JPS6128882Y2 - - Google Patents

Info

Publication number
JPS6128882Y2
JPS6128882Y2 JP18345181U JP18345181U JPS6128882Y2 JP S6128882 Y2 JPS6128882 Y2 JP S6128882Y2 JP 18345181 U JP18345181 U JP 18345181U JP 18345181 U JP18345181 U JP 18345181U JP S6128882 Y2 JPS6128882 Y2 JP S6128882Y2
Authority
JP
Japan
Prior art keywords
fluid
pressure
valve
pilot
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18345181U
Other languages
Japanese (ja)
Other versions
JPS5886904U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18345181U priority Critical patent/JPS5886904U/en
Publication of JPS5886904U publication Critical patent/JPS5886904U/en
Application granted granted Critical
Publication of JPS6128882Y2 publication Critical patent/JPS6128882Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Description

【考案の詳細な説明】 本考案は4個のポペツト弁体の作動により流体
の流れ方向を切換制御する流体制御弁と圧力流体
を減圧制御する減圧弁とを組み合わせて制御回路
を構成する複合弁装置に関する。
[Detailed description of the invention] The present invention is a composite valve that configures a control circuit by combining a fluid control valve that switches and controls the flow direction of fluid by the operation of four poppet valve bodies and a pressure reducing valve that controls pressure reduction of pressurized fluid. Regarding equipment.

従来、この種の複合弁装置は、第6図に示す如
き、圧力流体を供給する供給流路60と流体アク
チユエータへ接続する二つの負荷流路61,62
および低圧部へ接続する排出流路63間をパイロ
ツト切換弁72の操作による4個のポペツト弁体
64,65,66,67の作動により連通遮断す
ることで流体の流れ方向を切換制御するよう設け
た流体制御弁68と、供給流路60に供給の圧力
流体を減圧制御するよう供給流路60へ連通の圧
力流路に配設の減圧弁69とから成い、流体制御
弁60による流体の流れ方向の切換制御により減
圧制御された圧力流体を供給流路60より一方の
負荷流路61へ流したり他方の負荷流路62へ流
したりして流体アクチユエータを作動制御するよ
うにしている。ところが供給流路60より一方の
負荷流路61を流れて流体アクチユエータへ導入
の圧力流体のみを減圧制御したい場合には、第7
図に示す如き、格別に設けた減圧弁70を負荷流
路61へ連通の接続流路に配設すると共に流体ア
クチユエータより負荷流路61を流れて排出流路
63に導出する流体を自由流れとするように減圧
弁70に逆止め弁71を並設しなければならず、
また供給流路60より他方の負荷流路62を流れ
て流体アクチユエータへ導入の圧力流体のみを減
圧制御したい場合には、同様に格別に設けた減圧
弁を負荷流路62へ連通の接続流路に配設すると
共に減圧弁に逆止め弁を並設しなければならず、
減圧弁の管理や取扱いが面倒であると共に、減圧
流路の変更がしづらく弁装置も大型化する等の欠
点があつた。
Conventionally, this type of composite valve device has a supply channel 60 for supplying pressure fluid and two load channels 61 and 62 connected to a fluid actuator, as shown in FIG.
and a discharge flow path 63 connected to a low pressure section by operating four poppet valve bodies 64, 65, 66, and 67 by operating a pilot switching valve 72, thereby switching and controlling the flow direction of the fluid. and a pressure reducing valve 69 disposed in a pressure passage communicating with the supply passage 60 so as to reduce the pressure of the pressure fluid supplied to the supply passage 60. The fluid actuator is controlled by flowing the pressure fluid whose pressure has been reduced by the flow direction switching control from the supply channel 60 to one load channel 61 or the other load channel 62. However, when it is desired to perform pressure reduction control on only the pressure fluid flowing through one load flow path 61 from the supply flow path 60 and introduced into the fluid actuator, the seventh
As shown in the figure, a specially provided pressure reducing valve 70 is disposed in a connecting flow path communicating with the load flow path 61, and the fluid flowing through the load flow path 61 and led out to the discharge flow path 63 from the fluid actuator is made into a free flow. A check valve 71 must be installed in parallel with the pressure reducing valve 70 so that
In addition, when it is desired to reduce the pressure of only the pressure fluid flowing from the supply channel 60 through the other load channel 62 and introduced into the fluid actuator, a pressure reducing valve specially provided in the same way is connected to the connecting channel communicating with the load channel 62. In addition, a check valve must be installed in parallel with the pressure reducing valve.
There are disadvantages such as the pressure reducing valve is troublesome to manage and handle, the pressure reducing flow path is difficult to change, and the valve device becomes large.

本考案は、かかる欠点を解消するもので、単一
の減圧弁で供給流路および二つの負荷流路の減圧
制御が選択的に行なえ、減圧流路の変更を容易に
した複合弁装置を提供するものである。このた
め、本考案は、圧力流体を供給する供給流路と流
体アクチユエータへ接続する二つの負荷流路およ
び低圧部へ接続する排出流路を有し、流路間を連
通遮断するよう設けた4個のポペツト弁体をパイ
ロツト切換弁の操作により、ポペツト弁体背部に
形成の作用室へ供給流路に供給される圧力流体の
一部をパイロツト流体として導入したり作用室の
流体を低圧部へ導出したりすることで作動し流体
の流れ方向を切換制御する流体制御弁と、流体制
御弁の供給流路と連通する圧力流路を有した減圧
弁本体内へ圧力流路を絞縮制御する弁体を摺動自
在に嵌合し、弁体両端に形成のパイロツト流体を
導入する作用室の一方のみパイロツト流体が絞り
を介して導入するよう設け、絞りを介してパイロ
ツト流体が導入される弁体端の作用室の圧力をパ
イロツト弁により制御することで弁体を両端作用
室間の圧力差による作用力とばねの弾性力とで軸
方向へ摺動させて流体制御弁の供給流路に供給の
圧力流体をパイロツト弁による設定圧力に減圧制
御する減圧弁と、減圧制御された圧力流体が流れ
る圧力流路側を減圧弁の作用室へ連通して設けた
パイロツト流体通路および流体制御弁の供給流路
と二つの負荷流路間を連通遮断する各ポペツト弁
体背部作用室へパイロツト流体を導入する二つの
パイロツト路側を減圧弁の作用室へそれぞれ連通
して設けたパイロツト流体通路とを有し、各パイ
ロツト流体通路は減圧制御する流路を選択できる
よう遮断自在に設けている。
The present invention eliminates such drawbacks and provides a composite valve device that can selectively perform pressure reduction control of a supply channel and two load channels with a single pressure reducing valve, making it easy to change the pressure reducing channel. It is something to do. For this reason, the present invention has a supply channel for supplying pressure fluid, two load channels connected to a fluid actuator, and a discharge channel connected to a low pressure section, and a four-channel system is provided to cut off communication between the channels. By operating the pilot switching valve, a part of the pressure fluid supplied to the supply flow path is introduced as pilot fluid into the working chamber formed on the back of the poppet valve, and the fluid in the working chamber is transferred to the low pressure section. A fluid control valve that switches and controls the flow direction of the fluid by drawing out the fluid, and a pressure flow path that communicates with the supply flow path of the fluid control valve. A valve in which a valve body is slidably fitted and a pilot fluid is introduced into only one of the working chambers formed at both ends of the valve body through a restriction, and the pilot fluid is introduced through the restriction. By controlling the pressure in the working chamber at the end of the body with a pilot valve, the valve body is slid in the axial direction by the acting force due to the pressure difference between the working chambers at both ends and the elastic force of the spring, and is inserted into the supply flow path of the fluid control valve. A pressure reducing valve that controls the supply pressure fluid to be reduced to a set pressure by a pilot valve, a pilot fluid passage in which the pressure flow path side through which the pressure reduction controlled fluid flows communicates with the working chamber of the pressure reducing valve, and a fluid control valve supply. A pilot fluid passage is provided in which the two pilot passage sides are connected to the working chamber of the pressure reducing valve, respectively, and the pilot fluid is introduced into the working chamber at the back of each poppet valve body which disconnects communication between the flow passage and the two load flow passages. , each pilot fluid passage is provided so as to be freely shut off so that the flow passage to be controlled for pressure reduction can be selected.

以下、本考案の一実施例を図面に基づいて説明
する。
Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は、流体制御弁1と減圧弁2とを接合し
て組み合わせた一部断面で示す複合弁装置の制御
回路で、流体制御弁1は圧力流体を供給する供給
流路Pおよび流体アクチユエータへ接続する二つ
の負荷流路A,B、低圧部へ接続する排出流路R
とドレン流路R1を有し、流路間を連通遮断する
よう設けた4個のポペツト弁体8,9,10,1
1と、各ポペツト弁体背部に形成する作用室1
2,13,14,15へ供給流路Pの圧力流体の
一部をパイロツト流体として導入したり作用室の
流体を低圧部へ導出したりするパイロツト切換弁
16とから成つている。そして、パイロツト切換
弁16を右の切換位置に操作すると、パイロツト
流体がパイロツト路17,18を介して作用室1
2,15に導入されポペツト弁体8,11がパイ
ロツト流体による作用力とばね19,22の弾性
力とを受けて弁座23,26に着座し、ポペツト
弁体9が負荷流路Aの圧力流体による作用力によ
り弁座24より離脱し作用室13の流体をパイロ
ツト路27を介してドレン流路R1へ導出すると
共にポペツト弁体10が供給流路Pの圧力流体に
よる作用力により弁座25より離脱し作用室14
の流体をパイロツト路28を介してドレン流路R
1へ導出する。また、パイロツト切換弁16を左
の切換位置に操作すると、パイロツト流体がパイ
ロツト路27,28を介して作用室13,14に
導入されポペツト弁体9,10がパイロツト流体
による作用力とばね20,21の弾性力とを受け
て弁座24,25に着座し、ポペツト弁体8が供
給流路Pの圧力流体による作用力により弁座23
より離脱し作用室12の流体をパイロツト路17
を介してドレン流路R1へ導出すると共にポペツ
ト弁体11が負荷流路Bの圧力流体による作用力
により弁座26より離脱し作用室15の流体をパ
イロツト路18を介してドレン流路R1へ導出し
て流体の流れ方向を切換えできるように設けてい
る。29,30は作用室12,13,14,15
へ導入するパイロツト流体を減圧弁2へ導入する
パイロツト流体通路で、パイロツト路17,1
8,27,28へ連通するパイロツト切換弁16
のパイロツト接続路31,32から分岐し減圧弁
2との接合側面に開口して設けている。第2図な
いし第5図は、減圧弁2の具体的構成を示すもの
で、流体制御弁1の供給流路Pに連通する圧力流
路3および二つの負荷流路A,Bに連通する接続
流路4,5、排出流路Rに連通する導出流路6と
ドレン流路R1に連通する流路7を減圧弁本体3
3内を貫通し上下の平担に形成した両側面FA,
FBに開口し有していると共に、減圧弁本体33
内に両側面FA,FBと平行に長手方向へ環状溝3
4A,34Bを有する嵌合孔35を貫通してお
り、圧力流路3は嵌合孔35の環状溝34Aに連
通する流入流路3Aと環状溝34Bに連通する流
出流路3Bおよび嵌合孔35とから成り、二つの
接続流路4,5、導出流路6、流路7は嵌合孔3
5と干渉しないように設けている。36は嵌合孔
35へ摺動自在に嵌合して圧力流路3を絞縮する
絞り部Hを形成した弁体で、両端面間を連通する
よう絞り37を内部に貫通して設けている。38
は嵌合孔35の一端端開口部を閉塞するよう弁本
体33に螺着した蓋部材で、弁体36の端面とで
作用室39を形成している。40は作用室39に
連通のパイロツト流体通路で、流出流路3Bに連
通する流通孔41と流体制御弁1のパイロツト流
体通路29,30と連通する二つの導入孔42,
43を側面FBに開口して設けている。流通孔1
1および複数の導入孔42,43には同一形状の
閉塞部材44,45を弁本体33外より取付け取
外し自在に設け、図示状態では流通孔41と導入
孔42とに螺着している。46は弁体36を蓋部
材38側へ付勢するよう設けたばね、47はばね
46が設けられた嵌合孔35の他端内に収装した
ばね受け部材で、弁体36の端面とで作用室48
を形成して軸方向へ連通孔49を貫通して設けて
いる。そして作用室48は絞り37により作用室
39に連通している。50はパイロツト弁本体
で、嵌合孔35の他端開口部を閉塞するよう弁本
体33に螺着さればね受け部材47を固定してお
り、内部にはばね51によりポペツト弁体52を
弁座53に着座させ、ばね受け部材47の連通孔
49を介してポペツト弁体52に作用室48のパ
イロツト流体を作用させその作用力がばね51の
設定弾性力以上になると、ポペツト弁体52が弁
座53から離脱して作用室48のパイロツト流体
を流路7に連通するドレン路54へ排出するよう
設け、作用室48の圧力を制御できるようにして
いる。55はばね51の設定弾性力を調整する調
整ねじである。
FIG. 1 is a control circuit of a composite valve device shown in partial cross section, in which a fluid control valve 1 and a pressure reducing valve 2 are joined and combined. Two load flow paths A and B connected to, and discharge flow path R connected to the low pressure section
and a drain passage R1, and four poppet valve bodies 8, 9, 10, 1 provided to cut off communication between the passages.
1, and an action chamber 1 formed on the back of each poppet valve body.
2, 13, 14, and 15, and a pilot switching valve 16 for introducing a part of the pressure fluid in the supply flow path P as a pilot fluid and for guiding the fluid in the working chamber to the low pressure section. Then, when the pilot switching valve 16 is operated to the right switching position, the pilot fluid flows into the working chamber 1 through the pilot passages 17 and 18.
2 and 15, the poppet valve bodies 8 and 11 are seated on the valve seats 23 and 26 under the action force of the pilot fluid and the elastic force of the springs 19 and 22, and the poppet valve body 9 absorbs the pressure of the load passage A. The poppet valve element 10 is separated from the valve seat 24 by the action force of the fluid, and the fluid in the action chamber 13 is led out to the drain passage R1 via the pilot passage 27, and the poppet valve element 10 is moved away from the valve seat 25 by the action force of the pressure fluid in the supply passage P. The action chamber 14 is separated from the
The fluid is passed through the pilot passage 28 to the drain passage R.
1. When the pilot switching valve 16 is operated to the left switching position, the pilot fluid is introduced into the action chambers 13, 14 through the pilot passages 27, 28, and the poppet valve bodies 9, 10 are operated by the action force of the pilot fluid and the spring 20, The poppet valve body 8 is seated on the valve seats 24 and 25 by the elastic force of the supply channel P, and the poppet valve body 8 is seated on the valve seats 23 and 25 by the force exerted by the pressure fluid in the supply flow path P.
The fluid in the working chamber 12 is removed from the pilot passage 17.
At the same time, the poppet valve body 11 separates from the valve seat 26 due to the acting force of the pressure fluid in the load flow path B, and the fluid in the working chamber 15 is guided to the drain flow path R1 through the pilot path 18. It is provided so that the direction of fluid flow can be changed by leading out the flow direction. 29, 30 are action chambers 12, 13, 14, 15
A pilot fluid passage for introducing pilot fluid to be introduced into the pressure reducing valve 2 into the pilot passages 17 and 1.
Pilot switching valve 16 communicating with 8, 27, 28
The pilot connecting passages 31 and 32 are branched from each other and opened at the side surface where the pressure reducing valve 2 is connected. 2 to 5 show the specific configuration of the pressure reducing valve 2, in which the pressure flow path 3 communicates with the supply flow path P of the fluid control valve 1 and the connections that communicate with the two load flow paths A and B. The flow paths 4 and 5, the outlet flow path 6 communicating with the discharge flow path R, and the flow path 7 communicating with the drain flow path R1 are connected to the pressure reducing valve body 3.
Both sides FA penetrates through the inside of 3 and is formed flat on the top and bottom,
The pressure reducing valve main body 33 has an opening in the FB.
Inside, there is an annular groove 3 in the longitudinal direction parallel to both sides FA and FB.
4A, 34B, and the pressure passage 3 has an inlet passage 3A communicating with the annular groove 34A of the fitting hole 35, an outflow passage 3B communicating with the annular groove 34B, and the fitting hole. 35, and the two connecting channels 4 and 5, the outlet channel 6, and the channel 7 are connected to the fitting hole 3.
It is installed so as not to interfere with 5. Reference numeral 36 denotes a valve body having a constriction portion H that is slidably fitted into the fitting hole 35 to constrict the pressure flow path 3. A constriction 37 is provided inside the valve body so as to communicate between both end faces. There is. 38
A lid member is screwed onto the valve body 33 so as to close an opening at one end of the fitting hole 35, and forms an action chamber 39 with the end face of the valve body 36. 40 is a pilot fluid passage communicating with the action chamber 39, a communication hole 41 communicating with the outflow passage 3B, two introduction holes 42 communicating with the pilot fluid passages 29, 30 of the fluid control valve 1,
43 is provided with an opening on the side FB. Flow hole 1
Closing members 44 and 45 of the same shape are provided in the first and plurality of introduction holes 42 and 43 so as to be attachable and detachable from the outside of the valve body 33, and are screwed to the communication hole 41 and the introduction hole 42 in the illustrated state. 46 is a spring provided to urge the valve body 36 toward the lid member 38 side; 47 is a spring receiving member housed in the other end of the fitting hole 35 in which the spring 46 is provided; Action chamber 48
A communicating hole 49 is formed and extends through the communicating hole 49 in the axial direction. The working chamber 48 communicates with the working chamber 39 through the throttle 37. Reference numeral 50 denotes a pilot valve body, which is screwed onto the valve body 33 so as to close the other end opening of the fitting hole 35 and has a spring receiving member 47 fixed therein. 53, the pilot fluid in the action chamber 48 is applied to the poppet valve body 52 through the communication hole 49 of the spring receiving member 47, and when the acting force exceeds the set elastic force of the spring 51, the poppet valve body 52 closes the valve. It is provided so as to be detached from the seat 53 and discharge the pilot fluid in the working chamber 48 to a drain passage 54 communicating with the flow passage 7, so that the pressure in the working chamber 48 can be controlled. Reference numeral 55 denotes an adjustment screw for adjusting the set elastic force of the spring 51.

次に作動を説明する。 Next, the operation will be explained.

第1図は複合弁装置の休止状態を示し、流体制
御弁1はパイロツト切換弁16が中立の切換位置
なので、減圧弁2の圧力流路3を介して供給流路
Pに供給する圧力流体の一部がパイロツト流体と
して各作用室12,13,14,15に導入さ
れ、各ポペツト弁体8,9,10,11は作用室
12,13,14,15に導入のパイロツト流体
による作用力とばね19,20,21,22の弾
性力とを受けて弁座23,24,25,26に着
座し各流路P,A,B,R間を遮断している。減
圧弁2は第2図に示す如き、弁体36がばね46
の弾性力により図示左方向へ付勢されて絞り部H
の開口を最大に拡大している。
FIG. 1 shows a rest state of the composite valve device, in which the pilot switching valve 16 of the fluid control valve 1 is in the neutral switching position, so that the pressure fluid supplied to the supply channel P via the pressure channel 3 of the pressure reducing valve 2 is A portion of the valve body is introduced into each of the working chambers 12, 13, 14, 15 as a pilot fluid, and each poppet valve body 8, 9, 10, 11 receives the acting force from the pilot fluid introduced into the working chambers 12, 13, 14, 15. It is seated on the valve seats 23, 24, 25, 26 under the elastic force of the springs 19, 20, 21, 22, and blocks the flow paths P, A, B, and R. The pressure reducing valve 2 has a valve body 36 with a spring 46 as shown in FIG.
is biased toward the left in the figure by the elastic force of
The aperture has been enlarged to the maximum.

いま、かかる状態よりパイロツト切換弁16を
左の切換位置に操作すると、パイロツト路17,
18を介して作用室12,15の流体が低圧部へ
導出し、供給流路Pに供給された圧力流体は、ポ
ペツト弁体8をばね19に抗して押圧させて弁座
23から離脱させ、負荷流路A、接続流路4を流
れて流体アクチユエータを作動し、流体アクチユ
エータから排出される流体は接続流路5、負荷流
路Bを流れてポペツト弁体11をばね22に抗し
て押圧させて弁座26から離脱させ、排出流路
R、導出流路6を流れて低圧部に導出する。減圧
弁2は流通孔41を閉塞部材45で導入孔42を
閉塞部材44でそれぞれ遮断し導入孔43を連通
状態にしているため、流体制御弁1の供給流路P
の圧力流体の一部がパイロツト流体として、パイ
ロツト切換弁16のパイロツト接続路32よりパ
イロツト流体通路30、減圧弁2の導入孔43、
パイロツト流体通路40を流れて作用室39さら
に絞り37を介して作用室48に導入する。そし
て作用室48に導入のパイロツト流体が連通孔4
9を流れてポペツト弁体52に作用し、ポペツト
弁体52は対向作用するパイロツト流体による作
用力がばね51の設定弾性力以上になると弁座5
3から離脱し、そのパイロツト流体をドレン路5
4、流路7を流して低圧部に導出せしめ、作用室
48の圧力は絞り37によりパイロツト流体の導
入が規制されるので下降し、弁体36は両端に形
成の作用室39,48間に生ずる圧力差による作
用力によりばね46の弾性力に坑して第2図右方
向へ摺動されて絞り部Hの開口を絞縮する。さら
に作用室48の圧力下降によつてポペツト弁体5
2がばね51の弾性力により弁座53に着座する
と、弁体36は両端作用室39,48間の圧力差
が減少してばね46の弾性力により第2図左方向
へ摺動されて絞り部Hの開口を拡大し、流体制御
弁1の負荷流路Aに流れる供給流路Pの圧力流体
はばね51による設定圧に減圧制御される。
Now, if the pilot switching valve 16 is operated to the left switching position from this state, the pilot path 17,
The fluid in the action chambers 12 and 15 is led out to the low-pressure part through the valve 18, and the pressure fluid supplied to the supply flow path P presses the poppet valve body 8 against the spring 19 to separate it from the valve seat 23. , the load flow path A, and the connection flow path 4 to operate the fluid actuator, and the fluid discharged from the fluid actuator flows through the connection flow path 5 and the load flow path B to force the poppet valve body 11 against the spring 22. It is pressed to separate from the valve seat 26, flows through the discharge channel R and the outlet channel 6, and is led out to the low pressure section. The pressure reducing valve 2 blocks the communication hole 41 with the closing member 45 and the introduction hole 42 with the closing member 44, and puts the introduction hole 43 in a communicating state, so that the supply flow path P of the fluid control valve 1 is closed.
A part of the pressure fluid is transferred as pilot fluid from the pilot connection path 32 of the pilot switching valve 16 to the pilot fluid passage 30, the introduction hole 43 of the pressure reducing valve 2,
It flows through the pilot fluid passage 40 and is introduced into the working chamber 48 via the working chamber 39 and the throttle 37. Then, the pilot fluid introduced into the action chamber 48 flows through the communication hole 4.
9 acts on the poppet valve body 52, and the poppet valve body 52 closes the valve seat 5 when the force exerted by the counter-acting pilot fluid exceeds the set elastic force of the spring 51.
3 and drain the pilot fluid to the drain passage 5.
4. The flow path 7 is led out to the low pressure part, and the pressure in the working chamber 48 decreases as the introduction of the pilot fluid is restricted by the throttle 37, and the valve body 36 is opened between the working chambers 39 and 48 formed at both ends. The acting force due to the resulting pressure difference causes the spring 46 to slide toward the right in FIG. 2 against the elastic force of the spring 46, thereby constricting the opening of the throttle portion H. Furthermore, due to the pressure drop in the action chamber 48, the poppet valve body 5
2 is seated on the valve seat 53 by the elastic force of the spring 51, the pressure difference between the action chambers 39 and 48 at both ends decreases, and the valve body 36 is slid to the left in FIG. The opening of section H is enlarged, and the pressure fluid in the supply flow path P flowing into the load flow path A of the fluid control valve 1 is controlled to be reduced to the set pressure by the spring 51.

また、第1回の状態によりパイロツト切換弁1
6を右の切換位置に操作すると、パイロツト路2
7,28を介して作用室13,14の流体が低圧
部へ導出し、供給流路Pに供給された圧力流体は
ポペツト弁体10をばね21に坑して押圧させて
弁座25から離脱させ、負荷流路B、接続流路5
を流れて流体アクチユエータを作動し、流体アク
チユエータから排出される流体は接続流路4、負
荷流路Aを流れてポペツト弁体9をばね20に坑
して押圧させて弁座24から離脱させ、排出流路
R、導出流路6を流れて低圧部に導出し、流体の
流れ方向が切換わる。減圧弁2は導入孔42を閉
塞部材44を遮断しているため、流体制御弁1の
パイロツト切換弁16のパイロツト接続路31よ
りパイロツト流体通路29を流れるパイロツト流
体の導入を受けることがなく、弁体36両端の作
用室39,48が流体制御弁1のパイロツト流体
通路30を介してパイロツト切換弁16よりドレ
ン流路R1へ連通するので、弁体36はばね46
の作用力により第2図の図示位置に保持される。
Also, depending on the first condition, the pilot switching valve 1
6 to the right switching position, pilot path 2
The fluid in the working chambers 13 and 14 is led out to the low-pressure part through the valves 7 and 28, and the pressure fluid supplied to the supply flow path P presses the poppet valve body 10 against the spring 21 and separates from the valve seat 25. load flow path B, connection flow path 5
The fluid discharged from the fluid actuator flows through the connection flow path 4 and the load flow path A to force the poppet valve body 9 against the spring 20 and push it away from the valve seat 24. The fluid flows through the discharge channel R and the outlet channel 6 and is led out to the low pressure section, and the flow direction of the fluid is switched. Since the pressure reducing valve 2 blocks the introduction hole 42 from the closing member 44, the pilot fluid flowing through the pilot fluid passage 29 from the pilot connection path 31 of the pilot switching valve 16 of the fluid control valve 1 is not introduced, and the valve is closed. Since the action chambers 39 and 48 at both ends of the body 36 communicate with the drain passage R1 from the pilot switching valve 16 via the pilot fluid passage 30 of the fluid control valve 1, the valve body 36 is connected to the spring 46.
It is held in the position shown in FIG. 2 by the acting force of.

かかる作動で、減圧制御する流路を負荷流路A
から負荷流路Bに変更するには、減圧弁2を流体
制御弁1から取外したのち減圧弁2の導入孔42
に螺着している閉塞部材44を離脱し導入孔43
に螺着すれば良い。また、二つの負荷流路A,B
をともに減圧制御するべく減圧制御する流路を供
給流路3に変更するには、流通孔41に螺着して
いる閉塞部材45を離脱し開口状態の導入孔43
に螺着することにより、流出流路3Bの圧力流体
の一部がパイロツト流体として減圧弁2の弁体3
6両端の作用室39,48に導入され前記と同様
に減圧作動する。したがつて流通孔41および導
入孔42にすでに螺着している閉塞部材44,4
5の螺着個所を選択的に変える簡単な作業で供給
流路Pおよび二つの負荷流路A,Bの減圧制御を
選択的に行うことができ、かつ減圧弁2を単一の
ものにでき、減圧流路の変更が容易にできる。ま
た、閉塞部材44,45はパイロツト流体通路を
成す流通孔41、導入孔42,43に螺着する小
形状のもので取扱いやすいと共に、すでに螺着し
ているものの螺着個所を変更するのみであるから
管理も簡単である。しかも減圧弁2を供給流路P
に供給する圧力流体を減圧制御するように設けて
いるため、供給流路Pの圧力流体が一方向流れて
減圧弁2に逆止め弁を並設する必要性がなく弁装
置の大型化を阻止することができる。さらにま
た、減圧弁2は流体制御弁1のパイロツト切換弁
16より各ポペツト弁体背部に形成の作用室1
2,13,14,15に導入するパイロツト流体
をパイロツト流体通路29,30を介して弁体3
6端に形成の作用室39へ導入して負荷流路Aも
しくは負荷流路Bを減圧制御するようにしている
ため、パイロツト切換弁16の切換操作に応じて
供給流路Pより負荷流路Aもしくは負荷流路Bに
流れる圧力流体より迅速にパイロツト流体が作用
室39へ導入され良好な応答性で負荷流路Aもし
くは負荷流路Bの減圧制御がなされる。
With this operation, the flow path for pressure reduction control is changed to the load flow path A.
To change from the pressure reducing valve 2 to the load flow path B, remove the pressure reducing valve 2 from the fluid control valve 1, and then open the introduction hole 42 of the pressure reducing valve 2.
Remove the closing member 44 screwed into the introduction hole 43.
Just screw it on. In addition, two load flow paths A and B
In order to change the pressure-reducing control flow path to the supply flow path 3 so as to perform pressure reduction control on both of
By screwing into the valve body 3 of the pressure reducing valve 2, a part of the pressure fluid in the outflow channel 3B is used as pilot fluid.
6 is introduced into the action chambers 39 and 48 at both ends, and the pressure is reduced in the same manner as described above. Therefore, the closing members 44, 4 which have already been screwed into the communication hole 41 and the introduction hole 42
Pressure reduction control of the supply flow path P and the two load flow paths A and B can be performed selectively by a simple operation of selectively changing the screwing points of 5, and the pressure reduction valve 2 can be made into a single one. , the depressurization flow path can be easily changed. Furthermore, the closing members 44 and 45 are small in shape and are screwed onto the flow holes 41 and the introduction holes 42 and 43 that form the pilot fluid passage, making them easy to handle and requiring only a change in the screwing locations of those that have already been screwed on. It is also easy to manage. Moreover, the pressure reducing valve 2 is connected to the supply flow path P.
Since the pressure fluid supplied to the supply channel P is provided to reduce the pressure, the pressure fluid in the supply channel P flows in one direction, eliminating the need to install a check valve in parallel to the pressure reducing valve 2, and preventing the valve device from becoming larger. can do. Furthermore, the pressure reducing valve 2 is connected to the pilot switching valve 16 of the fluid control valve 1 through an action chamber 1 formed at the back of each poppet valve body.
2, 13, 14, 15 is passed through the pilot fluid passages 29, 30 to the valve body 3.
Since the load flow path A or the load flow path B is introduced into the action chamber 39 formed at the sixth end and is controlled to reduce the pressure, the load flow path A is changed from the supply flow path P to the load flow path A according to the switching operation of the pilot switching valve 16. Alternatively, the pilot fluid is introduced into the action chamber 39 more quickly than the pressure fluid flowing into the load flow path B, and the pressure reduction in the load flow path A or the load flow path B is controlled with good responsiveness.

このように、本考案は、圧力流体を供給する供
給流路と流体アクチユエータへ接続する二つの負
荷流路および低圧部へ接続する排出流路を有し、
流路間を連通遮断するよう設けた4個のポペツト
弁体をパイロツト切換弁の操作により、ポペツト
弁体背部に形成の作用室へ供給流路に供給される
圧力流体の一部をパイロツト流体として導入した
り作用室の流体を低圧部へ導出したりすることで
作動し流体の流れ方向を切換制御する流体制御弁
と、流体制御弁の供給流路と連通する圧力流路を
有した減圧弁本体内へ圧力流路を絞縮制御する弁
体を摺動自在に嵌合し、弁体両端に形成のパイロ
ツト流体を導入する作用室の一方のみパイロツト
流体が絞りを介して導入するよう設け、絞りを介
してパイロツト流体が導入される弁体端の作用室
の圧力をパイロツト弁により制御することで弁体
を両端作用室間の圧力差による作用力とばねの弾
性力とで軸方向へ摺動させて流体制御弁の供給流
路に供給の圧力流体をパイロツト弁による設定圧
力に減圧制御する減圧弁と、減圧制御された圧力
流体が流れる圧力流路側を減圧弁の作用室へ連通
して設けたパイロツト流体通路および流体制御弁
の供給流路と二つの負荷流路間を連通遮断する各
ポペツト弁体背部作用室へパイロツト流体を導入
する二つのパイロツト路側を減圧弁の作用室へそ
れぞれ連通して設けたパイロツト流体通路とを有
し、各パイロツト流体通路は減圧制御する流路を
選択できるよう遮断自在に設けたことにより各パ
イロツト流体通路を選択して遮断する簡単な作業
で必要とする流路の減圧制御を単一の減圧弁で良
好に行うことができ、減圧流路の変更を容易にで
きる。しかも減圧弁を供給流路に供給する圧力流
体を減圧制御するよう設けているため、減圧弁に
逆止め弁を並設する必要性がなく弁装置の大型化
を阻止できる。
Thus, the present invention has a supply channel for supplying pressure fluid, two load channels connected to the fluid actuator, and a discharge channel connected to the low pressure part,
By operating the pilot switching valve, a portion of the pressure fluid supplied to the supply flow path is transferred to the working chamber formed on the back of the poppet valve body as pilot fluid. A pressure reducing valve that has a fluid control valve that switches and controls the flow direction of the fluid by introducing fluid in the working chamber or leading the fluid in the working chamber to a low pressure section, and a pressure flow path that communicates with the supply flow path of the fluid control valve. A valve body for restricting and controlling the pressure flow path is slidably fitted into the main body, and the pilot fluid is introduced through the throttle into only one of the working chambers formed at both ends of the valve body for introducing the pilot fluid, By controlling the pressure in the working chamber at the end of the valve body into which the pilot fluid is introduced via the throttle, the valve body is slid in the axial direction by the acting force due to the pressure difference between the working chambers at both ends and the elastic force of the spring. a pressure reducing valve that controls the pressure fluid supplied to the supply flow path of the fluid control valve to reduce the pressure to a set pressure by a pilot valve; and a pressure flow path side through which the pressure reduction-controlled pressure fluid flows communicates with an action chamber of the pressure reduction valve. Introducing the pilot fluid into the working chamber on the back of each poppet valve body, which communicates and shuts off communication between the pilot fluid passage provided, the supply passage of the fluid control valve, and the two load passages.The two pilot passage sides are communicated with the working chamber of the pressure reducing valve, respectively. Each pilot fluid passage is provided so that it can be shut off so that the flow passage to be controlled by pressure reduction can be selected, making it easy to select and shut off each pilot fluid passage. The pressure reduction control of the flow path can be performed satisfactorily with a single pressure reduction valve, and the pressure reduction flow path can be easily changed. Moreover, since the pressure reducing valve is provided to reduce the pressure of the pressure fluid supplied to the supply channel, there is no need to provide a check valve in parallel with the pressure reducing valve, and it is possible to prevent the valve device from increasing in size.

また、減圧弁は流体制御弁のパイロツト切換弁
の操作により各ポペツト弁体背部の作用室に導入
する供給流路の圧力流体の一部としたパイロツト
流体をパイロツト流体通路を介して弁体両端に形
成の作用室に導入し所望の負荷流路を減圧制御す
るようにしているため、供給流路より所望の負荷
流路に流れる圧力流体より迅速にパイロツト流体
が弁体両端に形成の作用室に導入できて所望の負
荷流路の減圧制御を応答性良く行なえる等の効果
を奏する。
The pressure reducing valve also operates the pilot switching valve of the fluid control valve to supply pilot fluid, which is part of the pressure fluid in the supply flow path, to the working chamber at the back of each poppet valve body, to both ends of the valve body through the pilot fluid passage. Since the pilot fluid is introduced into the action chamber formed at both ends of the valve body and is controlled to reduce the pressure in the desired load flow path, the pilot fluid flows into the action chamber formed at both ends of the valve body more quickly than the pressure fluid flowing from the supply flow path to the desired load flow path. This provides effects such as being able to perform pressure reduction control in a desired load flow path with good responsiveness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示した複合弁装置
の一部断面で示す制御回路図、第2図は複合弁装
置の一部である減圧弁の縦断面図、第3図は減圧
弁の平面図、第4図および第5図は第3図−
線および−線に沿つた横断面図、第6図およ
び第7図はそれぞれ従来例を示す制御回路図であ
る。 1……流体制御弁、2……減圧弁、3……圧力
流路、29,30,40……パイロツト流体通
路、36……弁体、P……供給流路、A,B……
負荷流路、R……排出流路。
Fig. 1 is a control circuit diagram showing a partial cross-section of a composite valve device showing an embodiment of the present invention, Fig. 2 is a longitudinal cross-sectional view of a pressure reducing valve that is a part of the compound valve device, and Fig. 3 is a pressure reducing The plan view of the valve, Figs. 4 and 5, is the same as Fig. 3-
6 and 7 are control circuit diagrams showing conventional examples, respectively. DESCRIPTION OF SYMBOLS 1... Fluid control valve, 2... Pressure reducing valve, 3... Pressure channel, 29, 30, 40... Pilot fluid passage, 36... Valve body, P... Supply channel, A, B...
Load flow path, R...Discharge flow path.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧力流体を供給する供給流路と流体アクチユエ
ータへ接続する二つの負荷流路および低圧部へ接
続する排出流路を有し、流路間を連通遮断するよ
う設けた4個のポペツト弁体をパイロツト切換弁
の操作により、ポペツト弁体背部に形成の作用室
へ供給流路に供給される圧力流体の一部をパイロ
ツト流体として導入したり作用室の流体を低圧部
へ導出したりすることで作動し流体の流れ方向を
切換制御する流体制御弁と、流体制御弁の供給流
路と連通する圧力流路を有した減圧弁本体内へ圧
力流路を絞縮制御する弁体を摺動自在に嵌合し、
弁体両端に形成のパイロツト流体を導入する作用
室の一方のみパイロツト流体が絞りを介して導入
するよう設け、絞りを介してパイロツト流体が導
入される弁体端の作用室の圧力をパイロツト弁に
より制御することで弁体を両端作用室間の圧力差
による作用力とばねの弾性力とで軸方向へ摺動さ
せて流体制御弁の供給流路に供給の圧力流体をパ
イロツト弁による設定圧力に減圧制御する減圧弁
と、減圧制御された圧力流体が流れる圧力流路側
を減圧弁の作用室へ連通して設けたパイロツト流
体通路および流体制御弁の供給流路と二つの負荷
流路間を連通遮断する各ポペツト弁体背部作用室
へパイロツト流体を導入する二つのパイロツト路
側を減圧弁の作用室へそれぞれ連通して設けたパ
イロツト流体通路とを有し、各パイロツト流体通
路は減圧制御する流路を選択できるよう遮断自在
に設けて成る複合弁装置。
It has a supply channel that supplies pressure fluid, two load channels that connect to a fluid actuator, and a discharge channel that connects to a low pressure section, and has four poppet valve bodies installed to cut off communication between the channels. By operating the switching valve, a part of the pressure fluid supplied to the supply channel is introduced as pilot fluid into the action chamber formed on the back of the poppet valve body, and the fluid in the action chamber is led out to the low pressure part. A fluid control valve that switches and controls the flow direction of the fluid, and a valve body that controls the constriction of the pressure flow path can be slid freely into the pressure reducing valve body, which has a pressure flow path that communicates with the supply flow path of the fluid control valve. mated,
The pilot fluid is introduced into only one of the working chambers formed at both ends of the valve body through a restriction, and the pressure in the working chamber at the end of the valve body into which the pilot fluid is introduced through the restriction is controlled by the pilot valve. By controlling the valve body, the valve body is slid in the axial direction by the acting force due to the pressure difference between the working chambers at both ends and the elastic force of the spring, and the pressure fluid supplied to the supply flow path of the fluid control valve is adjusted to the set pressure by the pilot valve. A pressure reducing valve that performs pressure reduction control, a pilot fluid passage that connects the pressure flow path side through which the pressure reduction controlled fluid flows to the action chamber of the pressure reducing valve, and a supply flow path of the fluid control valve and two load flow paths are communicated with each other. The pilot fluid passage has two pilot passages for introducing the pilot fluid into the action chamber on the back of each poppet valve body to be shut off, each of which communicates with the action chamber of the pressure reducing valve, and each pilot fluid passage is a flow passage for pressure reduction control. A composite valve device that can be shut off freely so that the following can be selected.
JP18345181U 1981-12-08 1981-12-08 composite valve device Granted JPS5886904U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18345181U JPS5886904U (en) 1981-12-08 1981-12-08 composite valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18345181U JPS5886904U (en) 1981-12-08 1981-12-08 composite valve device

Publications (2)

Publication Number Publication Date
JPS5886904U JPS5886904U (en) 1983-06-13
JPS6128882Y2 true JPS6128882Y2 (en) 1986-08-27

Family

ID=29982724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18345181U Granted JPS5886904U (en) 1981-12-08 1981-12-08 composite valve device

Country Status (1)

Country Link
JP (1) JPS5886904U (en)

Also Published As

Publication number Publication date
JPS5886904U (en) 1983-06-13

Similar Documents

Publication Publication Date Title
US5421545A (en) Poppet valve with force feedback control
EP0900962B1 (en) Pilot solenoid control valve and hydraulic control system using same
US5645263A (en) Pilot valve for a flow amplyifying poppet valve
CA2005587C (en) Balanced servo-operated multiway valve
EP0869418B1 (en) Pressure regulating valve mounted in base-mounted transfer valve
JP2579202Y2 (en) Operating valve with pressure compensation valve
US6742540B2 (en) Two-way orifice check valve device for hydraulic circuit
JPH074559A (en) Valve with actuator
JPS5973605A (en) Valve assembly
EP0822361B1 (en) Pressure-control valve mounted on a base-mount selector valve
JP2003050635A (en) Variable pressure control device
JP4029417B2 (en) Pressure regulating valve for solenoid valve assembly and solenoid valve assembly including the same
JPS6128882Y2 (en)
US6257277B1 (en) Modular multiple output pneumatic pressure valve
JPH06117414A (en) Valve gear
JPH0249361Y2 (en)
JP2581853Y2 (en) Pressure compensation valve
CN218582343U (en) Multi-channel water outlet device and faucet
JPS6123985Y2 (en)
CN217583261U (en) Single-valve-core multi-channel water outlet device and faucet
JPH0544625Y2 (en)
JPH0375762B2 (en)
JPH0828506A (en) Pressure compensating valve
JPH0454499Y2 (en)
JPH0124401Y2 (en)