression operation) by pressing 5 to open it, and the second cylinder 4 compresses the air, and the heat generated by compression causes the compressor body 1 to be activated. Compressed air is stored in a tank 18 while being heated.

この際三方電磁弁29かオンした(閉した)段階て限時
装置33か時間計測を開始し所定時間か経過すると限時
信号を制御回路35に出力する。制御回路35は限時信
号を入力すると三方電磁弁27をオフして(閉して)第
1のシリンダ3の非圧縮運転状態を解除して低圧側およ
び高圧側の圧縮部て空気を圧縮する。
At this time, when the three-way solenoid valve 29 is turned on (closed), the timer 33 starts measuring time and outputs a timer signal to the control circuit 35 when a predetermined period of time has elapsed. When the control circuit 35 receives the time limit signal, it turns off (closes) the three-way solenoid valve 27, releases the non-compression operating state of the first cylinder 3, and compresses air in the compression sections on the low-pressure side and the high-pressure side.

このように圧縮運転を停止した後タンク18の内圧Pか
再起動圧力になると、第1のシリンダ3を非圧縮運転状
態にして第2のシリンダ4て圧縮運転を行ない、圧縮機
本体lの温度か潤滑油を乳化させない温度になるのに要
する所定時間か経過すると制御回路35の制御により低
圧倒アンローダ装置の作動か停止されて第1のシリンダ
3および第2のシリンダ4て圧縮運転するのて、圧縮機
本体1側と発生する圧縮空気との温度差か小さく抑えら
れてドレンか発生することかなくなって潤滑油か乳化さ
れるのを防止することかてきる。またこのように低圧側
アンローダ装置を作動して潤滑油か乳化するのを防止す
るようにした後制御回路35か低圧側アンロータ装置の
作動を停止させるので、人手に頼らずに第1のシリンダ
3および第2のシリンダ4を用いた空気圧縮を再開てき
、従来の多段圧縮機て生した操作忘れによる第2のシリ
ンダ4のみの空気圧縮に比べ少ないエネルギて所定量の
圧縮空気を得ることかでき運転効率を向上できる。
After the compression operation is stopped in this way, when the internal pressure P of the tank 18 reaches the restart pressure, the first cylinder 3 is put into a non-compression operation state, and the second cylinder 4 performs a compression operation, and the temperature of the compressor main body l increases. When the predetermined time required for the temperature to reach a temperature that does not emulsify the lubricating oil has elapsed, the operation of the low-overload unloader device is stopped under the control of the control circuit 35, and the first cylinder 3 and the second cylinder 4 are operated for compression. The temperature difference between the compressor main body 1 side and the generated compressed air can be suppressed to a small level, thereby preventing the generation of drainage and preventing the lubricating oil from being emulsified. Furthermore, after the low-pressure side unloader device is activated to prevent the lubricating oil from becoming emulsified, the control circuit 35 or the low-pressure side unloader device is stopped from operating, so that the first cylinder 3 can be operated without relying on human hands. Then, air compression using the second cylinder 4 is restarted, and a predetermined amount of compressed air can be obtained with less energy than when compressing air only using the second cylinder 4 due to forgetting to operate the conventional multi-stage compressor. Operation efficiency can be improved.

なお、本実施例では限時装M33を設けた場合を例にし
たか制御回路35にタイマ機能を持たせこのタイマによ
り限時装置33の機能を実行させるように構成してもよ
い。
In this embodiment, the timer M33 is provided, but the control circuit 35 may have a timer function and the timer may execute the function of the timer 33.

つぎに第4図および第5図に基づいて第2の実施例を説
明する。このものは第1の実施例のものに比べ限時装置
33を省きかつ中間配管16の外壁に温度センサ36を
設け、Sllに替わるSKIの処理を行なう制御回路3
7を制御回路35に替えて設けたことが異なっており、
他の部材は第1の実施例に示すものか用いられている。
Next, a second embodiment will be described based on FIGS. 4 and 5. Compared to the first embodiment, this control circuit 3 omits the timer 33 and provides a temperature sensor 36 on the outer wall of the intermediate pipe 16, and performs SKI processing instead of Sll.
The difference is that 7 is replaced with a control circuit 35,
Other members used are those shown in the first embodiment.

これら同一部材は同一符号て示し、これらの図面記載お
よび説明は一部のみ行ない他は省略する。
These same members are indicated by the same reference numerals, and only some of these drawings and explanations will be omitted.

温度スイッチ32は中間配管16か所定温度に達すると
温度検出信号を制御回路37に出力する。
The temperature switch 32 outputs a temperature detection signal to the control circuit 37 when the intermediate pipe 16 reaches a predetermined temperature.

なお、所定温度は、第1のシリンダ3および第2のシリ
ンダ4による圧縮運転を停止した後節1のシリンダ3お
よび第2のシリンダ4て圧縮運転を行なったときにも潤
滑油が乳化しない温度にあらかしめ設定しである。制御
回路37は、S21の判定処理において中間配管16の
温度か所定温度に達したことにより温度スイッチ32か
ら温度検出信号を入力すると処理を312に進めて実行
し、温度検出信号を入力していない間は処理をS16に
進めて実行する。
The predetermined temperature is a temperature at which the lubricating oil does not become emulsified even when the compression operation of the cylinder 3 and the second cylinder 4 of the second section 1 is performed after the compression operation of the first cylinder 3 and the second cylinder 4 is stopped. This is roughly set. When the control circuit 37 inputs a temperature detection signal from the temperature switch 32 due to the temperature of the intermediate pipe 16 reaching a predetermined temperature in the determination process of S21, the control circuit 37 advances the process to 312 and executes the process, and no temperature detection signal is input. During this period, the process advances to S16 and is executed.

この多段空気圧縮機は、圧縮運転か行なわれ、内圧Pか
最高圧力に達して第1のシリンダ3および第2のシリン
ダ4か共にアンロード運転された後、タンク18の内圧
Pが再起動圧力に達すると三方電磁弁27かオフされて
第1のシリンダ3および第2のシリンダ4か共に圧縮運
転状態に設定されると同時に、三方電磁弁29かオンし
く閉し)かつ三方電磁弁27かオンして(開いて)第1
のシリンダ3の吸入弁25を押圧して開放状態にしてこ
の第1のシリンダ3をアンロード運転(非圧縮運転)状
態に設定し、第2のシリンダ4により圧縮運転を行なう
。この圧縮運転により中間配管16か暖まりその温度か
所定温度になると温度スイッチ32か温度検出信号を出
力する。すると制御回路37は三方電磁弁27をオフし
て(閉して)第1のシリンダ3の非圧縮運転状態を解除
して第1のシリンダ3および第2のシリンダ4て空気を
圧縮する。
This multistage air compressor performs a compression operation, and after the internal pressure P reaches the maximum pressure and both the first cylinder 3 and the second cylinder 4 are unloaded, the internal pressure P of the tank 18 becomes the restart pressure. When the three-way solenoid valve 27 is turned off, both the first cylinder 3 and the second cylinder 4 are set to the compression operation state, and at the same time, the three-way solenoid valve 29 is turned on (closed) and the three-way solenoid valve 27 is turned off. Turn on (open) the first
The suction valve 25 of the cylinder 3 is pressed to open, the first cylinder 3 is set to an unload operation (non-compression operation), and the second cylinder 4 performs a compression operation. This compression operation warms the intermediate pipe 16, and when the temperature reaches that temperature or a predetermined temperature, the temperature switch 32 outputs a temperature detection signal. Then, the control circuit 37 turns off (closes) the three-way solenoid valve 27 to release the non-compression operating state of the first cylinder 3 and compress the air in the first cylinder 3 and the second cylinder 4.

この第2の実施例の多段空気圧縮機も第1の実施例と同
様に、圧縮機本体1か暖まりこの段階て制御回路37の
制御により低圧側アンロータ装置の作動か停止されて第
1のシリンダ3および第2のシリンダ4て圧縮運転する
ので、圧縮機本体l側と発生する圧縮空気との温度差か
小さく抑えられてトレンを発生することかなくなって潤
滑油か乳化されるのを防止できる。また、このように低
圧側アンロータ装置を作動して潤滑油か乳化するのを防
止するようにした後、制御回路37か低圧側アンロータ
装置の作動を停止させるのて、人手に頼らずに第1のシ
リンダ3および第2のシリンダ4て空気圧縮を行なえ第
2のシリンダ4のみによる空気圧縮に比べ少ないエネル
ギで所定量の圧縮空気を得ることかてきる。
Similarly to the first embodiment, the multi-stage air compressor of the second embodiment also has a main body 1 of the compressor warmed up, and the control circuit 37 controls the operation of the low-pressure side unrotor device to stop the first cylinder. 3 and the second cylinder 4 perform compression operation, the temperature difference between the compressor main body L side and the generated compressed air is suppressed to a small level, eliminating the generation of tren and preventing the lubricating oil from becoming emulsified. . Furthermore, after the low-pressure side unrotor device is activated to prevent the lubricating oil from becoming emulsified, the control circuit 37 or the low-pressure side unrotor device can be stopped to operate without relying on human hands. Air compression can be performed using the second cylinder 3 and the second cylinder 4, and a predetermined amount of compressed air can be obtained with less energy than when air is compressed using only the second cylinder 4.

なお、第2の実施例では温度スイッチ32を中間配管1
Gの外壁に設けた場合を例にしたか内部に挿入して圧縮
空気の温度を測定するようにしてもよいし、温度スイッ
チ32を第6図に示すように高圧側の第2のシリンダ4
の外壁に設けてもよい。
In addition, in the second embodiment, the temperature switch 32 is connected to the intermediate pipe 1.
The temperature switch 32 may be installed inside the cylinder G to measure the temperature of the compressed air, or it may be installed inside the cylinder 4 on the high pressure side as shown in FIG.
It may be installed on the outer wall of the

また、上記各実施例ては第3図の86の段階すなわち再
起動の段階で第1のシリンダ3を非圧縮運転状に設定し
、かつ第2のシリンダ4をを圧縮運転状態に設定するよ
うにした場合を例にしたか、Slの段階すなわち初期の
起動時に上述のように設定するようにしてもよい。
Furthermore, in each of the above embodiments, the first cylinder 3 is set to a non-compression operating state and the second cylinder 4 is set to a compression operating state at step 86 in FIG. 3, that is, at the restart stage. Alternatively, the above-mentioned settings may be made at the Sl stage, that is, at the initial startup.

また、上記各実施例では空気を圧縮する多段空気圧縮機
の場合について説明したか、本発明は、他の気体を圧縮
する多段圧縮機であってもよい。
Further, in each of the above embodiments, the case of a multi-stage air compressor that compresses air has been described, but the present invention may be a multi-stage compressor that compresses other gases.

また、上記各実施例ては2段の圧縮機を例にしたか、本
発明はこれに限定されるものではなく3段以上の圧縮機
であってもよい。
Further, although each of the above embodiments has been described as an example of a two-stage compressor, the present invention is not limited thereto, and may be a compressor with three or more stages.

(発明の効果) 本発明は、以上説明したように、圧縮運転か行なわれた
後タンクの内圧か最低圧力に達すると低圧側圧縮部を一
旦非圧縮運転状態に設定して高圧側圧縮部のみて気体圧
縮し圧縮機本体と圧縮気体との間に大きな温度差を生ず
ることがなくなってトレンの発生を抑えられて潤滑油の
乳化を防止てき、かつ潤滑油乳化防止か講しられた後制
御手段により低圧側圧縮部の非圧縮運転か解除されるの
で、煩雑な作業を伴わずに低圧側圧縮部および高圧側圧
縮部による空気圧縮を行なえ、さらに低圧側圧縮部およ
び高圧側圧縮部による空気圧縮をタイミングよく再開て
き、高圧側圧縮部のみによる空気圧縮に比ベエネルギ損
失を抑えられて運転効率を良好に維持てきる。
(Effects of the Invention) As explained above, the present invention, after compression operation is performed, when the internal pressure of the tank or the minimum pressure is reached, the low-pressure side compression section is temporarily set to the non-compression operation state, and the high-pressure side compression section is turned off. By compressing the gas, there is no longer a large temperature difference between the compressor body and the compressed gas, suppressing the generation of tren and preventing emulsification of lubricating oil, and control after taking measures to prevent lubricating oil emulsification. Since the non-compression operation of the low-pressure side compression section is canceled by the means, air compression can be performed by the low-pressure side compression section and the high-pressure side compression section without complicated work, and air can be compressed by the low-pressure side compression section and the high-pressure side compression section. Compression is restarted in a timely manner, and specific energy loss is suppressed due to air compression using only the high-pressure side compression section, thereby maintaining good operating efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の多段圧縮機を模式的に
示した配管系統図、 第2図は同圧縮機のアンローダ装置を示す断面図、 第3図は同圧縮機の制御回路の処理内容を示すフローチ
ャート、 第4図は第2の実施例の多段圧縮機を模式的に示した配
管系統図、 第5図は同圧縮機の制御回路の処理内容の要部を示すフ
ローチャート、 第6図は第2の実施例の温度スイッチの取付は変更例を
示す配管系統図である。 l・・・圧縮機本体、3・・・第1のシリンダ、4・・
・第2のシリンダ、18・・・タンク、33・・・限時
装置、35・・・制御回路。 −−(V″)ぐべわ00 − F) rワ 3図 第 図 第 図 S12へ
Fig. 1 is a piping system diagram schematically showing a multistage compressor according to the first embodiment of the present invention, Fig. 2 is a sectional view showing an unloader device of the compressor, and Fig. 3 is a control of the compressor. Flowchart showing the processing contents of the circuit. Fig. 4 is a piping system diagram schematically showing the multistage compressor of the second embodiment. Fig. 5 is a flowchart showing the main part of the processing contents of the control circuit of the same compressor. , FIG. 6 is a piping system diagram showing a modification of the mounting of the temperature switch in the second embodiment. l... Compressor main body, 3... First cylinder, 4...
- Second cylinder, 18...tank, 33... time limit device, 35... control circuit. --(V'')Gubewa 00-F) rwa Figure 3 Figure Figure S12

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機本体の起動時に低圧側圧縮部を非圧縮運転
状に設定し、かつ高圧側圧縮部を圧縮運転状態に設定し
、所定時間経過後に低圧側圧縮部を圧縮運転状態に設定
する制御手段を設けたことを特徴とする多段圧縮機。
(1) When starting up the compressor main body, the low-pressure side compression section is set to non-compression operation, the high-pressure side compression section is set to compression operation, and after a predetermined period of time, the low-pressure side compression section is set to compression operation. A multistage compressor characterized by being provided with a control means.
(2)圧縮機本体の起動時に低圧側圧縮部を非圧縮運転
状に設定し、かつ高圧側圧縮部を圧縮運転状態に設定し
、圧縮機本体または圧縮気体の温度が所定温度に達した
後に低圧側圧縮部を圧縮運転状態に設定する制御手段を
設けたことを特徴とする多段圧縮機。
(2) When the compressor main body is started, the low pressure side compression section is set to non-compression operation state, and the high pressure side compression section is set to compression operation state, and after the temperature of the compressor main body or compressed gas reaches a predetermined temperature. A multi-stage compressor characterized by comprising a control means for setting a low-pressure side compression section to a compression operation state.
JP10480890A 1990-04-20 1990-04-20 Multiple stage compressor Pending JPH045481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10480890A JPH045481A (en) 1990-04-20 1990-04-20 Multiple stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10480890A JPH045481A (en) 1990-04-20 1990-04-20 Multiple stage compressor

Publications (1)

Publication Number Publication Date
JPH045481A true JPH045481A (en) 1992-01-09

Family

ID=14390720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10480890A Pending JPH045481A (en) 1990-04-20 1990-04-20 Multiple stage compressor

Country Status (1)

Country Link
JP (1) JPH045481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008065A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Compressor
CN111120290A (en) * 2019-12-19 2020-05-08 广东申菱环境系统股份有限公司 Overload protection method and overload protection device for compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008065A (en) * 2007-06-29 2009-01-15 Hitachi Ltd Compressor
CN111120290A (en) * 2019-12-19 2020-05-08 广东申菱环境系统股份有限公司 Overload protection method and overload protection device for compressor
CN111120290B (en) * 2019-12-19 2022-01-04 广东申菱环境系统股份有限公司 Overload protection method and overload protection device for compressor

Similar Documents

Publication Publication Date Title
JPH089992B2 (en) Multi-stage compressor
JPH045481A (en) Multiple stage compressor
JPS62247160A (en) Starting device for stirling engine
JPH01285692A (en) Control method for screw compressor driven by expansion machine
JPH0147633B2 (en)
JP2968189B2 (en) Operating method of compressor
JPS6349573Y2 (en)
JP3356807B2 (en) No-load operation device and stop method for engine compressor
JPH0311660Y2 (en)
JPH0430390Y2 (en)
JPS6349574Y2 (en)
JP2860583B2 (en) Compressor
JPH04203759A (en) Freezing device
JP3390935B2 (en) Motor compressor restart time reduction device
JPS56138483A (en) Engine driven-type compressor
JPH0712710Y2 (en) Oil-cooled air compressor
JP5075521B2 (en) Compressor
JPS59211784A (en) Continuously controlled screw type air conditioner
JPH077592Y2 (en) Compressor capacity control device
JPH037591Y2 (en)
JPH0429105Y2 (en)
JPH021516Y2 (en)
JPH06185468A (en) Air compressor
JPS56138484A (en) Engine driven-type compressor
JP2765977B2 (en) Refrigeration equipment