JPH0449126B2 - - Google Patents

Info

Publication number
JPH0449126B2
JPH0449126B2 JP59267505A JP26750584A JPH0449126B2 JP H0449126 B2 JPH0449126 B2 JP H0449126B2 JP 59267505 A JP59267505 A JP 59267505A JP 26750584 A JP26750584 A JP 26750584A JP H0449126 B2 JPH0449126 B2 JP H0449126B2
Authority
JP
Japan
Prior art keywords
pressure
spool
valve
pilot
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267505A
Other languages
Japanese (ja)
Other versions
JPS61149676A (en
Inventor
Koji Ichihashi
Toshihiro Murayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Corp filed Critical Zexel Corp
Priority to JP26750584A priority Critical patent/JPS61149676A/en
Publication of JPS61149676A publication Critical patent/JPS61149676A/en
Publication of JPH0449126B2 publication Critical patent/JPH0449126B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (技術分野) 本発明はパイロツト圧に応じて2次側圧力を制
御する圧力制御弁に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a pressure control valve that controls secondary pressure in accordance with pilot pressure.

(従来技術とその問題点) 従来の圧力制御弁は第1図に示すように圧力制
御弁1にパイロツト制御弁5を設け、当該圧力制
御弁1の2次側圧力(制御圧力)P2の圧油の一
部をハウジング2に設けた通路2aを通してスプ
ール3の一端面3aに導くと共に、当該端面3a
から反対側の端面3bに至りオリフイスを設けた
通路3cを通してパイロツト制御弁5に導き、ダ
イアル6によりばね7のセツト荷重を調節して弁
体8の開弁圧(パイロツト圧)Pcを設定し、前
記オリフイスを経て導かれた2次側圧力P2がこ
のパイロツト圧Pcを超えたときにパイロツト制
御弁5を開弁させ、スプール3の端面3bに作用
するパイロツト圧Pcとリターンスプリング4の
セツト荷重Fとによる当該スプール3の開弁方向
の力と、端面3aに作用する2次側圧力P2によ
る当該スプール3の閉弁方向の力との釣り合う位
置にスプール3を変位させ、1次側供給圧力P1
を減圧して前記パイロツト圧Pcに応じた2次側
圧力P2を得るようになされており、この2次側
圧力P2は第2図に示すような特性となる。
(Prior art and its problems) As shown in Fig. 1, a conventional pressure control valve is equipped with a pilot control valve 5 in a pressure control valve 1, and controls the secondary side pressure (control pressure) P2 of the pressure control valve 1 . A part of the pressure oil is guided to one end surface 3a of the spool 3 through a passage 2a provided in the housing 2, and the end surface 3a is
From there, it reaches the opposite end surface 3b and leads to the pilot control valve 5 through a passage 3c provided with an orifice, and adjusts the set load of the spring 7 with the dial 6 to set the valve opening pressure (pilot pressure) Pc of the valve body 8. When the secondary pressure P2 led through the orifice exceeds this pilot pressure Pc, the pilot control valve 5 is opened, and the pilot pressure Pc acting on the end face 3b of the spool 3 and the set load of the return spring 4 are adjusted. The spool 3 is displaced to a position where the force in the valve opening direction of the spool 3 due to the pressure F and the force in the valve closing direction of the spool 3 due to the secondary pressure P 2 acting on the end face 3a are balanced, and the primary side supply pressure P 1
The pressure is reduced to obtain a secondary pressure P2 corresponding to the pilot pressure Pc, and this secondary pressure P2 has characteristics as shown in FIG.

かかる構成によれば、2次側圧力P2は、リタ
ーンスプリング4のセツト荷重Fによる開弁方向
の力とスプール3の端面3aの受圧面積A0との
比即ち、F/A0以下に制御することが出来ず、
2次側圧力P2は第2図に示すように前記圧力
F/A0に達したときに0から所定のパイロツト
圧Pcまで急激に立ち上がる。このため2次側圧
力P2は0からF/A0までの間の低圧の制御が不
可能である。また低圧制御を行うためにリターン
スプリング4のセツト荷重Fを小さくすると、2
次側圧力(制御圧力)P2を安定に制御すること
が出来なくなる。
According to this configuration, the secondary pressure P2 is controlled to be less than the ratio of the force in the valve opening direction due to the set load F of the return spring 4 to the pressure receiving area A0 of the end surface 3a of the spool 3, that is, F/ A0 . unable to
As shown in FIG. 2, when the secondary pressure P2 reaches the pressure F/ A0 , it rapidly rises from 0 to a predetermined pilot pressure Pc. For this reason, it is impossible to control the secondary side pressure P2 at a low pressure between 0 and F/ A0 . Also, if the set load F of the return spring 4 is reduced in order to perform low pressure control, 2
It becomes impossible to stably control the next side pressure (control pressure) P2 .

(発明の目的) 本発明は上述の点に鑑みてなされたもので、圧
力制御弁の2次側圧力(制御圧力)の低圧制御を
可能とし、0から設定されたパイロツト圧まで安
定に制御し得るようにすることを目的とする。
(Object of the Invention) The present invention has been made in view of the above points, and enables low pressure control of the secondary side pressure (control pressure) of a pressure control valve, and stable control from 0 to a set pilot pressure. The purpose is to obtain.

(発明の概要) 上記目的を達成するために本発明においては、
パイロツト制御弁により所定の圧力に調圧されス
プールを開弁方向に変位させるパイロツト圧と閉
弁方向に変位させるリターンスプリングとの協働
により当該スプールの位置を制御し、1次側供給
圧力を減圧して所定の2次側圧力を得るようにし
た圧力制御弁において、前記スプール内に形成さ
れ、該スプールの前記パイロツト制御弁側一端面
と反前記パイロツト制御弁側他端面に開口する貫
通孔からなる通路と、該通路に前記1次側供給圧
力を導入するオリフイス手段と、前記スプールの
周面に形成された2つの段差部とを備え、前記パ
イロツト圧が閉弁方向に作用する前記スプールの
前記一端面の第1の受圧面と前記パイロツト圧が
開弁方向に作用する前記スプールの前記他端面の
第2の受圧面との受圧面積差と、前記パイロツト
圧が閉弁方向に作用する前記段差部の一方の第3
の受圧面と前記パイロツト圧が開弁方向に作用す
る前記段差部の他方の第4の受圧面との受圧面積
差とを等しく設定し、前記パイロツト圧と前記2
次側圧力とにより前記スプールに作用する開弁方
向の力と、前記パイロツト圧と前記2次側圧力と
前記リターンスプリングとにより前記スプールに
作用する閉弁方向の力との釣り合う位置に当該ス
プールを変位させるようにし、前記パイロツト圧
に応じて前記2次側圧力を制御するようにし、以
て前記2次側圧力の低圧制御を可能とした圧力制
御弁を提供するものである。
(Summary of the invention) In order to achieve the above object, the present invention includes:
The pilot pressure, which is regulated to a predetermined pressure by the pilot control valve and displaces the spool in the valve opening direction, works together with the return spring that displaces the spool in the valve closing direction to control the position of the spool and reduce the primary side supply pressure. In the pressure control valve, which is configured to obtain a predetermined secondary side pressure by a passageway, an orifice means for introducing the primary side supply pressure into the passageway, and two step portions formed on the circumferential surface of the spool, the spool having the pilot pressure acting in the valve closing direction. A pressure receiving area difference between the first pressure receiving surface on the one end surface and the second pressure receiving surface on the other end surface of the spool on which the pilot pressure acts in the valve opening direction, and 3rd on one side of the stepped part
The difference in the pressure receiving area between the pressure receiving surface and the other fourth pressure receiving surface of the stepped portion on which the pilot pressure acts in the valve opening direction is set equal, and the difference between the pilot pressure and the second pressure receiving surface is set equal.
The spool is positioned at a position where the force in the valve opening direction acting on the spool due to the downstream side pressure is balanced with the force in the valve closing direction acting on the spool due to the pilot pressure, the secondary side pressure, and the return spring. The present invention provides a pressure control valve in which the secondary pressure is controlled in accordance with the pilot pressure, thereby making it possible to control the secondary pressure at a low level.

(発明の実施例) 以下本発明の一実施例を添付図面に基づいて詳
述する。
(Embodiment of the Invention) An embodiment of the present invention will be described below in detail based on the accompanying drawings.

第3図は本発明を適用した圧力制御弁10と該
圧力制御弁10に一体的に装着され当該圧力制御
弁10を制御するパイロツト制御弁例えば電磁リ
リーフ弁15との縦断面を示し、圧力制御弁10
のハウジング11にはスプール嵌挿孔11a,1
次側入口ポート11b、2次側出口ポート11c
及びタンクポート11dが設けられ、スプール嵌
挿孔11aにはスプール12が軸方向に摺動可能
に嵌挿されている。スプール12の両端には2つ
のランド12a,12bが設けられ、一方のラン
ド12aは他方のランド12bよりも大径をな
し、軸心には貫通孔(通路)12cが穿設され、
ランド12bの所定箇所には一端が外周面に、他
端が孔12cの内周面に夫々開口するオリフイス
12dが半径方向に穿設され、このオリフイス1
2dはスプール12の変位に拘らず常時入口ポー
ト11bに連通される。
FIG. 3 shows a longitudinal section of a pressure control valve 10 to which the present invention is applied and a pilot control valve, such as an electromagnetic relief valve 15, which is integrally attached to the pressure control valve 10 and controls the pressure control valve 10. valve 10
The housing 11 has spool insertion holes 11a, 1
Next side inlet port 11b, second side outlet port 11c
and a tank port 11d, and a spool 12 is fitted into the spool fitting hole 11a so as to be slidable in the axial direction. Two lands 12a and 12b are provided at both ends of the spool 12, one land 12a has a larger diameter than the other land 12b, and a through hole (passage) 12c is bored in the axial center.
An orifice 12d is drilled in the radial direction at a predetermined location of the land 12b, with one end opening on the outer circumferential surface and the other end opening on the inner circumferential surface of the hole 12c.
2d is always communicated with the inlet port 11b regardless of the displacement of the spool 12.

スプール12のランド12aの端面12eの受
圧面積A1はランド12bの端面12fの受圧面
積A2よりも大きく(A1>A2)、ランド12aの
内端面12gの受圧面積A3はランド12bの内
端面12hの受圧面積A4よりも大きく(A3
A4)が設定されている。そして、端面12eと
12fとの受圧面積の差(A1−A2)と、端面1
2gと12hとの受圧面積の差(A3−A4)とは
等しく、例えば値A0(受圧面積の差)に設定され
ている。
The pressure receiving area A 1 of the end face 12e of the land 12a of the spool 12 is larger than the pressure receiving area A 2 of the end face 12f of the land 12b (A 1 >A 2 ), and the pressure receiving area A 3 of the inner end face 12g of the land 12a is larger than the pressure receiving area A 2 of the end face 12f of the land 12b. It is larger than the pressure receiving area A 4 of the inner end surface 12h (A 3 >
A4 ) is set. Then, the difference in pressure receiving area between the end surfaces 12e and 12f (A 1 −A 2 ) and the end surface 1
The difference (A 3 −A 4 ) in pressure receiving area between 2g and 12h is equal, and is set to, for example, the value A 0 (difference in pressure receiving area).

A1−A2=A3−A4=A0 ……(1) スプール12が上動すると入口ポート11bと
出口ポート11cとが連通され、且つタンクポー
ト11dが閉塞され、下動すると入口ポート11
bと出口ポート11cとが遮断され、且つ出口ポ
ート11cとタンクポート11dとが連通され
る。
A 1 −A 2 =A 3 −A 4 =A 0 (1) When the spool 12 moves upward, the inlet port 11b and the outlet port 11c are communicated with each other, and the tank port 11d is closed, and when the spool 12 moves downward, the inlet port 11b and the outlet port 11c are connected. 11
b and the outlet port 11c are cut off, and the outlet port 11c and the tank port 11d are communicated with each other.

電磁リリーフ弁15のハウジング16は図示し
ないボルトによりハウジング11の端面11eに
弁座17を介して液密に螺着されている。ハウジ
ング16にはソレノイド18と、該ソレノイド1
8により駆動されるプランジヤ19と、弁座17
の孔(通路)17aの一側開口端を閉塞する弁体
20と、プランジヤ19と弁体20との間に介在
され当該弁体20を孔17aの開口端に押圧する
ばね21が収納され、孔17aの他側開口端はス
プール12の孔12cと対向している。ハウジン
グ16の側壁には一端が弁体20が収納される孔
16aの内周面に、他端が当該ハウジング16の
外周面に夫々開口するリリーフポート16bが半
径方向に穿設されている。
The housing 16 of the electromagnetic relief valve 15 is fluid-tightly screwed onto the end surface 11e of the housing 11 via a valve seat 17 by bolts (not shown). The housing 16 includes a solenoid 18 and a solenoid 1.
8 and a plunger 19 driven by the valve seat 17.
A valve body 20 that closes one side open end of the hole (passage) 17a, and a spring 21 that is interposed between the plunger 19 and the valve body 20 and presses the valve body 20 to the open end of the hole 17a are housed, The other open end of the hole 17a faces the hole 12c of the spool 12. A relief port 16b is bored in the side wall of the housing 16 in the radial direction, with one end opening on the inner peripheral surface of the hole 16a in which the valve body 20 is housed, and the other end opening on the outer peripheral surface of the housing 16.

復帰ばね13はスプール12の一端と弁座17
の一端との間に介在され、一端はスプール12の
孔12cのランド12b側に段差をなして拡開す
る開口端12c′内に嵌挿されて当該段差面に圧接
し、他端は弁座17の対向端面17bに圧接し、
スプール12を閉弁方向に付勢している。従つ
て、圧力制御弁10は常閉型の制御弁となる。
The return spring 13 connects one end of the spool 12 and the valve seat 17.
One end is inserted into the opening end 12c' of the hole 12c of the spool 12, which widens with a step on the land 12b side, and presses against the step surface, and the other end is inserted into the opening end 12c' of the hole 12c of the spool 12. Pressed against the opposing end surface 17b of 17,
The spool 12 is urged in the valve closing direction. Therefore, the pressure control valve 10 is a normally closed control valve.

電磁リリーフ弁15のプランジヤ19はソレノ
イド18が消勢されている時には、ばね21のば
ね力により押圧されて上動し、その端面19aが
ハウジング16の対向端面16cに当接し、ソレ
ノイド18が付勢されるとその吸引力に応じてば
ね21を圧縮しながら下動し、当該ばね21のば
ね力と釣り合つた位置に停止する。従つて、ばね
21のセツト荷重はソレノイド18の消勢時し最
小となり、付勢時にはその磁気吸引力即ち、当該
ソレノイド18の励磁電流iに応じて増大する。
即ち、電磁リリーフ弁15の開弁圧(以下パイロ
ツト圧という)Pcはソレノイド18の励磁電流
iにより制御される。
When the solenoid 18 is deenergized, the plunger 19 of the electromagnetic relief valve 15 is pressed by the spring force of the spring 21 and moves upward, and its end surface 19a abuts the opposite end surface 16c of the housing 16, and the solenoid 18 is energized. Then, the spring 21 is compressed according to the suction force and moves downward, and stops at a position balanced with the spring force of the spring 21. Therefore, the set load of the spring 21 is at its minimum when the solenoid 18 is deenergized, and increases in accordance with its magnetic attraction force, that is, the excitation current i of the solenoid 18 when it is energized.
That is, the opening pressure (hereinafter referred to as pilot pressure) Pc of the electromagnetic relief valve 15 is controlled by the excitation current i of the solenoid 18.

ソレノイド18の励磁電流iは例えばデユーテ
イ制御され、パイロツト圧Pcは第4図に実線
で示すようにデユーテイ比が約30%程度から100
%までの直線性の良好な範囲で制御される。
The excitation current i of the solenoid 18 is, for example, duty-controlled, and the pilot pressure Pc varies as the duty ratio ranges from about 30% to 100%, as shown by the solid line in Fig. 4.
% with good linearity.

圧力制御弁10の1次側入口ポート11bは油
圧ポンプに、2次側出口ポート11cはアクチユ
エータ(共に図示せず)に接続され、タンクポー
ト11d及び電磁リリーフ弁15のリリーフポー
ト16bは夫々タンクTに接続される。
The primary inlet port 11b of the pressure control valve 10 is connected to a hydraulic pump, the secondary outlet port 11c is connected to an actuator (both not shown), and the tank port 11d and the relief port 16b of the electromagnetic relief valve 15 are connected to the tank T, respectively. connected to.

以下に作用を説明する。 The action will be explained below.

圧力制御弁10の1次側入口ポート11bに圧
油が供給されない時には、スプール12は復帰ば
ね13のセツト荷重Fにより下動されて閉弁さ
れ、入口ポート11bと出口ポート11cとは遮
断される。また、出口ポート11cはタンクポー
ト11dに連通される。
When pressure oil is not supplied to the primary side inlet port 11b of the pressure control valve 10, the spool 12 is moved downward by the set load F of the return spring 13 to close the valve, and the inlet port 11b and the outlet port 11c are cut off. . Further, the outlet port 11c is communicated with the tank port 11d.

入口ポート11bに油圧P1圧油が供給される
と、この圧油の一部がスプール12のオリフイス
12dを通して通路12c内に流入し、電磁リリ
ーフ弁15に導かれる。電磁リリーフ弁15は前
述したように、ソレノイド18の励磁電流iに応
じた開弁圧即ち、パイロツト圧Pcに設定され、
スプール12の通路12c内の油圧はこのパイロ
ツト圧Pcに調圧される。このパイロツト圧Pcは
スプール12の端面12e,12fに加えられ
る。スプール12の端面12eの受圧面積A1
端面12fの受圧面積A2よりも大きく、その差
(A1−A2=A0)は当該スプールにパイロツト圧
Pcが開弁方向(上動方向)に作用する面積とな
り、パイロツト圧Pcとの積即ち、開弁方向の力
(Pc,A0)が復帰ばね13のセツト荷重F(閉弁
方向の力)を超えたとき(Pc・A>F)、スプー
ル12が開弁方向に変位され、入口ポート11b
と出口ポート11cとが連通され、出口ポート1
1cから前記アクチユエータに圧油が供給され
る。この出口ポート11cの圧油(以下2次側油
圧という)P2はスプール12の開弁位置により
決定される。
When hydraulic pressure P1 pressure oil is supplied to the inlet port 11b, a part of this pressure oil flows into the passage 12c through the orifice 12d of the spool 12 and is guided to the electromagnetic relief valve 15. As mentioned above, the electromagnetic relief valve 15 is set to the valve opening pressure according to the excitation current i of the solenoid 18, that is, the pilot pressure Pc,
The oil pressure in the passage 12c of the spool 12 is regulated to this pilot pressure Pc. This pilot pressure Pc is applied to the end faces 12e and 12f of the spool 12. The pressure receiving area A1 of the end face 12e of the spool 12 is larger than the pressure receiving area A2 of the end face 12f, and the difference ( A1 - A2 = A0 ) is the pilot pressure on the spool.
Pc is the area that acts in the valve opening direction (upward movement direction), and the product with the pilot pressure Pc, that is, the force in the valve opening direction (Pc, A 0 ) is the set load F of the return spring 13 (force in the valve closing direction) (Pc・A>F), the spool 12 is displaced in the valve opening direction, and the inlet port 11b
and the outlet port 11c are communicated with each other, and the outlet port 1
Pressure oil is supplied to the actuator from 1c. The pressure oil (hereinafter referred to as secondary oil pressure) P 2 in the outlet port 11c is determined by the valve opening position of the spool 12.

この2次側の圧油P2はスプール12の端面1
2g,12hに加わる。前記パイロツト圧Pcと
2次側圧P2とによるスプール12の上動方向
(開弁方向)の力F1、パイロツト圧Pcと2次側圧
P2と復帰ばね13のセツト荷重Fとによるスプ
ール12の下動方向(閉弁方向)の力P2は夫々
次式(2)、(3)で表される。
This pressure oil P2 on the secondary side is the end face 1 of the spool 12.
Added to 2g and 12h. Force F 1 in the upward movement direction (valve opening direction) of the spool 12 due to the pilot pressure Pc and the secondary pressure P 2 , the pilot pressure Pc and the secondary pressure
The force P 2 in the downward movement direction (valve closing direction) of the spool 12 due to P 2 and the set load F of the return spring 13 is expressed by the following equations (2) and (3), respectively.

F1=Pc・A1+P2・A4 ……(2) F2=Pc・A2+P2・A3+F ……(3) スプール12は開弁方向の力F1と閉弁方向の
力F2とが釣り合つた位置に停止する。従つて、
前式(2)、(3)から次式(3)が得られる。
F 1 = Pc・A 1 +P 2・A 4 ……(2) F 2 =Pc・A 2 +P 2・A 3 +F ……(3) The spool 12 receives the force F 1 in the valve opening direction and the force F 1 in the valve closing direction. It stops at the position where the force F 2 is balanced. Therefore,
The following equation (3) can be obtained from the previous equations (2) and (3).

Pc・A1+P2・A4=Pc・A2+P2・A3+F ……(3) ∴Pc(A1−A2)=P2(A3−A4)+F ……(4) この式(4)の左辺は、パイロツト圧Pcによるス
プール12の開弁方向の力を、右辺は2次側圧
P2と復帰ばね13のセツト荷重Fとによる当該
スプール12の閉弁方向の力を表す。
Pc・A 1 +P 2・A 4 =Pc・A 2 +P 2・A 3 +F ……(3) ∴Pc(A 1 −A 2 )=P 2 (A 3 −A 4 )+F ……(4) The left side of this equation (4) is the force in the valve opening direction of the spool 12 due to the pilot pressure Pc, and the right side is the secondary side pressure.
It represents the force of the spool 12 in the valve closing direction due to P 2 and the set load F of the return spring 13.

上記(4)式に前記(1)式を代入し、2次側圧P2
ついて整理する。
Substituting the above equation (1) into the above equation (4), the secondary side pressure P 2 will be rearranged.

Pc=P2+F/A0 ……(5) ∴P2=Pc−F/A0 ……(6) この式(6)の右辺のパイロツト圧Pcはソレノイ
ド18の励磁電流iにより制御されるものであ
り、第2項の(F/A0)は復帰ばね13のセツ
ト荷重F(一定)とスプール12の前記受圧面積
の差A0(一定)との比であり一定となる。従つ
て、2次側圧P2は、パイロツト圧Pcが圧力
(F/A0)に達する迄の間は0となり、パイロツ
ト圧Pcが圧力(F/A0)を超えると、第4図に
実線で示すようにパイロツト圧Pcの上昇にお
うじて上昇する。パイロツト圧Pcは第4図の実
線で示すように励磁電流iのデユーテイ比が30
%から100%の間で当該デユーテイ比に対して直
線的即ち、比例制御される。そこで、デユーテイ
比が30%のときのパイロツト圧Pcが前記圧力
(F/A0)に等しくなるように設定することによ
り、第4図の直線で示すように2次側圧P2
0からP1まで同図の直線で示されるパイロツ
ト圧Pcに比例して制御することが可能となる。
Pc=P 2 +F/A 0 ……(5) ∴P 2 =Pc−F/A 0 ……(6) The pilot pressure Pc on the right side of this equation (6) is controlled by the excitation current i of the solenoid 18. The second term (F/A 0 ) is the ratio between the set load F (constant) of the return spring 13 and the difference A 0 (constant) in the pressure receiving area of the spool 12, and is constant. Therefore, the secondary pressure P 2 becomes 0 until the pilot pressure Pc reaches the pressure (F/A 0 ), and when the pilot pressure Pc exceeds the pressure (F/A 0 ), the solid line in FIG. As shown in , it increases as the pilot pressure Pc increases. The pilot pressure Pc is determined by the duty ratio of the excitation current i of 30, as shown by the solid line in Figure 4.
The duty ratio is controlled linearly or proportionally between % and 100%. Therefore, by setting the pilot pressure Pc when the duty ratio is 30% to be equal to the pressure (F/A 0 ), the secondary side pressure P 2 can be increased from 0 to P as shown by the straight line in Figure 4. It is possible to control the pressure up to 1 in proportion to the pilot pressure Pc shown by the straight line in the same figure.

斯くして、2次側圧P2の低圧制御が可能とな
る。
In this way, low pressure control of the secondary side pressure P2 becomes possible.

第5図は本発明の他の実施例を示し、第3図と
同等のものは同等の符号を付してその説明を省略
する。
FIG. 5 shows another embodiment of the present invention, and the same parts as those in FIG. 3 are given the same reference numerals and the explanation thereof will be omitted.

第5図において、圧力制御弁10′は前記第3
図に示す圧力制御弁10を倒立させた構造に構成
され、ハウジング11′の側壁には一端が入口ポ
ート11′bの反電磁リリーフ弁側の一端内周面
に開口する通路11′eが設けられ、該通路1
1′eにはオリフイス11′fが設けられている。
また、入口ポート11′bを閉塞するスプール1
2′のランド12′bには当該入口ポート11′b
とスプール12′の通路12′cとを連通するオリ
フイスは設けられていない。即ち、前記スプール
12(第3図)のオリフイス12dに替えてハウ
ジング11′に通路11′e及びオリフイス11′
fを設け、1次側の供給圧油を当該オリフイス1
1′fを介してスプール12′cの端面12′f側
に導き、当該スプール12′の孔12′を通して電
磁リリーフ弁15に導くようにしたものである。
In FIG. 5, the pressure control valve 10' is
It has a structure in which the pressure control valve 10 shown in the figure is inverted, and a passage 11'e is provided in the side wall of the housing 11', one end of which opens to the inner peripheral surface of the inlet port 11'b on the side opposite to the electromagnetic relief valve. and the passage 1
An orifice 11'f is provided at 1'e.
Also, the spool 1 that closes the inlet port 11'b
The land 12'b of 2' has the inlet port 11'b.
No orifice is provided to communicate the passage 12'c of the spool 12' with the passage 12'c of the spool 12'. That is, in place of the orifice 12d of the spool 12 (FIG. 3), a passage 11'e and an orifice 11' are provided in the housing 11'.
f, and supply pressure oil on the primary side to the orifice 1.
1'f to the end face 12'f side of the spool 12'c, and to the electromagnetic relief valve 15 through the hole 12' of the spool 12'.

尚、スプール12′の弁座17の端面17bと
の対向端面12′eには大径の孔12′iが孔1
2′cに同心的に穿設されており、パイロツト圧
Pcが当該端面12′eに加わり易いようになされ
ている。この孔12′iは必ずしも必要ではなく
スプール12の端面12e(第3図)と同様に形
成してもよい。
Note that a large diameter hole 12'i is formed in the end surface 12'e of the spool 12' opposite to the end surface 17b of the valve seat 17.
2'c is concentrically drilled, and the pilot pressure
Pc is designed to easily join the end face 12'e. This hole 12'i is not necessarily required and may be formed in the same manner as the end surface 12e of the spool 12 (FIG. 3).

この圧力制御弁10′も前記圧力制御弁10と
同様に作動し、2次側圧P2は0から1次側圧P1
までパイロツト圧Pcに比例して制御され、低圧
制御が可能となる。
This pressure control valve 10' also operates in the same manner as the pressure control valve 10, and the secondary side pressure P2 changes from 0 to the primary side pressure P1 .
The pressure is controlled in proportion to the pilot pressure Pc, making low pressure control possible.

尚、本発明においてはパイロツト制御弁として
電磁リリーフ弁を使用した場合について記述した
が、これに限るものではなく、第1図に示すよう
な手動操作式のパイロツト制御弁を使用してもよ
いことは勿論である。
In the present invention, a case has been described in which an electromagnetic relief valve is used as the pilot control valve, but the present invention is not limited to this, and a manually operated pilot control valve as shown in FIG. 1 may also be used. Of course.

(発明の効果) 以上説明したように本発明によれば、パイロツ
ト制御弁により所定の圧力に調圧されスプールを
開弁方向に変位させるパイロツト圧と閉弁方向に
変位させるリターンスプリングとの協働により当
該スプールの位置を制御し、1次側供給圧力を減
圧して所定の2次側圧力を得るようにした圧力制
御弁において、前記スプール内に形成され、該ス
プールの前記パイロツト制御弁側一端面と反前記
パイロツト制御弁側他端面に開口する貫通孔から
なる通路と、該通路に前記1次側供給圧力を導入
するオリフイス手段と、前記スプールの周面に形
成された2つの段差部とを備え、前記パイロツト
圧が閉弁方向に作用する前記スプールの前記一端
面の第1の受圧面と前記パイロツト圧が開弁方向
に作用する前記スプールの前記他端面の第2の受
圧面との受圧面積差と、前記パイロツト圧が閉弁
方向に作用する前記段差部の一方の第3の受圧面
と前記パイロツト圧が開弁方向に作用する前記段
差部の他方の第4の受圧面との受圧面積差とを等
しく設定し、前記パイロツト圧と前記2次側圧力
とにより前記スプールに作用する開弁方向の力
と、前記パイロツト圧と前記2次側圧力と前記リ
ターンスプリングとにより前記スプールに作用す
る閉弁方向の力との釣り合う位置に当該スプール
を変位させるようにし、前記パイロツト圧に応じ
て前記2次側圧力を制御するようにしたので、前
記2次側圧力を0から前記1次側供給圧力まで制
御することができ、当該2次側圧力の低圧制御を
安定して行うことが可能となり、2次側圧力を0
から円滑に制御することが可能となる。また、構
造も簡単である等の優れた効果がある。
(Effects of the Invention) As explained above, according to the present invention, the pilot pressure which is regulated to a predetermined pressure by the pilot control valve and which displaces the spool in the valve opening direction cooperates with the return spring which displaces the spool in the valve closing direction. The pressure control valve is configured to control the position of the spool by reducing the primary supply pressure to obtain a predetermined secondary pressure. a passage consisting of a through hole opening at an end face and the other end face opposite to the pilot control valve; orifice means for introducing the primary side supply pressure into the passage; and two step portions formed on the circumferential surface of the spool. a first pressure receiving surface on the one end surface of the spool on which the pilot pressure acts in the valve closing direction and a second pressure receiving surface on the other end surface of the spool on which the pilot pressure acts in the valve opening direction. A pressure receiving area difference between a third pressure receiving surface on one side of the stepped portion on which the pilot pressure acts in the valve closing direction and a fourth pressure receiving surface on the other side of the stepped portion on which the pilot pressure acts in the valve opening direction. The pressure receiving area difference is set to be equal, and the force in the valve opening direction acting on the spool due to the pilot pressure and the secondary side pressure, and the force on the spool due to the pilot pressure, the secondary side pressure, and the return spring. The spool is moved to a position that balances the force in the valve closing direction that is applied, and the secondary pressure is controlled according to the pilot pressure, so the secondary pressure is increased from 0 to the primary pressure. It is possible to control up to the side supply pressure, and it is possible to stably perform low pressure control of the secondary side pressure, reducing the secondary side pressure to 0.
This allows for smooth control. Further, it has excellent effects such as a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の圧力制御弁の縦断面図、第2図
は第1図に示す圧力制御弁の特性図、第3図は電
磁リリーフ弁を備えた本発明の圧力制御弁を一実
施例を示す縦断面図、第4図は第3図に示す本発
明の圧力制御弁の特性図、第5図は本発明の圧力
制御弁の他の実施例を示す縦断面図である。 10,10′……圧力制御弁、11,11′……
ハウジング、12,12′……スプール、13…
…復帰ばね、15……電磁リリーフ弁。
Fig. 1 is a longitudinal sectional view of a conventional pressure control valve, Fig. 2 is a characteristic diagram of the pressure control valve shown in Fig. 1, and Fig. 3 is an embodiment of the pressure control valve of the present invention equipped with an electromagnetic relief valve. FIG. 4 is a characteristic diagram of the pressure control valve of the present invention shown in FIG. 3, and FIG. 5 is a longitudinal cross-sectional view of another embodiment of the pressure control valve of the present invention. 10, 10'...pressure control valve, 11, 11'...
Housing, 12, 12'...Spool, 13...
...Return spring, 15...Solenoid relief valve.

Claims (1)

【特許請求の範囲】[Claims] 1 パイロツト制御弁により所定の圧力に調圧さ
れスプールを開弁方向に変位させるパイロツト圧
と閉弁方向に変位させるリターンスプリングとの
協働により当該スプールの位置を制御し、1次側
供給圧力を減圧して所定の2次側圧力を得るよう
にした圧力制御弁において、前記スプール内に形
成され、該スプールの前記パイロツト制御弁側一
端面と反前記パイロツト制御弁側他端面に開口す
る貫通孔からなる通路と、該通路に前記1次側供
給圧力を導入するオリフイス手段と、前記スプー
ルの周面に形成された2つの段差部とを備え、前
記パイロツト圧が閉弁方向に作用する前記スプー
ルの前記一端面の第1の受圧面と前記パイロツト
圧が開弁方向に作用する前記スプールの前記他端
面の第2の受圧面との受圧面積差と、前記パイロ
ツト圧が閉弁方向に作用する前記段差部の一方の
第3の受圧面と前記パイロツト圧が開弁方向に作
用する前記段差部の他方の第4の受圧面との受圧
面積差とを等しく設定し、前記パイロツト圧と前
記2次側圧力とにより前記スプールに作用する開
弁方向の力と、前記パイロツト圧と前記2次側圧
力と前記リターンスプリングとにより前記スプー
ルに作用する閉弁方向の力との釣り合う位置に当
該スプールを変位させるようにし、前記パイロツ
ト圧に応じて前記2次側圧力を制御するようにし
たことを特徴とする圧力制御弁。
1 The position of the spool is controlled by the cooperation of the pilot pressure, which is regulated to a predetermined pressure by the pilot control valve and displaces the spool in the valve-opening direction, and the return spring, which displaces the spool in the valve-closing direction, and the primary side supply pressure is adjusted. In a pressure control valve configured to reduce pressure to obtain a predetermined secondary pressure, a through hole is formed in the spool and opens at one end surface of the spool on the pilot control valve side and the other end surface on the side opposite to the pilot control valve. said spool, said spool comprising: a passageway consisting of a passage, an orifice means for introducing said primary side supply pressure into said passageway, and two step portions formed on a circumferential surface of said spool, said pilot pressure acting in a valve closing direction; a pressure receiving area difference between the first pressure receiving surface on the one end surface of the spool and the second pressure receiving surface on the other end surface of the spool on which the pilot pressure acts in the valve opening direction, and the pilot pressure acting in the valve closing direction. The pressure receiving area difference between the third pressure receiving surface on one side of the stepped portion and the fourth pressure receiving surface on the other side of the stepped portion on which the pilot pressure acts in the valve opening direction is set equal, and the pilot pressure and the second pressure receiving surface are set to be equal. The spool is positioned at a position where the force in the valve opening direction acting on the spool due to the downstream side pressure is balanced with the force in the valve closing direction acting on the spool due to the pilot pressure, the secondary side pressure, and the return spring. A pressure control valve characterized in that the pressure control valve is configured to be displaced and to control the secondary side pressure according to the pilot pressure.
JP26750584A 1984-12-20 1984-12-20 Pressure control valve Granted JPS61149676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26750584A JPS61149676A (en) 1984-12-20 1984-12-20 Pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26750584A JPS61149676A (en) 1984-12-20 1984-12-20 Pressure control valve

Publications (2)

Publication Number Publication Date
JPS61149676A JPS61149676A (en) 1986-07-08
JPH0449126B2 true JPH0449126B2 (en) 1992-08-10

Family

ID=17445773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26750584A Granted JPS61149676A (en) 1984-12-20 1984-12-20 Pressure control valve

Country Status (1)

Country Link
JP (1) JPS61149676A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615290Y2 (en) * 1988-06-27 1994-04-20 川崎重工業株式会社 Electromagnetic proportional pressure reducing valve
US5184644A (en) * 1991-05-30 1993-02-09 Coltec Industries Inc. Solenoid operated pressure regulating valve
US7913679B2 (en) 2004-06-10 2011-03-29 Kee Action Sports I Llc Valve assembly for a compressed gas gun
US7624726B2 (en) * 2004-07-13 2009-12-01 Kee Action Sports I Llc Valve for compressed gas gun
WO2007139934A2 (en) 2006-05-25 2007-12-06 Kee Action Sports I Llc Self-regulating valve assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161250A (en) * 1980-05-15 1981-12-11 Daikin Ind Ltd Variable constant ratio pressure reducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161250A (en) * 1980-05-15 1981-12-11 Daikin Ind Ltd Variable constant ratio pressure reducing device

Also Published As

Publication number Publication date
JPS61149676A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
US6966329B2 (en) Proportional pilot-operated flow control valve
US5048790A (en) Self-modulating control valve for high-pressure fluid flow
US4669504A (en) Closed loop type proportional electromagnetic valve for hydraulic control
US4785849A (en) Pressure reducing valve assembly
JPH0544626Y2 (en)
US7036525B2 (en) Three-way bleed type proportional electromagnetic valve
US4971114A (en) Electromagnetic proportional pressure control valve
US4462566A (en) Pressure compensated flow control system
US6202697B1 (en) Proportional pressure control valve
JP3451056B2 (en) Multi-gain trim valve for selectively engageable friction devices
JPH0449126B2 (en)
JPH0473036B2 (en)
JPH0535445B2 (en)
JPS6225764Y2 (en)
JPH1172176A (en) Flow control valve
JP3084955B2 (en) Relief valve
JPH0440055Y2 (en)
JPS6298409A (en) Electromagnetic proportional pressure control valve
JPH0433048B2 (en)
JPS6347583A (en) Holding valve
JPS63318371A (en) Flow rate control valve
JPS6122161B2 (en)
JP2604532Y2 (en) Solenoid relief valve
JPS6335878B2 (en)
JPH0433049B2 (en)