JPH0454482B2 - - Google Patents

Info

Publication number
JPH0454482B2
JPH0454482B2 JP60140287A JP14028785A JPH0454482B2 JP H0454482 B2 JPH0454482 B2 JP H0454482B2 JP 60140287 A JP60140287 A JP 60140287A JP 14028785 A JP14028785 A JP 14028785A JP H0454482 B2 JPH0454482 B2 JP H0454482B2
Authority
JP
Japan
Prior art keywords
holes
filtrate
filter
sealing plate
columnar body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60140287A
Other languages
Japanese (ja)
Other versions
JPS624411A (en
Inventor
Kazuhiro Suzuki
Takemitsu Amano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60140287A priority Critical patent/JPS624411A/en
Publication of JPS624411A publication Critical patent/JPS624411A/en
Publication of JPH0454482B2 publication Critical patent/JPH0454482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、濾過面積が大きく効率的な濾過を可
能とした多管フイルタに関するものであり、更に
詳しくはセラミツク質の2重構造フイルタの複数
本を一体構造として成形した機械的強度が高く濾
過面積の大きな多管フイルタに関するものであ
る。 (従来の技術) 従来、フイルタの濾過面積を多くする方法とし
て、円筒状の濾過体を複数本束ねて一体構造とし
た多管フイルタが特開昭59−52511号公報により
知られている。また、多孔質体よりなる柱状体中
に複数の原液流通用貫通孔を穿設したものも知ら
れている。 (発明が解決しようとする問題点) しかしながら上述したフイルタのうち、前者の
多管フイルタは単一の濾過体を多数作成しそれら
を束ねて多管フイルタを形成するので、製作工数
が多くかかると共に濾過体間は空間であるため機
械的強度が低い欠点があつた。また、後者の多管
フイルタは柱状体の多管フイルタの外周方向に濾
液を排出する構造であるので、濾液捕集のため缶
体中にフイルタを収納しなければならず、構造が
複雑となる欠点があつた。 本発明の目的は上述した不具合を解消して、濾
過抵抗を増加させずに単位体積当りの濾過表面積
を多くできると共に、低コストで製造できかつ構
造体の機械的強度を損うことのない多管フイルタ
を提供しようとするものである。 (問題点を解決するための手段) 本発明の多管フイルタは、外周囲を液密シール
剤で被覆した多孔質よりなる柱状体中に設けた原
液が貫流する複数の貫通孔と、前記貫通孔の間に
設けられた濾液が流通する複数の濾液排出孔と、
前記柱状体の端面に密接して設けられ前記各貫通
孔と連通する複数の通孔を有する端部封止板と、
柱状体の端面又は該端面と密接する端部封止板の
密接面のいずれか一方の面に設けられた各濾液排
出孔を連結する濾液排出溝とを具えたことを特徴
とするものである。 (作用) 上述した構成により、貫通孔を貫流する原液の
一部は多孔質の柱状体を通り抜けることにより濾
過され、その濾液は各濾液排出孔を介して端部封
止板又は柱状体端面の濾液排出溝に集められ、フ
イルタ外部へ排出される。このとき、各濾液排出
孔は貫通孔に対して負圧となつているため、濾液
が貫通孔の方へ逆流することはない。 (実施例) 第1図は本発明の多管フイルタの一実施例を示
す斜視図である。本実施例では、多孔質の円柱状
体からなる多管フイルタ本体1の両端に、端部封
止板2を液密に密接して設けた例を示している。
まず第2図に多管フイルタ本体1の断面形状を示
すように、好ましくはアルミナ、シリカ、ムライ
ト、コージエライト等よりなる多孔質の円柱状体
中に、原液が通過する多数の貫通孔3が千鳥状に
位置すると共に、これより小さい径を有する濾液
が流通する濾液排出孔5が3角形をなす各3個の
貫通孔3の間のほぼ等間隔の位置に位置するよう
押出成形する。次にこの押出成形体を乾燥焼成し
て、多管フイルタ本体1を形成する。多管フイル
タ本体1の外表面はガラス質等の被覆材を液密に
コーテイングして被覆層4を設けている。なお、
このとき好ましくは多管フイルタ本体1の焼成前
又は焼成後に、アルミナ、シリカ、ムライト、コ
ージエライト等の微粒子を含む懸濁液を各貫通孔
3中に流通させて貫通孔3の内面にこれらの微細
粒子の懸濁液を付着させ焼成すると貫通孔3の内
周面に第2図に示すように濾過膜10が形成で
き、より好適である。 第3図は端部封止板2の一実施例を示す正面図
である。本実施例の端部封止板2は、フイルタ本
体1の各貫通孔3と連通する通孔6と各濾液排出
孔5を連結する濾液排出溝7を有しており、フイ
ルタ本体1に接する部分には接合部8を設けてい
る。このため、端部封止板2をフイルタ本体1の
端部に装着した状態では原液と濾液は完全に分離
される。さらに端部封止板2には濾液排出溝7に
集められた濾液をまとめて外部に排出するための
排出口9を設けている。また、フイルタ本体1と
端部封止板2の接合に際しては、無機質接着剤に
より密封接着すると好適である。 実施例 1 アルミナを主成分としカオリンと有機バインダ
ーを添加した焼成後の最大気孔径が15μmとなる
素地を使用して、内径7φの孔を19個等間隔に配
置し同じく内径3φの孔を7φの孔3個で構成され
る三角形の中心部に各1個ずつ、ならびに外周部
に18個計42個配置した形状の直径70mmの円柱を真
空押出機を使用して60cmの長さに押し出した。こ
の多管フイルタ用素材を乾燥後カツターで切断し
て50cmの長さとした。 これとは別に、同一方法で、3.0φの孔42個を目
くらにした口金を使用して押し出した素材を、乾
燥後カツターで1.1cmの厚さに切断した。この板
の片側に切削工具を使用して、貫通孔のまわりに
は肉厚2.5mm、外周部には4.0mmを残して残りの部
分に深さ3mmの濾液排出溝を堀り込んで、接合部
を有する端面封止板を作製した。また、外周部に
1ケ所貫通孔を設けて排出口を作製した。 さらに長石60%、カオリン20%、珪砂15%、ド
ロマイト5%からなる接着用釉薬をポツトミルで
湿式粉砕し、5μmより粗い粒子が10%以内にな
るまで粉砕した。これに有機結合材(CMCカル
ボキシメチルセルロース)を0.2%加えて水分40
%の泥漿を準備した。その後、端面封止板の溝付
側の表面に溝を埋めないように注意しながら釉泥
漿を3回ハケ塗りして約0.3mmの厚さにした。 次に、焼成用焼台の上に端面封止板の溝部を上
にして置き、この上に多管フイルタを封止板の孔
の位置に合わせて立て、この上にもう1個の端面
封止板を溝部を下向きにして孔の位置を合わせて
載置し、互いにずれないように円筒状のサヤで囲
むと共に約70φの孔を有する棚板で支持してこの
状態で1500℃で焼成した。さらに、平均気孔径が
0.95μmとなるアルミナを主成分とする濾過層用
泥漿を既知の方法でこの多管フイルタの19本の孔
の内表面ならびに上下両端面へ50μmの厚さでコ
ーテイングした。乾燥後外周部に上述した釉薬を
約0.2mmの厚さに霧掛けした後、1500℃で再焼成
して本発明の多管フイルタを得た。また、参考品
として外径10mm、内径6mmで長さ500mmの円筒状
の濾過体19本を直径70mmの端部へ樹脂で接着して
集束した多管フイルタを作製した。各フイルタの
特性を第1表に示す。
(Field of Industrial Application) The present invention relates to a multi-tube filter that has a large filtration area and enables efficient filtration. More specifically, the present invention relates to a multi-tube filter that has a large filtration area and enables efficient filtration. The present invention relates to a multi-tube filter with high mechanical strength and a large filtration area. (Prior Art) Conventionally, as a method of increasing the filtration area of a filter, a multi-tube filter in which a plurality of cylindrical filter bodies are bundled into an integral structure is known from Japanese Patent Laid-Open No. 59-52511. Also known is a columnar body made of a porous body with a plurality of through holes for distributing the stock solution. (Problems to be Solved by the Invention) However, among the above-mentioned filters, the former multi-tube filter requires a large number of manufacturing man-hours and Since there is a space between the filter bodies, the mechanical strength is low. In addition, the latter multi-tube filter has a structure in which the filtrate is discharged in the direction of the outer circumference of the columnar multi-tube filter, so the filter must be housed in the can body to collect the filtrate, making the structure complicated. There were flaws. The purpose of the present invention is to solve the above-mentioned problems, to increase the filtration surface area per unit volume without increasing the filtration resistance, and to provide a multilayer structure that can be manufactured at low cost and that does not impair the mechanical strength of the structure. It is intended to provide a tube filter. (Means for Solving the Problems) The multitubular filter of the present invention has a plurality of through holes through which the stock solution flows, which are provided in a porous columnar body whose outer periphery is coated with a liquid-tight sealant, and a plurality of through holes through which the stock solution flows. a plurality of filtrate discharge holes provided between the holes through which the filtrate flows;
an end sealing plate having a plurality of through holes provided closely to the end surface of the columnar body and communicating with each of the through holes;
It is characterized by comprising a filtrate discharge groove that connects each filtrate discharge hole provided on either the end face of the columnar body or the close contact face of the end sealing plate that is in close contact with the end face. . (Function) With the above-described configuration, a part of the stock solution flowing through the through hole is filtered by passing through the porous columnar body, and the filtrate is passed through each filtrate discharge hole to the end sealing plate or the end face of the columnar body. The filtrate is collected in the filtrate drain groove and discharged to the outside of the filter. At this time, since each filtrate discharge hole is under negative pressure with respect to the through-hole, the filtrate does not flow back toward the through-hole. (Embodiment) FIG. 1 is a perspective view showing an embodiment of a multi-tube filter of the present invention. In this embodiment, an example is shown in which end sealing plates 2 are provided at both ends of a multitubular filter body 1 made of a porous cylindrical body in close contact with each other in a liquid-tight manner.
First, as shown in FIG. 2, which shows the cross-sectional shape of the multitubular filter body 1, a large number of through holes 3 through which the stock solution passes are arranged in a staggered manner in a porous cylindrical body preferably made of alumina, silica, mullite, cordierite, etc. It is extruded so that the filtrate discharge holes 5, through which the filtrate having a smaller diameter flows, are positioned at approximately equal intervals between each of the three triangular through-holes 3. Next, this extrusion molded body is dried and fired to form the multitubular filter body 1. The outer surface of the multi-tube filter body 1 is provided with a coating layer 4 by liquid-tightly coating it with a coating material such as glass. In addition,
At this time, preferably before or after firing the multitubular filter body 1, a suspension containing fine particles of alumina, silica, mullite, cordierite, etc. is caused to flow through each through hole 3 to coat the inner surface of the through hole 3 with these fine particles. When a particle suspension is deposited and fired, a filtration membrane 10 can be formed on the inner peripheral surface of the through hole 3 as shown in FIG. 2, which is more preferable. FIG. 3 is a front view showing one embodiment of the end sealing plate 2. FIG. The end sealing plate 2 of this embodiment has a through hole 6 that communicates with each through hole 3 of the filter body 1 and a filtrate discharge groove 7 that connects each filtrate discharge hole 5, and is in contact with the filter body 1. A joint portion 8 is provided in the portion. Therefore, when the end sealing plate 2 is attached to the end of the filter body 1, the stock solution and the filtrate are completely separated. Further, the end sealing plate 2 is provided with a discharge port 9 for collectively discharging the filtrate collected in the filtrate discharge groove 7 to the outside. Further, when joining the filter body 1 and the end sealing plate 2, it is preferable to seal them with an inorganic adhesive. Example 1 Using a base material with alumina as the main component and kaolin and an organic binder added, the maximum pore diameter after firing is 15 μm, 19 holes with an inner diameter of 7φ are arranged at equal intervals, and 19 holes with an inner diameter of 3φ are arranged at 7φ. Using a vacuum extruder, a cylinder with a diameter of 70 mm was extruded to a length of 60 cm, with one hole each in the center of a triangle consisting of three holes, and 18 holes on the outer periphery, for a total of 42 holes. . After drying, this multi-tube filter material was cut with a cutter into a length of 50 cm. Separately, the same method was used to extrude the material using a nozzle with 42 blind holes of 3.0φ, and after drying, the material was cut into 1.1 cm thick pieces using a cutter. Using a cutting tool, dig a filtrate drainage groove of 2.5 mm in thickness around the through hole, 4.0 mm in the outer periphery, and 3 mm in depth in the remaining part using a cutting tool to join the board. An end face sealing plate having a portion was prepared. In addition, a through hole was provided at one location on the outer periphery to create a discharge port. Furthermore, an adhesive glaze consisting of 60% feldspar, 20% kaolin, 15% silica sand, and 5% dolomite was wet-pulverized in a pot mill until the proportion of particles coarser than 5 μm was within 10%. Add 0.2% organic binder (CMC carboxymethyl cellulose) to this to reduce moisture content to 40%.
% slurry was prepared. Thereafter, glaze slurry was applied three times to a thickness of about 0.3 mm by brushing the grooved surface of the end sealing plate, being careful not to fill the grooves. Next, place the end sealing plate with the groove facing up on the baking table, place the multi-tubular filter on top of it, aligning it with the hole in the sealing plate, and place another end sealing plate on top of it. The stop plates were placed with the grooves facing downward and the holes aligned, surrounded by cylindrical sheaths to prevent them from shifting, and supported by shelf boards with holes of approximately 70φ, and fired at 1500°C in this state. . Furthermore, the average pore size
A filtration layer slurry containing alumina as a main component and having a thickness of 0.95 μm was coated to a thickness of 50 μm on the inner surface of the 19 holes of this multitubular filter as well as on both upper and lower end surfaces. After drying, the above-mentioned glaze was sprayed on the outer periphery to a thickness of about 0.2 mm, and then re-fired at 1500°C to obtain a multi-tube filter of the present invention. In addition, as a reference product, a multitubular filter was fabricated by bonding 19 cylindrical filter bodies each having an outer diameter of 10 mm, an inner diameter of 6 mm, and a length of 500 mm to an end portion of 70 mm in diameter using resin. Table 1 shows the characteristics of each filter.

【表】 第1表の結果により、参考例に比べて本発明の
多管フイルタは濾過面積も大きく部品点数が少な
いと共に機械的強度が格段に向上していることが
わかる。 本発明は上述した実施例にのみ限定されるもの
ではなく、幾多の変形、変更が可能である。例え
ば上述した実施例では柱状体の断面形状を円形と
したが、多角形形状とすることもできる。また貫
通孔の配列も千鳥状に限定されるものではなく、
また、濾液排出溝も端部封止板に設けるのではな
く、柱状体の端面に設けてもよく、さらに、濾液
排出溝も柱状体と端部封止板との両接合面に必ず
設ける必要はなく、柱状体と端部封止板との接合
面のうち少なくとも一方のみに設けてもよい。 (発明の効果) 以上詳細に説明したところから明らかなよう
に、本発明の多管フイルタによれば、濾過面積が
大きく濾過効率を向上させることができると共
に、貫通孔と排出孔間は多孔質フイルタ素地で満
たされているため機械的強度が高くそのため濾過
圧力を高くして使用することができる。また、濾
液を1ケ所からまとめて排出できると共に、フイ
ルタ自体を特別の缶体中に収納する必要がない。
さらに、従来の方法と比較して部品数が著しく少
ないことから低価格で作製することができる。
[Table] From the results in Table 1, it can be seen that, compared to the reference example, the multi-tube filter of the present invention has a larger filtration area, fewer parts, and significantly improved mechanical strength. The present invention is not limited only to the embodiments described above, and numerous modifications and changes are possible. For example, in the above-described embodiment, the columnar body has a circular cross-sectional shape, but it may also have a polygonal shape. Furthermore, the arrangement of the through holes is not limited to a staggered pattern.
In addition, the filtrate drain groove may also be provided on the end face of the columnar body instead of on the end sealing plate, and the filtrate drain groove must also be provided on both the joining surfaces of the columnar body and the end sealing plate. Instead, it may be provided only on at least one of the joint surfaces of the columnar body and the end sealing plate. (Effects of the Invention) As is clear from the above detailed explanation, according to the multi-tube filter of the present invention, the filtration area is large and the filtration efficiency can be improved, and the space between the through hole and the discharge hole is porous. Since it is filled with filter material, it has high mechanical strength and can therefore be used at high filtration pressure. Further, the filtrate can be discharged all at once from one place, and there is no need to house the filter itself in a special can.
Furthermore, since the number of parts is significantly smaller than in conventional methods, it can be manufactured at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多管フイルタの一実施例を示
す斜視図、第2図は第1図に示す実施例の断面
図、第3図は端部封止板の一実施例を示す正面図
である。 1……フイルタ本体、2……端部封止板、3…
…貫通孔、4……被覆層、5……濾液排出孔、6
……通孔、7……濾液排出溝、8……接合部、9
……排出口、10……濾過膜。
Fig. 1 is a perspective view showing an embodiment of the multi-tube filter of the present invention, Fig. 2 is a sectional view of the embodiment shown in Fig. 1, and Fig. 3 is a front view showing an embodiment of the end sealing plate. It is a diagram. 1... Filter body, 2... End sealing plate, 3...
...Through hole, 4...Coating layer, 5...Filtrate discharge hole, 6
...Through hole, 7...Filtrate discharge groove, 8...Joint part, 9
...Discharge port, 10...filtration membrane.

Claims (1)

【特許請求の範囲】 1 外周囲を液密シール剤で被覆した多孔質より
なる柱状体中に設けた原液が貫流する複数の貫通
孔と、前記貫通孔の間に設けられた濾液が流通す
る複数の濾液排出孔と、前記柱状体の端面に密接
して設けられ前記各貫通孔と連通する複数の通孔
を有する端部封止板と、柱状体の端面又は該端面
と密接する端部封止板の密接面のいずれか一方の
面に設けられた各濾液排出孔を連結する濾液排出
溝とを具えたことを特徴とする多管フイルタ。 2 前記貫通孔の内壁面に微細粒子の焼結体より
なる濾過膜を形成した特許請求の範囲第1項記載
の多管フイルタ。 3 前記濾液排出孔を、千鳥状に設けた複数の貫
通孔のうち3角形をなす3個の貫通孔のほぼ等間
隔位置に設けた特許請求の範囲第1項または第2
項記載の多管フイルタ。 4 前記柱状体の断面形状が六角形である特許請
求の範囲第1項ないし第3項のいずれかに記載の
多管フイルタ。
[Scope of Claims] 1. A plurality of through-holes through which the stock solution flows, provided in a porous columnar body whose outer periphery is coated with a liquid-tight sealant, and through which the filtrate flows between the through-holes. a plurality of filtrate discharge holes, an end sealing plate having a plurality of through holes that are provided in close contact with the end face of the columnar body and communicate with each of the through holes, and an end face of the columnar body or an end that is in close contact with the end face. 1. A multi-tube filter comprising a filtrate discharge groove that connects each filtrate discharge hole provided on one of the close contact surfaces of the sealing plate. 2. The multi-tube filter according to claim 1, wherein a filtration membrane made of a sintered body of fine particles is formed on the inner wall surface of the through hole. 3. Claim 1 or 2, wherein the filtrate discharge holes are provided at approximately equal intervals between three triangular through holes among the plurality of through holes provided in a staggered manner.
Multi-tube filter as described in section. 4. The multitube filter according to any one of claims 1 to 3, wherein the columnar body has a hexagonal cross-sectional shape.
JP60140287A 1985-06-28 1985-06-28 Multitube filter Granted JPS624411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60140287A JPS624411A (en) 1985-06-28 1985-06-28 Multitube filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60140287A JPS624411A (en) 1985-06-28 1985-06-28 Multitube filter

Publications (2)

Publication Number Publication Date
JPS624411A JPS624411A (en) 1987-01-10
JPH0454482B2 true JPH0454482B2 (en) 1992-08-31

Family

ID=15265272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60140287A Granted JPS624411A (en) 1985-06-28 1985-06-28 Multitube filter

Country Status (1)

Country Link
JP (1) JPS624411A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236509A (en) * 1987-03-24 1988-10-03 Ebara Corp Ceramic filter
JPH02139014A (en) * 1988-11-21 1990-05-29 Japan Pionics Co Ltd Filter element
JP2001259326A (en) * 2000-03-23 2001-09-25 Ngk Insulators Ltd Honeycomb filter
JP2009143338A (en) * 2007-12-13 2009-07-02 Denso Corp Vehicular air-conditioner

Also Published As

Publication number Publication date
JPS624411A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
US5855781A (en) Monolithic ceramic filter
EP2116347B1 (en) Method for manufacturing a sealed honeycomb structure
US5853582A (en) Tubular inorganic filter element having increased mechanical strength and increased filter area
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
US20080164643A1 (en) Manufacturing method of plugged honeycomb structure
CN110475599B (en) Patterned plugged honeycomb, particulate filter, and extrusion die therefor
EP2153958B1 (en) Die for molding honeycomb segment and method of producing honeycomb structure
FI77162C (en) FILTERKONSTRUKTION OCH FOERFARANDE FOER BILDANDE AV FILTERKONSTRUKTION.
JPH0454482B2 (en)
CN112159239B (en) Preparation method of roll-type ceramic membrane support and ceramic membrane product thereof
JP4094771B2 (en) Ceramic filter substrate and method for producing the same
US4549963A (en) Filtering device comprising one or more filtering elements consisting of filtering discs
EP1666435B1 (en) Method of manufacturing a honeycomb structure
EP1607129B1 (en) Ceramic filter
EP0956137B1 (en) Filter cassette
JP2005118771A (en) Cylindrical ceramic porous body, method for manufacturing the same, and ceramic filter using the same
JP4040427B2 (en) Manufacturing method of filter element
US3599796A (en) Filter construction
JP3111782B2 (en) Monolith type ceramic filter
JPH0415286Y2 (en)
JPS60161713A (en) Filter and its preparation
JP2734486B2 (en) Method for producing porous body composed of a plurality of particle layers
CN219333806U (en) Full ceramic sealing element of hollow flat ceramic membrane
KR100845218B1 (en) Ceramic fiter of which infiltration surface is maximized
JPH0477609B2 (en)