JPH0454321A - Electromagnetic particle type connection device - Google Patents

Electromagnetic particle type connection device

Info

Publication number
JPH0454321A
JPH0454321A JP16321690A JP16321690A JPH0454321A JP H0454321 A JPH0454321 A JP H0454321A JP 16321690 A JP16321690 A JP 16321690A JP 16321690 A JP16321690 A JP 16321690A JP H0454321 A JPH0454321 A JP H0454321A
Authority
JP
Japan
Prior art keywords
magnetic
torque
detector
drive member
connection body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16321690A
Other languages
Japanese (ja)
Inventor
Ryoji Kobayashi
良治 小林
Masaya Yamada
雅也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16321690A priority Critical patent/JPH0454321A/en
Publication of JPH0454321A publication Critical patent/JPH0454321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Winding Of Webs (AREA)

Abstract

PURPOSE:To eliminate a detector on the machine side and perform a torque control correctly and easily by disposing magnetic particles between a first connection body and a second connection body which are rotatable, and disposing a torque detector inside a side surface of the first connection body. CONSTITUTION:A drive member 29 of a first connection body is fixed to a drive rotation shaft 6 on the inner side of a stator 1 through a cavity. Detection coils 34, 35 are provided corresponding to magnetic layers 30, 31 fixed to the drive member 29, they are connected with a detection circuit 38, and magnetism focusing layers 36, 37 are provided. A driven member 9 of a second connection body is fixed to a driven rotation shaft 11, and magnetic particles 10 are filled in the circular cavity. The magnetic particles 10 are magnetized by a magnetic coil 2 to connect the drive member with the driven member. Changes of the magnetic permeability at the magnetic layers 30, 31 are detected by the detection coils 34, 35, and a torque is detected by the detection circuit 38. Use of a detector on the machine side is thus eliminated, and a sufficient torque control is achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁性粒子を介して連結し、トルク検出器を
内蔵した電磁粒子式連結装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electromagnetic particle type coupling device which is coupled via magnetic particles and has a built-in torque detector.

〔従来の技術〕[Conventional technology]

第4図は従来のtifr!を粒子式連結装置の断面図で
ある。同図において、1はステータ、2はこのステータ
1に内蔵された励磁コイル、3はステータ】を支承する
ブラケットで、ヘアリング4.5を介して駆動回転軸6
を回転自在に支承している。
Figure 4 shows the conventional TIFR! FIG. 2 is a sectional view of the particle type coupling device. In the figure, 1 is a stator, 2 is an excitation coil built into the stator 1, and 3 is a bracket that supports the stator.
is rotatably supported.

7は駆動回転軸6に固着され、ステータ1の内側に所定
の空隙を介して設けられ、断面がコの字状の第1の連結
主体を構成するドライブメンバ、8はこのドライブメン
バ7の端部に固定されたプレートである。9はドライブ
メンバ7の内側に複数の所定の径方向環状空隙を介して
設けられた第2の連結主体を構成するドリブンメンバ、
10は上記環状空隙内に充填された磁性粒子である。1
1はドリブンメンバ9に固着された被駆動回転軸、12
はステータ1に固定され、被駆動回転軸11をベアリン
グ13.14を介して回転自在に支承するブラケットで
ある。
7 is a drive member fixed to the drive rotation shaft 6, provided inside the stator 1 through a predetermined gap, and has a U-shaped cross section and constitutes a first connecting body; 8 is an end of this drive member 7; It is a plate fixed to the section. 9 is a driven member that constitutes a second connecting body provided inside the drive member 7 through a plurality of predetermined radial annular gaps;
Reference numeral 10 denotes magnetic particles filled in the annular gap. 1
1 is a driven rotating shaft fixed to the driven member 9; 12
is a bracket that is fixed to the stator 1 and rotatably supports the driven rotating shaft 11 via bearings 13 and 14.

次に動作について説明する0図示しない駆動源と結合さ
れた駆動回転軸6が回転され、ドライブメンバ7がこの
駆動回転軸6と一体に回転しでいる時、ステータ1に内
蔵された励磁コイル2に電流を流すと図中に点線で示す
ように磁束(Φ)が発生する。その磁路の一部である磁
性粒子10は回転しているドライブメンバ7と静止して
いるドリブンメンバ9との間で鎖状に連結している。こ
のため、ドリブンメンバ9は回転され、このドリブンメ
ンバ9と一体に図示しない負荷側に結合された被駆動軸
11を回転させる。そして、励磁コイル2の電流を遮断
すると磁束(Φ)は消失し、磁性粒子10の鎖状の連結
がとかれ、ドリブンメンバ9は回転からフリーとなる。
Next, the operation will be explained. 0 When the drive rotation shaft 6 coupled to a drive source (not shown) is rotated and the drive member 7 is rotating together with this drive rotation shaft 6, the excitation coil 2 built in the stator 1 When a current is passed through, magnetic flux (Φ) is generated as shown by the dotted line in the figure. Magnetic particles 10, which are part of the magnetic path, are connected in a chain between a rotating drive member 7 and a stationary driven member 9. Therefore, the driven member 9 is rotated, and the driven shaft 11, which is integrally connected to the driven member 9 and connected to a load side (not shown), is rotated. Then, when the current in the excitation coil 2 is cut off, the magnetic flux (Φ) disappears, the chain-like connection of the magnetic particles 10 is broken, and the driven member 9 becomes free from rotation.

なお、伝達されるトルク値は励磁コイル2に流す電流値
にほぼ直線的に比例している。
Note that the transmitted torque value is approximately linearly proportional to the current value flowing through the exciting coil 2.

第5図はこの電磁粒子式連結装置を用いてフィルム材を
看取る時の制御のフィードバック系を示している。同図
において、15は駆動源であるモータ、16はモータ1
5の回転軸に連結された第4図の構成の電磁粒子式連結
装置、17゜18はプーリ、19はプーリ17.1Bに
張架されたベルト、20は巻取り軸、21は巾広のフィ
ルム材で、図示しない巻出し側から巻取軸20に巻取っ
ている状態を示している。22はローラ、23.24は
張力を検出するための検出器、25は検出器23.24
間に固定されたローラ、26、.27は検出器23.2
4にラジアル方向の荷重(張力)を与えるためのローラ
である。
FIG. 5 shows a control feedback system when observing a film material using this electromagnetic particle type coupling device. In the figure, 15 is a motor that is a driving source, and 16 is a motor 1.
An electromagnetic particle type coupling device having the configuration shown in Fig. 4 is connected to the rotating shaft 5, 17 and 18 are pulleys, 19 is a belt stretched around the pulley 17.1B, 20 is a winding shaft, and 21 is a wide The film material is shown being wound around a winding shaft 20 from an unwinding side (not shown). 22 is a roller, 23.24 is a detector for detecting tension, 25 is a detector 23.24
Rollers fixed between 26, . 27 is the detector 23.2
This is a roller for applying a load (tension) in the radial direction to 4.

28は検出器23.24からの指令を受け、を磁粒子式
連結装置16のt流を変化させるための制御装置である
28 is a control device for receiving commands from the detectors 23 and 24 and changing the t-flow of the magnetic particle coupling device 16.

モータ15の回転駆動力はtに粒子式連結装置16、プ
ーリ17.ベルト19.プーリ18を介して巻取軸20
に伝達される。これによりフィルム材21は図示矢印方
向に巻取られる。この時、ローラ26,27によりフィ
ルム材21に張力を与え、この張力を検出器23.24
によって検出する。検出器23.24から検出信号を入
力している制御装置28はその検出信号に応じてt磁粒
子式連結装置16の電流即ち第4図に示す励磁コイル2
に流す電流量を制御する。
The rotational driving force of the motor 15 is transmitted through a particle coupling device 16, a pulley 17. Belt 19. Winding shaft 20 via pulley 18
transmitted to. As a result, the film material 21 is wound up in the direction of the arrow shown in the figure. At this time, tension is applied to the film material 21 by the rollers 26 and 27, and this tension is detected by the detectors 23 and 24.
Detected by. The control device 28 inputting detection signals from the detectors 23 and 24 controls the current of the magnetic particle coupling device 16, that is, the excitation coil 2 shown in FIG. 4, in response to the detection signals.
Controls the amount of current flowing to the

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のam粒子式連結装置は以上のように構成されてい
るので、励磁電流の値によりトルク管理または制御が行
なわれていた。そのために連結装置の製品バラツキ、磁
性粒子の劣化または経時変化により励磁電流とトルクの
関係が変化すると、十分なトルク管理、制御が行なえな
い課題があった。また、十分なトルク管理を行なうには
、連結装置の外にトルク検出器を別に設けなければなら
ず、場合によっては張力を与えるためのローラも必要と
なり、構成が複雑化し、高価になるなどの課題があった
Since the conventional am particle type coupling device is constructed as described above, torque management or control is performed based on the value of the excitation current. Therefore, if the relationship between the excitation current and the torque changes due to product variations in the coupling device, deterioration of the magnetic particles, or changes over time, there is a problem that sufficient torque management and control cannot be performed. In addition, in order to perform sufficient torque management, a torque detector must be installed separately outside the coupling device, and in some cases rollers are also required to apply tension, making the configuration complex and expensive. There was an issue.

また、場所によってはトルク検出器を装着できない場合
があり、この場合には目安にて運転するためにフィルム
材等の巻取りがうまく出来ないなどの課題があった。
Further, depending on the location, it may not be possible to install a torque detector, and in this case, there are problems such as difficulty in winding up the film material etc. because the operation is performed based on a guideline.

この発明は上記のような課題を解決するためになされた
もので、簡皐にトルク検出ができて十分なトルク管理、
制御が行なえる小型で安価な電磁粒子式連結装置を得る
ことを目的とする。
This invention was made to solve the above-mentioned problems, and allows for easy torque detection and sufficient torque management.
The purpose of this invention is to obtain a compact and inexpensive electromagnetic particle coupling device that can be controlled.

[課題を解決するための手段] この発明の電磁粒子式連結装置は、該装置において、第
1の連結生体の側面を利用してトルク検出器を内蔵した
ものである。
[Means for Solving the Problems] The electromagnetic particle coupling device of the present invention incorporates a torque detector using the side surface of the first coupled living body.

〔作 用〕[For production]

この発明における電磁粒子式連結装置は、断面がコの字
状の第1の連結主体の側面を利用してトルク検出器を装
着したので、正確なトルク値が装置単体で測定可能にな
り、この測定したトルクにより、トルク管理、制御を行
なえる。
In the electromagnetic particle coupling device according to the present invention, a torque detector is mounted using the side surface of the first coupling body having a U-shaped cross section, so that an accurate torque value can be measured by the device alone. Torque management and control can be performed using the measured torque.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例によるtiff粒子式連結装置
の断面図を示している。29は駆動回転軸6に固着され
、ステータlの内側に複数の所定の空隙を介して設けら
れ、断面がコの字状の第1の連結主体を構成するドライ
ブメンバであり、第4図に示すドライブメンバ7にとっ
て代わるものである。30.31はドライブメンバ29
の外側側面29aに固着された高透磁率軟磁性材からな
る磁性層で、第2図の放射方向のA軸に対し細長い長方
形の磁性層30は+45°の方向に、同様な形状の磁性
層31は一45″の方向にそれぞれ形成されている。こ
れらの磁性層30.31は例えば等角度間隔をもって側
面29aの円周方向全体又はその一部に設けられている
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a cross-sectional view of a tiff particle coupling device according to an embodiment of the present invention. Reference numeral 29 denotes a drive member which is fixed to the drive rotation shaft 6, is provided inside the stator l through a plurality of predetermined gaps, and constitutes the first connecting body having a U-shaped cross section. This replaces the drive member 7 shown in FIG. 30.31 is drive member 29
A magnetic layer made of a high-permeability soft magnetic material is fixed to the outer side surface 29a of the magnetic layer 30. The elongated rectangular magnetic layer 30 is oriented at an angle of +45° with respect to the A-axis in the radial direction in FIG. 31 are formed in the 145'' direction. These magnetic layers 30, 31 are provided, for example, at equal angular intervals over the entire circumferential direction of the side surface 29a or a portion thereof.

32は第4図に示すブラケット3の代り゛をなすブラケ
ット、33ばこのブラケット32のドライブメンバ29
側に固定されたボビン、34.35は磁性1130.3
1にそれぞれ対応してボビン33に巻回された検出コイ
ル、36.37はこの検出コイル34.35の周囲に設
けられた磁気収束層で、高透磁率磁性材料からなる。3
8は検出コイル3435に接続された検出回路で、第3
図に示すブロック図の通り構成されている。
32 is a bracket that replaces the bracket 3 shown in FIG. 4; 33 is a drive member 29 of the bracket 32 of the cigarette;
The bobbin fixed on the side, 34.35 is magnetic 1130.3
Detection coils 36 and 37 are respectively wound around the bobbin 33 corresponding to the detection coils 1 and 34, and 37 are magnetic convergence layers provided around the detection coils 34 and 35, which are made of a high permeability magnetic material. 3
8 is a detection circuit connected to the detection coil 3435;
It is configured as shown in the block diagram shown in the figure.

なお、この検出回路3日は一般的に知られているインダ
クタンス差動増幅回路であり、概略を第3図に示すが、
その内容の説明は省略する。
Note that this detection circuit is a generally known inductance differential amplifier circuit, and its outline is shown in Figure 3.
Explanation of its contents will be omitted.

その他第4図と同じ符号1.2.4〜6.8〜140部
分は従来装置と同様なのでその説明を省略する。
Other portions 1.2.4 to 6.8 to 140 that are the same as those in FIG. 4 are the same as those in the conventional device, so their explanations will be omitted.

次に第1図を主に参照してこの実施例の動作について説
明する。励磁コイル2に電流を流すことにより磁束(Φ
)が図中破線のように発生し、磁性粒子10が磁化され
、ドライブメンバ29とドリブンメンバ9の間で鎖状に
連結し、ドライブメンバ29とドリブンメンバ9とが動
力的に連結される。これにより、駆動回転軸6から被駆
動回転軸11へ動力が伝達される。このような動作につ
いては、従来装置と何ら異なる点はない。ここで、動力
が伝達される連結状態では、ドライブメンバ29の側面
29aには動力伝達分のトルクが印加されることになり
、磁性層30.31の一方に弓張力が発生し、他方に圧
縮力が発生し、歪が生しる。この歪が生しると磁性層3
0.31の透磁率が変化し、引張力の場合と圧縮力の場
合では透磁率が逆方向に変化する。検出コイル34.3
5はこの透磁率の変化を磁気的インピーダンスの変化と
して検出し、検出回路3日は各検出コイル3435の出
力を差動増幅し、ドライブメンバ29の側面29aの歪
量すなわちトルクに応じた検出電圧を出力する。
Next, the operation of this embodiment will be explained mainly with reference to FIG. By passing current through the excitation coil 2, the magnetic flux (Φ
) is generated as shown by the broken line in the figure, the magnetic particles 10 are magnetized and connected in a chain between the drive member 29 and the driven member 9, and the drive member 29 and the driven member 9 are dynamically connected. As a result, power is transmitted from the driving rotation shaft 6 to the driven rotation shaft 11. Regarding such operations, there is no difference from conventional devices. Here, in a connected state where power is transmitted, a torque corresponding to the power transmission is applied to the side surface 29a of the drive member 29, and bow tension is generated in one of the magnetic layers 30, 31, and compressive force is generated in the other. Force is generated and distortion occurs. When this strain occurs, the magnetic layer 3
The magnetic permeability of 0.31 changes, and the magnetic permeability changes in opposite directions in the case of tensile force and the case of compressive force. Detection coil 34.3
5 detects this change in magnetic permeability as a change in magnetic impedance, and the detection circuit 3 differentially amplifies the output of each detection coil 3435 and generates a detection voltage according to the amount of strain, that is, torque, on the side surface 29a of the drive member 29. Output.

以上の通り、この実施例では、従来空間であったドライ
ブメンバ29の側面29aとブラケット32の間に検出
コイル34.35を配設し、ドライブメンバ29の側面
29aの外周面上に磁性層30.31を固着しているた
め、このトルク検出器を内蔵しても装置全体が大型化す
ることはない。
As described above, in this embodiment, the detection coils 34.35 are disposed between the side surface 29a of the drive member 29, which was conventionally spaced, and the bracket 32, and the magnetic layer 34.35 is disposed on the outer peripheral surface of the side surface 29a of the drive member 29. .31 is fixed, so even if this torque detector is incorporated, the overall size of the device will not be increased.

従って、従来装置で示した機械に検出器を装着する必要
もなくなり、また、検出器を装着できない箇所でも1を
磁粒子式連結装置内部に設けるようにしたためトルク制
御が容易となり、機械装置を安価に製作できるようにな
ると共にフィルム材等の巻取りが正確に行なえるものと
なる。
Therefore, there is no need to attach a detector to the machine as shown in the conventional device, and even in places where a detector cannot be attached, 1 is installed inside the magnetic particle coupling device, making torque control easier and making the machine cheaper. In addition, it becomes possible to accurately wind up the film material, etc.

なお、磁性層は軟磁性の非晶質金属であっても良いし、
無電解メツキにより形成された高磁歪材のものであって
も良い。
Note that the magnetic layer may be a soft magnetic amorphous metal,
It may also be made of a high magnetostrictive material formed by electroless plating.

また、トルク検出器は、磁歪方式のものについて説明し
たが、位相差方式、歪ゲージ方式等の別のトルク検出方
法のものであっても良い。
Moreover, although the torque detector has been described as a magnetostrictive type torque detector, it may be one that uses another torque detection method such as a phase difference type or a strain gauge type.

また、上記実施例では、w磁粒子式連結装置としてクラ
ッチ装置について説明したが、ブレーキ装置においても
同様であり、この場合は、被駆動回転子を固定すれば良
い。
Further, in the above embodiment, a clutch device has been described as a w magnetic particle type coupling device, but the same applies to a brake device, and in this case, the driven rotor may be fixed.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば断面がコの字状の第1
の連結主体の側面を利用してトルク検出器を電磁粒子式
連結装置に内蔵するように構成したので、従来の機械側
での検出器は不要となり、検出器取付不可能な所でも、
トルク検出が可能となり、十分なトルク管理又はトルク
制御が小型で安価に行なえる効果がある。
As described above, according to the present invention, the first
Since the torque detector is built into the electromagnetic particle coupling device by utilizing the side of the coupling body, the conventional detector on the machine side is no longer necessary, and it can be used even in places where it is impossible to install a detector.
Torque detection becomes possible, and there is an effect that sufficient torque management or torque control can be performed in a small size and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による1磁粒子式連結装置
の断面図、第2図は第1図に示した装置の部分側面図、
第3図は検出回路等を示すフロンク図、第4図は従来装
置を示す断面図、第5図は従来装置を用いた巻取りシス
テムの一構成例を示す斜視図である。 図中、1・・・ステータ、2・・・励磁コイル、6・・
・駆動回転軸、9・・・ドリブンメンバ、10・・・磁
性粒子、11・・・被駆動回転軸、29・・・ドライブ
メンバ、・・・側面、 ・・・磁性層、 2・・・ブラ ケント・ 5・・・検出コ イ ル。 なお、 図中同一符号は同一、 又は相当部分を示 ず。
FIG. 1 is a sectional view of a single magnetic particle coupling device according to an embodiment of the present invention, FIG. 2 is a partial side view of the device shown in FIG. 1,
FIG. 3 is a front view showing a detection circuit, etc., FIG. 4 is a sectional view showing a conventional device, and FIG. 5 is a perspective view showing an example of the configuration of a winding system using the conventional device. In the figure, 1... stator, 2... excitation coil, 6...
- Drive rotating shaft, 9... Driven member, 10... Magnetic particle, 11... Driven rotating shaft, 29... Drive member,... Side surface,... Magnetic layer, 2... Brakent 5...Detection coil. In addition, the same symbols in the figures do not indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 断面が略コの字状に形成され、回転可能に設けられた第
1の連結体と、この第1の連結体と連結可能に配設され
た第2の連結体と、上記第1、第2の連結体間に充填さ
れた磁性粒子と、この磁性粒子を磁化して上記第1、第
2の連結体間に伝達トルクを与えるコイルとを備えた電
磁粒子式連結装置において、上記第1の連結体の側面を
利用してトルク検出器を内蔵したことを特徴とする電磁
粒子式連結装置。
A first connecting body having a substantially U-shaped cross section and rotatably provided; a second connecting body disposed so as to be connectable to the first connecting body; In the electromagnetic particle coupling device, the electromagnetic particle coupling device includes magnetic particles filled between the two coupling bodies, and a coil that magnetizes the magnetic particles and applies a transmission torque between the first and second coupling bodies. An electromagnetic particle coupling device characterized by having a built-in torque detector using the side surface of the coupling body.
JP16321690A 1990-06-20 1990-06-20 Electromagnetic particle type connection device Pending JPH0454321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16321690A JPH0454321A (en) 1990-06-20 1990-06-20 Electromagnetic particle type connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16321690A JPH0454321A (en) 1990-06-20 1990-06-20 Electromagnetic particle type connection device

Publications (1)

Publication Number Publication Date
JPH0454321A true JPH0454321A (en) 1992-02-21

Family

ID=15769514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16321690A Pending JPH0454321A (en) 1990-06-20 1990-06-20 Electromagnetic particle type connection device

Country Status (1)

Country Link
JP (1) JPH0454321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507701A (en) * 1999-08-12 2003-02-25 ファースト テクノロジー アーゲー Magnetic transducer for torque or force sensor
JP2003523501A (en) * 1999-03-26 2003-08-05 ファースト テクノロジー アーゲー Torque and speed sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003523501A (en) * 1999-03-26 2003-08-05 ファースト テクノロジー アーゲー Torque and speed sensor
JP2003507701A (en) * 1999-08-12 2003-02-25 ファースト テクノロジー アーゲー Magnetic transducer for torque or force sensor

Similar Documents

Publication Publication Date Title
US5137128A (en) Magnetic particle type electromagnetic clutch with torque detector
JPS6275328A (en) Torque sensor
JPS6316226A (en) Level measuring instrument
WO2015111625A1 (en) Electric motor, electric power steering device, and vehicle
US6668996B2 (en) Electromagnetic clutch
JPH0422830A (en) Torque sensor
JP3638927B2 (en) Tensioning device and tensioning method in winding machine
KR20010050733A (en) Magnetic permeability position detector
JPH0454321A (en) Electromagnetic particle type connection device
JP2556177B2 (en) Magnetic particle type electromagnetic coupling device
JP2002310609A (en) Rotation angle detector
US4942343A (en) Torque measuring and transmitting system for a web spooling mechanism
JPH0479757A (en) Hysteresis-type torque transmitter
US4914390A (en) Transducer for determining the instantaneous relative angular positions between two members
CN110870177A (en) Rotating motor and door device using same
JPH03118435A (en) Motor-driven power steering apparatus
JP2005512081A (en) Magnetic torque / force converter
JP2514205B2 (en) Magnetostrictive torque sensor
JPH1194658A (en) Torque sensor
JPS63311136A (en) Magnetostriction type torque sensor
JPH088351Y2 (en) Magnetic particle type electromagnetic coupling device
JPH02102427A (en) Torque measuring instrument
JP3680363B2 (en) Magnetic bearing control device
JPH0469417A (en) Magnetic grain type electromagnetic connecting device
JP3001028B2 (en) Magnetostrictive torque sensor