JPH0454499Y2 - - Google Patents

Info

Publication number
JPH0454499Y2
JPH0454499Y2 JP1985064522U JP6452285U JPH0454499Y2 JP H0454499 Y2 JPH0454499 Y2 JP H0454499Y2 JP 1985064522 U JP1985064522 U JP 1985064522U JP 6452285 U JP6452285 U JP 6452285U JP H0454499 Y2 JPH0454499 Y2 JP H0454499Y2
Authority
JP
Japan
Prior art keywords
valve
liquid
passage
pressure
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985064522U
Other languages
Japanese (ja)
Other versions
JPS61180313U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985064522U priority Critical patent/JPH0454499Y2/ja
Publication of JPS61180313U publication Critical patent/JPS61180313U/ja
Application granted granted Critical
Publication of JPH0454499Y2 publication Critical patent/JPH0454499Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は積層液体制御装置に使用する積層形減
圧弁に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a stacked pressure reducing valve used in a stacked liquid control device.

〔従来の技術〕[Conventional technology]

従来、この種積層形減圧弁は、実公昭56−
25054号公報に示される如き、弁本体の嵌合孔へ
摺動自在に嵌挿した弁体を調整ねじにより弾性力
を調整した弾性部材の弾性力と圧力液体による作
用力との対向作用で軸方向へ摺動せしめ、液体通
路を流れる圧力液体を弾性部材の弾性力による設
定圧力が減圧制御するものが知られている。
Conventionally, this type of stacked pressure reducing valve
As shown in Publication No. 25054, the valve body is slidably inserted into the fitting hole of the valve body, and the shaft is adjusted by the opposing action of the elastic force of the elastic member whose elastic force is adjusted by the adjusting screw and the acting force of the pressure liquid. A device is known in which the pressure liquid flowing in the liquid passage is controlled to be reduced by a set pressure caused by the elastic force of an elastic member.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

ところが、かかる構成の積層形減圧弁では、液
体通路を流れる圧力液体を低圧設定の減圧制御と
高圧設定の減圧制御との2段階に変更したい場
合、調整ねじを作業者が回動して弾性部材の弾性
力を調整しなければならず、調整を迅速かつ正確
に行えず変更操作が容易にできないという問題点
があつた。
However, in a laminated pressure reducing valve with such a configuration, when the operator wants to change the pressure liquid flowing through the liquid passage into two stages: pressure reduction control at a low pressure setting and pressure reduction control at a high pressure setting, the operator rotates the adjustment screw and moves the elastic member. There was a problem in that the elastic force of the elastic force had to be adjusted, and the adjustment could not be done quickly and accurately, making it impossible to easily change the adjustment.

本考案は、かかる問題点を解決するもので、2
個のパイロツト弁によりそれぞれ設定した異つた
設定圧力を電磁弁の通電非通電操作により切換選
択し、圧力液体を低圧設定の減圧制御と高圧設定
の減圧制御との2段階に容易に変更操作し得るよ
うにした積層形減圧を提供することを目的とす
る。
The present invention solves these problems, and has two
The different set pressures set by each pilot valve can be switched and selected by energizing and de-energizing the solenoid valve, and the pressure liquid can be easily changed into two stages: low pressure setting pressure reduction control and high pressure setting pressure reduction control. The purpose of the present invention is to provide a laminated type vacuum.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題点を解決するためになされた本考案
の構成は、複数の液体通路を対向する両側面に開
口して貫通配設し積層自在に形成した主本体を有
し、主本体の嵌合孔へ摺動自在に嵌挿して弾性部
材の弾性力により一方向へ付勢される弁体を設け
ると共に、弁体の両端に形成のパイロツト液体を
導入する作用室の一方の作用室のみパイロツト液
体が絞りを介して導入するよう設け、主本体の貫
通配設した複数の液体通路が開口される側面と略
直角の対向する両側面に第1副本体と第2副本体
を着脱自在に取付け、第1副本体には絞りを介し
てパイロツト液体が導入される弁本端の作用室へ
一端が連通して他端が主本体の低圧側の液体通路
へ連通する第1連通路を形成し、第1連通路には
絞りを介してパイロツト液体が導入される弁体端
の作用室の圧力を低圧設定する第1パイロツト弁
とこの作用室の圧力を高圧設定する第2パイロツ
ト弁とを第1パイロツト弁を第2パイロツト弁よ
り上流側に位置して直列的に配設し、第1連通路
の第1パイロツト弁と第2パイロツト弁間へ一端
が連通し第1副本体と第2副本体を取付けする両
側面に開口して主本体に貫通配設の貫通路へ他端
が連通する第2連通路を第1副本体に形成し、第
2副本体には主本体の貫通路へ一端が連通し他端
が主本体の低圧側の液体通路へ連通する第3連通
路を形成し、第3連通路には第3連通路の開閉に
より弁体を両端作用室間の圧力差による作用力と
弾性部材の弾性力とで軸方向へ摺動することで液
体通路を流す圧力液体を第1パイロツト弁による
低圧設定の減圧制御と第2パイロツト弁による高
圧設定の減圧制御とに変更自在にするよう通電非
通電操作により第3連通路を開閉する電磁弁を配
設して成る。
The structure of the present invention, which was created to solve such problems, has a main body in which a plurality of liquid passages are opened on both opposing sides and are arranged through the main body so that they can be laminated freely. A valve body is provided that is slidably inserted into the valve body and biased in one direction by the elastic force of an elastic member, and the pilot liquid is introduced into only one of the working chambers formed at both ends of the valve body. The first sub-body and the second sub-body are removably attached to opposite side surfaces substantially perpendicular to the side surfaces of the main body through which the plurality of liquid passages are opened. A first communication passage is formed in the first sub-body, one end of which communicates with the working chamber at the main end of the valve into which the pilot liquid is introduced via a throttle, and the other end of which communicates with the liquid passage on the low-pressure side of the main body; The first pilot valve sets the pressure of the working chamber at the end of the valve body to a low pressure and the second pilot valve sets the pressure of this working chamber to a high pressure. The valves are located upstream from the second pilot valve and arranged in series, one end of which communicates between the first pilot valve and the second pilot valve of the first communication passage, and connects the first sub-body and the second sub-body. A second communicating passage is formed in the first sub-body, the second communicating passage opening on both sides to be attached and having the other end communicating with the through-passage provided through the main body, and the second sub-body having one end communicating with the through-passage of the main body. A third communicating passage is formed, the other end of which communicates with the liquid passage on the low pressure side of the main body, and the third communicating passage receives a force acting on the valve body due to the pressure difference between the working chambers at both ends by opening and closing the third communicating passage. By sliding in the axial direction with the elastic force of the elastic member, the pressure liquid flowing through the liquid passage can be freely changed between pressure reduction control with a low pressure setting using the first pilot valve and pressure reduction control with a high pressure setting using the second pilot valve. A solenoid valve is provided to open and close the third communication passage by energizing and de-energizing operations.

〔作用〕[Effect]

かかる本考案の構成において、電磁弁の通電非
通電操作により第3連通路を開閉し、第3連通路
を開いたときには、絞りを介してパイロツト液体
が導入される弁体端に形成した作用室の圧力を第
1連通路に第2パイロツト弁より上流側に位置し
た第1パイロツト弁で低圧設定し、液体通路を流
す圧力液体を低圧設定に減圧制御する。また、第
3連通路を閉じたときには、前記作用室の圧力が
第1パイロツト弁による低圧設定の圧力以上にな
つて作用室のパイロツト液体が第1パイロツト弁
の下流側に流れると閉じた第3連通路を介して低
圧側の液体通路に流出することなく、第2パイロ
ツト弁に作用し、作用室の圧力を第2パイロツト
弁で高圧設定し、液体通路を流す圧力液体を高圧
設定に減圧制御する。このため、液体通路を流す
圧力液体を低圧設定に減圧制御と高圧設定の減圧
制御とに変更するのを電磁弁の通電非通電操作と
いう簡単な操作で応答性良く正確に行うことがで
き、圧力液体を低圧設定の減圧制御と高圧設定の
減圧制御との2段階に容易に変更操作することが
できる。
In the configuration of the present invention, the third communicating passage is opened and closed by energizing and de-energizing the solenoid valve, and when the third communicating passage is opened, the operating chamber formed at the end of the valve body into which the pilot liquid is introduced through the throttle is opened. The pressure of the liquid is set to a low pressure in the first communication passage by a first pilot valve located upstream of the second pilot valve, and the pressure liquid flowing through the liquid passage is controlled to be reduced to the low pressure setting. Further, when the third communicating passage is closed, when the pressure in the working chamber exceeds the low pressure setting by the first pilot valve and the pilot liquid in the working chamber flows downstream of the first pilot valve, the third communicating passage is closed. Acts on the second pilot valve without flowing out to the low pressure side liquid passage through the communication passage, sets the pressure in the working chamber to a high pressure by the second pilot valve, and reduces the pressure of the pressure liquid flowing through the liquid passage to the high pressure setting. do. For this reason, changing the pressure liquid flowing through the liquid passage between pressure reduction control at a low pressure setting and pressure reduction control at a high pressure setting can be performed with good responsiveness and accuracy with a simple operation of energizing and de-energizing the solenoid valve. The liquid can be easily changed into two stages: pressure reduction control with a low pressure setting and pressure reduction control with a high pressure setting.

〔実施例〕〔Example〕

以下、本考案の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図および第2図において、1は主本体2と
第1副本体3および第2副本体4とから構成の弁
本体を示す。主本体2は内部に環状溝5,6を軸
方向へ間隔を有して配設した嵌合孔7を設け、嵌
合孔7の環状溝5に連通し圧力液体を導入する液
体通路P1を側面F1に、また環状溝6に連通し
圧力液体を導出する液体通路P2を側面にF1と
対向する側面F2にそれぞれ開口して設けている
と共に、この両側面F1,F2に開口して液体ア
クチユエータ側へ接続する2個の液体通路A,B
と低圧側へ接続する2個の液体通路R1,R2を
貫通配設し積層自在に形成している。8は弁体
で、嵌合孔7へ摺動自在に嵌挿し環状溝6とで絞
り部Hを形成している。9,10は弁体8両端に
形成の作用室で、絞り11を介して連通するよう
設け、作用室9は通路12より主本体2の側面に
取付けする切換部材13を介して液体通路P2へ
連通している。そして切換部材13は装着方向を
変更することで作用室9と連通する液体通路をA
もしくはBへ選択自在に設けている。14は弾性
部材で、作用室10へ収装して取付けの弾性力に
より弁体8を図示左方向へ付勢し絞り部Hを開口
するようにしている。15は主本体2に貫通配設
の貫通路で、複数の液体通路が開口される主本体
2側面F1およびF2と略直角の対向する両側面
F3およびF4に開口している。第1副本体3は
主本体2の側面F3に着脱自在に取付けており、
内部には一端が側面F3に開口した作用室10か
らの通路16へ連通し他端が側面F3に開口した
低圧側の液体通路R2からの通路17へ連通する
第1連通路18を形成し、第1連通路18に作用
室10の圧力を低圧設定する第1パイロツト弁2
1と作用室10の圧力を高圧設定する第2パイロ
ツト弁28とを第1パイロツト弁21を第2パイ
ロツト弁28より上流側すなわち作用室10側に
位置して直列的に配設している。第1パイロツト
弁21はパイロツト弁本体22の弁室23内へ弁
座24に着座するポペツト弁体25とそのポペツ
ト弁体25を弁座24へ付勢する弾性部材26と
を設け、弁座路27に作用室10のパイロツト液
体を導入してその作用力が弾性部材26の弾性力
以上になると、ポペツト弁体25が弁座24がら
離脱されて導入のパイロツト液体を弁室23より
第1パイロツト弁21の下流側の第1連通路18
に流すように有している。第2パイロツト弁28
はポペツト弁体29とそのポペツト弁体29を弁
座30へ付勢する弾性部材31とを設け、弁座路
32に作用室10のパイロツト液体を第1パイロ
ツト弁21を介して導入しその作用力が弾性部材
31の弾性力以上になると導入のパイロツト液体
を弁室33より低圧側の液体通路R2へ流出する
ように有している。34は第1パイロツト弁21
の弾性部材26の弾性力を調整するためのねじ部
材、35は第2パイロツト弁28の弾性部材31
の弾性力を調整するためのねじ部材で、弾性部材
31の弾性力を弾性部材26の弾性力よりも大き
く設定している。41は第1副本体3の内部に形
成の第2連通路で、第1連通路18の第1パイロ
ツト弁21と第2パイロツト弁28間へ一端が連
通し主本体2の貫通路15の側面F3開口側へ他
端が連通している。第2副本体4は主本体2の側
面F3と対向する側面F4に着脱自在に取付けて
おり、内部には主本体2の貫通路15の側面F4
開口側へ一端が連通し他端が側面F4に開口した
低圧側の液体通路R1からの通路19へ連通する
第3連通路20を形成し、第3連通路に電磁弁3
6を配設している。電磁弁36は第3連通路20
を開閉自在に設けたスプール弁体37を有し、電
磁気装置のコイル38への通電操作で可動鉄心3
9に働く吸引力によりスプール弁体37を弾性部
材40の弾性力に抗して作動し第3連通路20を
開くと共に、コイル38への非通電操作で弾性部
材40の弾性力によりスプール弁体37を作動し
第3連通路20を閉じるように設けている。
In FIGS. 1 and 2, reference numeral 1 indicates a valve body composed of a main body 2, a first sub-body 3, and a second sub-body 4. The main body 2 is provided with a fitting hole 7 in which annular grooves 5 and 6 are spaced apart in the axial direction, and a liquid passage P1 that communicates with the annular groove 5 of the fitting hole 7 and introduces pressure liquid. A liquid passage P2 that communicates with the annular groove 6 and leads out the pressure liquid is opened on the side surface F1 and on the side surface F2 opposite to F1. Two liquid passages A, B connecting to the side
Two liquid passages R1 and R2 connected to the low pressure side are disposed through the liquid passages and formed so as to be stackable. A valve body 8 is slidably inserted into the fitting hole 7 and forms a constricted portion H with the annular groove 6. Reference numerals 9 and 10 indicate working chambers formed at both ends of the valve body 8, and are provided so as to communicate through a throttle 11. The working chambers 9 are connected to the liquid passage P2 from the passage 12 through a switching member 13 attached to the side surface of the main body 2. It's communicating. By changing the mounting direction, the switching member 13 changes the liquid path communicating with the action chamber 9 to A.
Or B can be freely selected. Reference numeral 14 denotes an elastic member, which is housed in the action chamber 10 and uses the elastic force of the attachment to urge the valve body 8 toward the left in the figure to open the throttle portion H. Reference numeral 15 denotes a through passage disposed through the main body 2, which opens to both side faces F3 and F4 that are substantially perpendicular to the side faces F1 and F2 of the main body 2 and facing each other. The first sub-body 3 is detachably attached to the side surface F3 of the main body 2,
A first communication passage 18 is formed inside, one end of which communicates with the passage 16 from the action chamber 10 that opens on the side face F3, and the other end that communicates with the passage 17 from the low-pressure side liquid passage R2 that opens on the side face F3; A first pilot valve 2 for setting the pressure of the working chamber 10 to a low pressure in the first communication passage 18
1 and a second pilot valve 28 for setting the pressure in the working chamber 10 to a high pressure are arranged in series with the first pilot valve 21 located upstream of the second pilot valve 28, that is, on the working chamber 10 side. The first pilot valve 21 is provided with a poppet valve body 25 that is seated on a valve seat 24 in the valve chamber 23 of the pilot valve body 22, and an elastic member 26 that urges the poppet valve body 25 toward the valve seat 24. When the pilot liquid in the action chamber 10 is introduced into the valve chamber 27 and its acting force exceeds the elastic force of the elastic member 26, the poppet valve body 25 is separated from the valve seat 24 and the introduced pilot liquid is transferred from the valve chamber 23 to the first pilot valve. First communication passage 18 downstream of valve 21
It has a flow to it. Second pilot valve 28
is provided with a poppet valve body 29 and an elastic member 31 that urges the poppet valve body 29 toward the valve seat 30, and the pilot liquid in the action chamber 10 is introduced into the valve seat passage 32 via the first pilot valve 21, and its action is controlled. When the force exceeds the elastic force of the elastic member 31, the introduced pilot liquid flows out from the valve chamber 33 to the liquid passage R2 on the low pressure side. 34 is the first pilot valve 21
a screw member 35 for adjusting the elastic force of the elastic member 26 of the second pilot valve 28;
The elastic force of the elastic member 31 is set to be larger than the elastic force of the elastic member 26. Reference numeral 41 denotes a second communication passage formed inside the first sub-body 3, one end of which communicates between the first pilot valve 21 and the second pilot valve 28 of the first communication passage 18, and a side surface of the through-passage 15 of the main body 2. The other end communicates with the F3 opening side. The second sub-body 4 is removably attached to the side F4 opposite to the side F3 of the main body 2, and inside the side F4 of the through passage 15 of the main body 2.
A third communication passage 20 is formed, one end of which communicates with the opening side and the other end of which communicates with the passage 19 from the liquid passage R1 on the low pressure side, which is open to the side surface F4, and a solenoid valve 3 is provided in the third communication passage.
6 are installed. The solenoid valve 36 is connected to the third communication path 20
It has a spool valve body 37 that can be opened and closed freely, and the movable iron core 3 is operated by energizing the coil 38 of the electromagnetic device.
The suction force acting on the coil 38 operates the spool valve body 37 against the elastic force of the elastic member 40 to open the third communication passage 20, and when the coil 38 is de-energized, the spool valve body 37 is activated by the elastic force of the elastic member 40. 37 to close the third communicating path 20.

次にかかる構成の作動を説明する。 Next, the operation of this configuration will be explained.

第1図は電磁弁36の非通電状態を示し、スプ
ール弁体37は弾性部材40の弾性力により図示
左端へ付勢されて第3連通路20を閉じており、
弁体8は弾性部材14の弾性力により図示左端へ
付勢されて絞り部Hを最大に開口している。
FIG. 1 shows the electromagnetic valve 36 in a non-energized state, and the spool valve body 37 is urged toward the left end in the figure by the elastic force of the elastic member 40 to close the third communicating path 20.
The valve body 8 is urged toward the left end in the figure by the elastic force of the elastic member 14, and opens the throttle portion H to the maximum.

いま、液体通路P1に導入の圧力液体は環状溝
5より絞り部H、環状溝6を経て液体通路P2へ
導出すると共に、一部がパイロツト液体として切
換部材13、通路12を経て作用室9さらに絞り
11より作用室10に導入する。そして、作用室
10のパイロツト液体は低圧設定の第1パイロツ
弁21の導入路27へ導入してポペツト弁体25
に作用する。ポペツト弁体25は対向作用するパ
イロツト液体による作用力が弾性部材26の弾性
力以上になると弁座24から離脱し、そのパイロ
ツト液体を弁室23より第1パイロツト弁21の
下流側の第1連通路18に流す。第1パイロツト
弁21の下流側に流れたパイロツト液体は第2連
通路41、貫通路15より電磁弁36により閉じ
た第3連通路20を介して低圧側の液体通路R1
に流出しないと共に、第1パイロツト弁21より
も弾性部材31の弾性力を大きく設定した高圧設
定の第2パイロツト弁28の導入路32へ導入し
てポペツト弁体29に作用する。ポペツト弁体2
9は対向作用するパイロツト液体による作用力が
弾性部材31の弾性力以上になると弁座30から
離脱し、そのパイロツト液体を弁室33より第2
パイロツト弁28の下流側の第1連通路18、通
路17を経て低圧側の液体通路R2へ流出し、作
用室10の圧力は絞り11によりパイロツト液体
の導入が規制されているので下降し、弁体8は両
端作用室9,10間に生ずる圧力差による作用力
により弾性部材14の弾性力に抗して図示右の軸
方向へ摺動されて絞り部Hを絞縮し、液体通路P
1からP2へ流れる圧力液体の流量を減少せしめ
る。さらに、作用室10の圧力降下によつて第2
パイロツト弁28のポペツト弁体29が弾性部材
31の弾性りよくにより弁座30へ着座すると、
弁体8は両端作用室9,10間の圧力差が減少し
て弾性部材14の弾性力により図示左の軸方向へ
摺動されて絞り部Hを拡大開口し液体通路P1か
らP2へ流れる圧力液体の流量を増大せしめ、液
体通路P2を流れる圧力液体は第2パイロツト弁
28による高圧設定に減圧制御される。次に電磁
弁36のコイル38へ通電してスプール弁体37
を弾性部材40の弾性力に抗して図示右方向へ作
動し第3連通路20を開くと、第1パイロツト弁
21の弁室23より第1連通路18へ流れたパイ
ロツト液体は第2連通路41、貫通路15、第3
連通路20、通路19を経て低圧側の液体通路R
1へ流出し、作用室10の圧力は第1パイロツト
弁20により低圧設定され、弁体8は液体通路P
2を流れる圧力液体を第1パイロツト弁21によ
る低圧設定に減圧制御する。
Now, the pressure liquid introduced into the liquid passage P1 is led out from the annular groove 5 through the constriction part H and the annular groove 6 to the liquid passage P2, and a part of it is passed through the switching member 13 and the passage 12 as a pilot liquid to the action chamber 9 and further. It is introduced into the action chamber 10 through the aperture 11. Then, the pilot liquid in the action chamber 10 is introduced into the introduction passage 27 of the first pilot valve 21 set at a low pressure, and is then introduced into the poppet valve body 25.
It acts on The poppet valve body 25 separates from the valve seat 24 when the force exerted by the counteracting pilot liquid exceeds the elastic force of the elastic member 26, and the poppet valve body 25 releases the pilot liquid from the valve chamber 23 to the first valve valve 21 downstream of the first pilot valve 21. Flow into passage 18. The pilot liquid flowing downstream of the first pilot valve 21 passes through the second communication passage 41 and the third communication passage 20 closed by the solenoid valve 36 from the through passage 15 to the low pressure side liquid passage R1.
It is introduced into the introduction passage 32 of the second pilot valve 28, which has a high pressure setting in which the elastic force of the elastic member 31 is set larger than that of the first pilot valve 21, and acts on the poppet valve body 29. Poppet valve body 2
9 separates from the valve seat 30 when the acting force of the opposing pilot liquid exceeds the elastic force of the elastic member 31, and releases the pilot liquid from the valve chamber 33 to the second valve chamber 33.
The liquid flows out through the first communication passage 18 and passage 17 on the downstream side of the pilot valve 28 to the liquid passage R2 on the low pressure side, and the pressure in the working chamber 10 decreases because the introduction of the pilot liquid is restricted by the throttle 11, and the pressure in the working chamber 10 decreases. The body 8 is slid in the axial direction on the right in the figure against the elastic force of the elastic member 14 due to the acting force due to the pressure difference generated between the action chambers 9 and 10 at both ends, thereby constricting the throttle portion H and closing the liquid passage P.
The flow rate of the pressure liquid flowing from P1 to P2 is reduced. Furthermore, due to the pressure drop in the working chamber 10, the second
When the poppet valve body 29 of the pilot valve 28 is seated on the valve seat 30 due to the elasticity of the elastic member 31,
The valve body 8 is slid in the axial direction on the left in the figure by the elastic force of the elastic member 14 as the pressure difference between the action chambers 9 and 10 at both ends is reduced, and the throttle portion H is enlarged and the pressure flowing from the liquid passage P1 to P2 is increased. The flow rate of the liquid is increased, and the pressure liquid flowing through the liquid passage P2 is controlled to be reduced to a high pressure setting by the second pilot valve 28. Next, the coil 38 of the solenoid valve 36 is energized and the spool valve body 37 is
When the third communication passage 20 is opened by operating the third communication passage 20 in the right direction in the figure against the elastic force of the elastic member 40, the pilot liquid that has flowed from the valve chamber 23 of the first pilot valve 21 to the first communication passage 18 is transferred to the second communication passage 18. passage 41, through passage 15, third
Low pressure side liquid passage R via communication passage 20 and passage 19
1, the pressure in the working chamber 10 is set to a low pressure by the first pilot valve 20, and the valve body 8 is connected to the liquid passage P.
The pressure liquid flowing through the valve 2 is controlled to be reduced to a low pressure setting by the first pilot valve 21.

また、電磁弁36のコイル38への通電を断つ
と、スプール弁対37が弾性部材40の弾性力に
より図示位置へ復帰移動されて第3連通路20を
閉じる。作用室10の圧力は第2パイロツト弁2
8により高圧設定され、弁体8は液体通路P2を
流れる圧力液体を第2パイロツト弁28による高
圧設定に減圧制御する。
When the coil 38 of the electromagnetic valve 36 is de-energized, the spool valve pair 37 is moved back to the illustrated position by the elastic force of the elastic member 40 to close the third communicating path 20. The pressure in the working chamber 10 is controlled by the second pilot valve 2.
8, and the valve body 8 controls the pressure liquid flowing through the liquid passage P2 to reduce the pressure to the high pressure setting by the second pilot valve 28.

この作動で、液体通路P1からP2へ流す圧力
液体を低圧設定の減圧制御と高圧設定の減圧制御
とに変更するのに電磁弁36の通電非通電操作と
いう簡単な操作で応答性良く正確に行うことがで
き、圧力液体を低圧設定の減圧制御と高圧設定の
減圧制御との2段階に容易に変更操作することが
できる。また、低圧設定と高圧設定とを各別の第
1パイロツト弁21と第2パイロツト弁28とで
それぞれ設定しているため、それぞれの設定圧力
を弁作動時の前に事前に設定しておくことがで
き、正確な2段階制御を迅速に得ることができ
る。しかも、電磁弁36の開閉により液体通路P
2を流れる圧力液体を第1パイロツト弁21もし
くは第2パイロツト弁28の設定圧力に減圧制御
しているときに他方のパイロツト弁28もしくは
21の設定圧力を調整することができ、弁作動を
停止することなく第1パイロツト弁21と第2パ
イロツト弁28の設定圧力を良好に調整すること
ができる。さらに、第3連通路20の開閉を電磁
弁36で行なつているので変更操作を良好に遠隔
操作することができる。さらにまた、弁本体1を
主本体2と第1副本体3および第2副本体4とか
ら構成しているので、主本体2を積層弁間に配設
したままにして第1副本体3および第2副本体4
を適宜取り換えることができ、第1副本体3を、
内部に一端が主本体2の側面F3に開口した作用
室10からの通路16へ連通し他端が貫通路15
の側面F3開口側へ連通する連通路を形成してこ
の連通路に単一のパイロツト弁を配設した他の副
本体に取り換えることで、液体通路P1からP2
へ流れる圧力液体を電磁弁36の開閉により減圧
制御したり減圧制御しないようにする制御機能を
得ることができる。
With this operation, changing the pressure liquid flowing from the liquid passage P1 to P2 between pressure reduction control with a low pressure setting and pressure reduction control with a high pressure setting can be performed accurately and responsively by a simple operation of energizing and de-energizing the solenoid valve 36. The pressure liquid can be easily changed into two stages: pressure reduction control with a low pressure setting and pressure reduction control with a high pressure setting. Furthermore, since the low pressure setting and the high pressure setting are set respectively in the first pilot valve 21 and the second pilot valve 28, each set pressure must be set in advance before the valves are operated. This allows accurate two-step control to be quickly obtained. Moreover, by opening and closing the solenoid valve 36, the liquid passage P
When the pressure liquid flowing through the pilot valve 2 is controlled to be reduced to the set pressure of the first pilot valve 21 or the second pilot valve 28, the set pressure of the other pilot valve 28 or 21 can be adjusted and the valve operation can be stopped. The set pressures of the first pilot valve 21 and the second pilot valve 28 can be adjusted satisfactorily. Furthermore, since the third communicating passage 20 is opened and closed by the solenoid valve 36, changing operations can be conveniently controlled remotely. Furthermore, since the valve body 1 is composed of the main body 2, the first sub-body 3, and the second sub-body 4, the main body 2 can remain disposed between the laminated valves, and the first sub-body 3 and Second sub-body 4
can be replaced as appropriate, and the first sub-body 3 can be replaced as appropriate.
Inside, one end communicates with a passage 16 from the action chamber 10 opened on the side face F3 of the main body 2, and the other end communicates with a passage 15.
By forming a communication passage communicating with the opening side of the side face F3 and replacing it with another sub-body in which a single pilot valve is disposed in this communication passage, the liquid passages P1 to P2 can be
By opening and closing the electromagnetic valve 36, it is possible to obtain a control function for controlling or not controlling the pressure liquid flowing to the pump.

なお、一実施例では嵌合孔7と液体通路P1,
P2を連通して設けたが液体通路AもしくはBと
連通するようにしても良いことは勿論である。
In addition, in one embodiment, the fitting hole 7 and the liquid passage P1,
Although P2 is provided in communication, it goes without saying that it may be provided in communication with liquid passage A or B.

〔考案の効果〕[Effect of idea]

このように本考案によれば、積層自在に形成の
主本体へ嵌挿した弁体の両端に形成のパイロツト
液体を導入する作用室の一方の作用室のみパイロ
ツト液体が絞りを介して導入するよう設け、主本
体の貫通配設した複数の液体通路が開口される側
面と略直角の対向する両側面に第1副本体と第2
副本体を着脱自在に取付け、第1副本体には絞り
を介してパイロツト液体が導入される弁体端の作
用室へ一端が連通し他端が主本体の低圧側の液体
通路へ連通する第1連通路を形成し、第1連通路
には絞りを介してパイロツト液体が導入される弁
体端の作用室の圧力を高圧設定する第1パイロツ
ト弁とこの作用室の圧力を高圧設定する第2パイ
ロツト弁を第1パイロツト弁を第2パイロツトよ
り上流側に位置して直列的に配設し、第1連通路
の第1パイロツト弁と第2パイロツト弁間へ一端
が連通し第1副本体と第2副本体を取付けする両
側面に開口して主本体に貫通配設の貫通路へ他端
が連通する第2連通路を第1副本体に形成し、第
2副本体には主本体の貫通路へ一端が連通し他端
が主本体の低圧側の液体通路へ連通する第3連通
路を形成し、第3連通路には第3連通路の開閉に
より弁体を両端作用室間の圧力差による作用力と
弾性部材の弾性力とで軸方向へ摺動することで液
体通路を流す圧力液体を第1パイロツト弁による
低圧設定の減圧制御と第2パイロツト弁のよる高
圧設定の減圧制御とに変更自在にするよう通電非
通電操作により第3連通路を開閉する電磁弁を配
設したことにより、液体通路を流す圧力液体を低
圧設定の減圧制御と高圧設定の減圧制御とに変更
するのを電磁弁の通電非通電操作という簡単な操
作で応答性良く正確に行うことができ、圧力液体
を低圧設定の減圧制御と高圧設定の減圧制御との
2段階に容易に変更操作することができる。
As described above, according to the present invention, the pilot liquid is introduced through the restrictor into only one of the action chambers into which the pilot liquid is introduced at both ends of the valve body which is inserted into the main body of the valve body so as to be stackable. A first sub-body and a second sub-body are provided on opposite side surfaces that are substantially perpendicular to the side surface of the main body where the plurality of liquid passages are opened.
A sub-body is removably attached, and the first sub-body has a first sub-body having one end communicating with the working chamber at the end of the valve body into which the pilot liquid is introduced through the throttle and the other end communicating with the liquid passage on the low pressure side of the main body. A first pilot valve that sets a high pressure in a working chamber at the end of the valve body into which a pilot liquid is introduced through a throttle; The two pilot valves are arranged in series with the first pilot valve located upstream of the second pilot valve, and one end communicates between the first pilot valve and the second pilot valve in the first communication passage, and the first sub-main body is connected to the first pilot valve. A second communication passage is formed in the first sub-body, and the second communication passage is open on both sides to which the second sub-body is attached, and the other end communicates with the through-path provided through the main body. A third communication passage is formed, one end of which communicates with the through passage of the main body, and the other end of which communicates with the liquid passage on the low pressure side of the main body, and the third communication passage has a valve body that connects the valve body between both ends of the action chamber by opening and closing the third communication passage. The pressure liquid flowing through the liquid passage by sliding in the axial direction by the acting force due to the pressure difference and the elastic force of the elastic member is controlled to reduce the pressure at a low pressure setting by the first pilot valve, and the pressure reduction at the high pressure setting by the second pilot valve. By installing a solenoid valve that opens and closes the third communication passage by energizing and de-energizing operation, the pressure liquid flowing through the liquid passage can be changed to low pressure setting pressure reduction control and high pressure setting pressure reduction control. This can be done with high responsiveness and accuracy with a simple operation of energizing and de-energizing the solenoid valve, and the pressure liquid can be easily changed into two stages: depressurization control with a low pressure setting and depressurization control with a high pressure setting. I can do it.

また、低圧設定と高圧設定とを各別の第1パイ
ロツト弁と第2パイロツト弁とでそれぞれ設定し
ているため、それぞれの設定圧力を弁作動時の前
に事前に設定しておくことができ、正確な2段階
制御を迅速に得ることができる。しかも、第1パ
イロツト弁と第2パイロツト弁のどちらか一方の
パイロツト弁の設定圧力に減圧制御しているとき
に他方のパイロツト弁の設定圧力を調整すること
ができ、弁作動を停止することなく第1パイロツ
ト弁と第2パイロツト弁の設定圧力を良好に調整
することができる。さらに、電磁弁により良好な
遠隔操作ができる。さらにまた、主本体を変更す
ることなく副本体を他の副本体に取り換えること
で、他の制御機能が容易に得られて用途の拡大が
図れる効果を有する。
In addition, since the low pressure setting and high pressure setting are set separately for the first and second pilot valves, each setting pressure can be set in advance before the valve is activated. , accurate two-step control can be quickly obtained. Moreover, when the pressure is being reduced to the set pressure of either the first pilot valve or the second pilot valve, the set pressure of the other pilot valve can be adjusted without stopping the valve operation. The set pressures of the first pilot valve and the second pilot valve can be adjusted well. Furthermore, the solenoid valve allows for good remote control. Furthermore, by replacing the sub-body with another sub-body without changing the main body, other control functions can be easily obtained and the range of uses can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示し、第1図は積層
形減圧弁の縦断面図、第2図は第1図の線−
に沿つた断面図である。 2……主本体、3……第1副本体、4……第2
副本体、7……嵌合孔、8……弁体、9,10…
…作用室、11……絞り、15……貫通路、18
……第1連通路、20……第3連通路、21……
第1パイロツト弁、28……第2パイロツト弁、
36……電磁弁、41……第2連通路、P1,P
2,A,B,R1,R2……液体通路。
The drawings show an embodiment of the present invention, in which FIG. 1 is a longitudinal sectional view of a stacked pressure reducing valve, and FIG. 2 is a cross-sectional view taken along the line -
FIG. 2...Main body, 3...First sub-body, 4...Second
Sub-body, 7... Fitting hole, 8... Valve body, 9, 10...
...Action chamber, 11...Aperture, 15...Through passage, 18
...First communication path, 20...Third communication path, 21...
1st pilot valve, 28... 2nd pilot valve,
36...Solenoid valve, 41...Second communication path, P1, P
2, A, B, R1, R2...Liquid passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の液体通路を対向する両側面に開口して貫
通配設し積層自在に形成した主本体を有し、主本
体の嵌合孔へ摺動自在に嵌挿して弾性部材の弾性
力により一方向へ付勢される弁体を設けると共
に、弁体の両端に形成のパイロツト液体を導入す
る作用室の一方の作用室のみパイロツト液体が絞
りを介して導入するよう設け、主本体の貫通配設
した複数の液体通路が開口される側面と略直角の
対向する両側面に第1副本体と第2副本体を着脱
自在に取付け、第1副本体には絞りを介してパイ
ロツト液体が導入される弁体端の作用室へ一端が
連通し他端が主本体の低圧側の液体通路へ連通す
る第1連通路を形成し、第1連通路には絞りを介
してパイロツト液体が導入される弁体端の作用室
の圧力を低圧設定する第1パイロツト弁とこの作
用室の圧力を高圧設定する第2パイロツト弁とを
第1パイロツト弁を第2パイロツト弁より上流側
に位置して直列的に配設し、第1連通路の第1パ
イロツト弁と第2パイロツト弁間へ一端が連通し
第1副本体と第2副本体を取付けする両側面に開
口して主本体に貫通配設の貫通路へ他端が連通す
る第2連通路を第1副本体に形成し、第2副本体
には主本体の貫通路へ一端が連通し他端が主本体
の低圧側の液体通路へ連通する第3連通路を形成
し、第3連通路には第3連通路の開閉により弁体
を両端作用室間の圧力差による作用力と弾性部材
の弾性力とで軸方向へ摺動することで液体通路を
流す圧力液体を第1パイロツト弁による低圧設定
の減圧制御と第2パイロツト弁による高圧設定の
減圧制御とに変更自在にするよう通電非通電操作
により第3連通路を開閉する電磁弁を配設して成
る積層形減圧弁。
It has a main body in which a plurality of liquid passages are opened on both opposing sides and are arranged so that they can be laminated freely. A valve element is provided which is biased toward the main body, and the pilot liquid is introduced into only one of the operating chambers formed at both ends of the valve element through a restrictor, and the pilot liquid is introduced through the main body. A first sub-body and a second sub-body are removably attached to opposite side surfaces substantially perpendicular to the side surface in which the plurality of liquid passages are opened, and a valve into which a pilot liquid is introduced through a throttle is provided in the first sub-body. A valve body forming a first communication passage whose one end communicates with the action chamber at the body end and whose other end communicates with the liquid passage on the low pressure side of the main body, and into which the pilot liquid is introduced through a restriction. A first pilot valve that sets the pressure in the end working chamber to a low pressure and a second pilot valve to set the pressure in the working chamber to a high pressure are arranged in series with the first pilot valve being located upstream of the second pilot valve. a through passage provided through the main body and having one end communicating with the first pilot valve and the second pilot valve of the first communication passage and opening on both sides to which the first sub body and the second sub body are attached; A second communication passage is formed in the first sub-body, the other end of which communicates with the passageway of the main body, and the second sub-body has a second communication passage with one end communicating with the through-path of the main body and the other end communicating with the liquid passage on the low pressure side of the main body. Three communication passages are formed, and liquid is supplied to the third communication passage by sliding the valve body in the axial direction by the pressure difference between the two end working chambers and the elastic force of the elastic member by opening and closing the third communication passage. A solenoid valve is arranged to open and close the third communication passage by energizing and de-energizing operation so that the pressure liquid flowing through the passage can be freely changed between pressure reduction control with a low pressure setting by the first pilot valve and pressure reduction control with a high pressure setting by the second pilot valve. Stacked pressure reducing valve.
JP1985064522U 1985-04-30 1985-04-30 Expired JPH0454499Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985064522U JPH0454499Y2 (en) 1985-04-30 1985-04-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985064522U JPH0454499Y2 (en) 1985-04-30 1985-04-30

Publications (2)

Publication Number Publication Date
JPS61180313U JPS61180313U (en) 1986-11-11
JPH0454499Y2 true JPH0454499Y2 (en) 1992-12-21

Family

ID=30595685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985064522U Expired JPH0454499Y2 (en) 1985-04-30 1985-04-30

Country Status (1)

Country Link
JP (1) JPH0454499Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551007Y2 (en) * 1991-07-18 1997-10-22 シーケーディ株式会社 Spacer type pressure reducing valve
JPH087458Y2 (en) * 1991-10-18 1996-03-04 豊興工業株式会社 Stacked pressure reducing valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS552298Y2 (en) * 1972-12-29 1980-01-21
JPS5421772Y2 (en) * 1973-05-14 1979-08-01
JPS55150409U (en) * 1979-04-12 1980-10-29

Also Published As

Publication number Publication date
JPS61180313U (en) 1986-11-11

Similar Documents

Publication Publication Date Title
JP3090275B2 (en) Pressure compensated flow amplification poppet valve
US5878647A (en) Pilot solenoid control valve and hydraulic control system using same
EP1186784B1 (en) Bidirectional pilot operated control valve
JP3710836B2 (en) Feedback poppet valve
US5645263A (en) Pilot valve for a flow amplyifying poppet valve
CA1195206A (en) Electrohydraulic valve
JPH0454499Y2 (en)
JPH0473036B2 (en)
JPH06117414A (en) Valve gear
JPH0438088Y2 (en)
JPH0456887B2 (en)
JPH087458Y2 (en) Stacked pressure reducing valve
JPH06229402A (en) Flow rate direction control valve device
JPS5831008Y2 (en) solenoid control valve
JPS5934006A (en) Fluid control device
JPH0449126B2 (en)
JPH03260481A (en) Selector valve
JPH0424221Y2 (en)
JPS6212883Y2 (en)
JPH0481212B2 (en)
JP2506965Y2 (en) Solenoid directional valve
JPH0333575A (en) Poppet valve device
JPS6128882Y2 (en)
JPS5925910B2 (en) Solenoid pilot type remote control valve
JPH0247284Y2 (en)