JPH0469417A - Magnetic grain type electromagnetic connecting device - Google Patents

Magnetic grain type electromagnetic connecting device

Info

Publication number
JPH0469417A
JPH0469417A JP18042790A JP18042790A JPH0469417A JP H0469417 A JPH0469417 A JP H0469417A JP 18042790 A JP18042790 A JP 18042790A JP 18042790 A JP18042790 A JP 18042790A JP H0469417 A JPH0469417 A JP H0469417A
Authority
JP
Japan
Prior art keywords
magnetic
drive
driven
rotating shaft
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18042790A
Other languages
Japanese (ja)
Other versions
JPH0826906B2 (en
Inventor
Ryoji Kobayashi
良治 小林
Ryosuke Okita
良介 沖田
Masaya Yamada
雅也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2180427A priority Critical patent/JPH0826906B2/en
Priority to DE4120243A priority patent/DE4120243C2/en
Priority to US07/717,570 priority patent/US5137128A/en
Publication of JPH0469417A publication Critical patent/JPH0469417A/en
Publication of JPH0826906B2 publication Critical patent/JPH0826906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)

Abstract

PURPOSE:To detect torque with high and stable accuracy by constituting a rotary shaft, provided with a magnetic layer, of non-magnetic material. CONSTITUTION:In a drive rotary shaft 30 connected to a drive source not shown is rotated and a drive member 7 integrally rotated with this drive rotary shaft 30, magnetic flux phi is generated as shown by a dotted line in the drawing when a current flows in an excitation coil 2 contained in a stator 1. A magnetic grain 10, which is partly a magnetic path of the flux, is connected to a chain shape between a rotating drive member 7 and a stationary driven member 9 to rotate the driven member 9 and a driven shaft 11, connected to a load side not shown, integrally with this driven member 9. Since the drive rotary shaft 30 is constituted of non-magnetic material in a magnetic grain type electromagnetic connecting device, the magnetic flux, generated in the excitation coil 2, is prevented from giving a bad influence to a first and second magnetic layers 21, 22 through the drive rotary shaft 30.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、磁性粒子を磁化してドライブメンバとドリ
ブンメンバとの間を鎖状連結する磁性粒子式電磁連結装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a magnetic particle type electromagnetic coupling device that magnetizes magnetic particles to connect a drive member and a driven member in a chain.

[従来の技術] 第2図は従来の磁性粒子式電磁連結装置の一例を示す断
面図であり、図において、(1)はステツ、(2)はこ
のステータ(1)に内蔵された励磁コイル、(3)はス
テータ(1)を支承する第1のブラケットで、第1およ
び第2のベアリング(4)、(5)を介して駆動回転軸
(6)を回転自在に支承している。(7)は駆動回転軸
(6)に固着され、ステータ(1)の内側に所定の空隙
を介して設けられた第1の連結主体を構成するドライブ
メンバ、(8)はドライブメンバ(7)の端部に固定さ
れたプレート、(9)はドライブメンバ(7)の内側に
所定の径方向環状空隙を介して設けられた第2の連結主
体を構成するドリブンメンバ、(10)は環状空隙内に
充填された磁性粒子、(11)はドリブンメンバ(9)
に固着された被駆動回転軸、(12)はステータ(1)
に固定され被駆動回転軸(11)を第1および第2のベ
アリング(13) 、 (14)を介して回転自在に支
承する第2のブラケットである。
[Prior Art] Fig. 2 is a cross-sectional view showing an example of a conventional magnetic particle type electromagnetic coupling device. , (3) is a first bracket that supports the stator (1), and rotatably supports the drive rotation shaft (6) via first and second bearings (4) and (5). (7) is a drive member that is fixed to the drive rotation shaft (6) and is provided inside the stator (1) with a predetermined gap therebetween, and constitutes a first connecting body; (8) is the drive member (7); (9) is a driven member that constitutes a second connecting body provided inside the drive member (7) via a predetermined radial annular gap; (10) is an annular gap; Magnetic particles filled in (11) are driven members (9)
The driven rotating shaft (12) is fixed to the stator (1).
This is a second bracket that is fixed to and rotatably supports the driven rotating shaft (11) via first and second bearings (13) and (14).

(20)は、駆動回転軸〈6)の中心軸線、(21)、
(22)はこの駆動回転軸(6)の外周面上に固着され
た高透磁率軟磁性材からなる第1および第2の磁性層で
、中心軸線(20)に対して第1の磁性層(21)は反
時計方向45°の方向に、第2の磁性層(22)は時計
方向45°の方向にそれぞれ形成される。(23)は第
1のブラケット(3)の内側に配設されたコイルボビン
、(24) 、 (25)はこのコイルボビン(23)
に巻回された第1および第2の検出コイル、(27) 
、 (28)は第1および第2の検出コイル(24) 
、 (25)の周囲に設けられた第1および第2の磁気
収束層で高透磁率磁性材からなる。(29)は第1およ
び第2の検出コイル(24) 、 (25)に接続され
た検出回路で、この検出回路(29)は周知のインダク
タンス差動増幅回路である。
(20) is the central axis of the drive rotation shaft <6), (21),
(22) are first and second magnetic layers made of a high magnetic permeability soft magnetic material fixed on the outer peripheral surface of the drive rotation shaft (6), and the first magnetic layer (21) is formed in a 45° counterclockwise direction, and the second magnetic layer (22) is formed in a 45° clockwise direction. (23) is a coil bobbin arranged inside the first bracket (3), (24) and (25) are this coil bobbin (23)
first and second detection coils wound around (27);
, (28) are the first and second detection coils (24)
, (25) are provided around the first and second magnetic convergence layers and are made of a high permeability magnetic material. (29) is a detection circuit connected to the first and second detection coils (24) and (25), and this detection circuit (29) is a well-known inductance differential amplifier circuit.

次に、動作について説明する0図示しない駆動源に結合
された駆動回転軸(6)が回転され、ドライブメンバ(
7)がこの駆動回転軸(6)と一体に回転しているとき
、ステータ(1)に内蔵された励磁コイル(2)に電流
を流すと図中に点線で示すように磁束(Φ)が発生する
。その磁路の一部である磁性粒子(10)は回転してい
るドライブメンバ(7)と静止しているドリブンメンバ
(9)との間で鎖状に連結し、ドリブンメンバ(9)は
回転され、このドリブンメンバ(9)と一体に図示しな
い負荷側に結合された被駆動軸(11)を回転させる。
Next, the drive rotation shaft (6) coupled to a drive source (not shown) is rotated, and the drive member (
7) is rotating together with this drive rotating shaft (6), when current is passed through the excitation coil (2) built in the stator (1), the magnetic flux (Φ) increases as shown by the dotted line in the figure. Occur. The magnetic particles (10) that are part of the magnetic path are connected in a chain between a rotating drive member (7) and a stationary driven member (9), and the driven member (9) rotates. The driven member (9) rotates a driven shaft (11) integrally connected to a load side (not shown).

そして、励磁コイル(2)の電流を遮断すると磁束(Φ
)は消失し、磁性粒子(10)の鎖状の連結はとかれ、
ドリブンメンバ(9)はフリーとなる。なお、伝達され
るトルク値は励磁コイル(2)に流す電流値にほぼ直線
的に比例している。
Then, when the current in the excitation coil (2) is cut off, the magnetic flux (Φ
) disappears, the chain-like connection of the magnetic particles (10) is broken,
The driven member (9) becomes free. Note that the transmitted torque value is approximately linearly proportional to the current value flowing through the exciting coil (2).

ここで、動力が伝達される状態では、駆動回転軸(6)
には動力伝達分のトルクが印加されることになり、第1
および第2の磁性層(21)、(22)の−方に引張力
が発生し、他方に圧縮力が発生し歪みが生じる。この歪
みが生じると透磁率が変化し、引張力の場合と圧縮力の
場合では透磁率が逆方向に変化する。第1および第2の
検出コイル(24)。
Here, in a state where power is transmitted, the drive rotation shaft (6)
The torque for the power transmission is applied to the first
A tensile force is generated on the negative side of the second magnetic layers (21) and (22), and a compressive force is generated on the other side, causing distortion. When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in opposite directions when a tensile force is applied and when a compressive force is applied. First and second detection coils (24).

(25)はこの透磁率変化を磁気的インピーダンスの変
化として検出し、検出回路(29)は、第1および第2
の検出コイル(24) 、 (25)の出力を差動増幅
し、駆動回転軸(6)の歪み量すなわちトルクに応じた
検出電圧を出力する。
(25) detects this change in magnetic permeability as a change in magnetic impedance, and the detection circuit (29) detects the change in magnetic permeability as a change in magnetic impedance.
The outputs of the detection coils (24) and (25) are differentially amplified, and a detection voltage corresponding to the amount of distortion, that is, the torque of the drive rotation shaft (6) is output.

[発明が解決しようとする課題] 上記のように構成された磁性粒子式電磁連結装置では、
駆動回転軸(6)は炭素鋼で構成されており、励磁コイ
ル(2)により発生する磁束(Φ′)が図に示すように
駆動回転軸(6)内を通ることになリ、従ってその磁束
(Φ′)が第1の磁性層(21)および第2の磁性層(
22)を通り、第1の磁性層(21)および第2の磁性
層(22)の磁気的動作点が移動してトルク検出出力に
大きな誤差を生ずるという問題点があった。
[Problem to be solved by the invention] In the magnetic particle type electromagnetic coupling device configured as described above,
The drive rotation shaft (6) is made of carbon steel, and the magnetic flux (Φ') generated by the excitation coil (2) passes through the drive rotation shaft (6) as shown in the figure. The magnetic flux (Φ′) is distributed between the first magnetic layer (21) and the second magnetic layer (
22), the magnetic operating points of the first magnetic layer (21) and the second magnetic layer (22) shift, causing a large error in the torque detection output.

また、炭素鋼で構成された駆動回転軸とたとえばアモル
ファスで構成された第1および第2の磁性層(21)、
(22)とは熱膨張係数が異なり、温度変化により第1
および第2の磁性層(21)、(22)に応力が発生し
、トルクによる応力成分と合成されることになる、つま
りトルク検出出力に誤差を生ずるという問題点もあった
Further, a drive rotating shaft made of carbon steel and first and second magnetic layers (21) made of amorphous, for example,
The coefficient of thermal expansion is different from (22), and the first
There is also the problem that stress is generated in the second magnetic layers (21) and (22) and is combined with the stress component due to torque, which causes an error in the torque detection output.

この発明の第1の発明ないし第4の発明は、かかる問題
点を解決するためになされたもので、精度の高い安定し
たトルク検出を行ない得る磁性粒子式電磁連結装置を得
ることを目的とする。
The first to fourth inventions of the present invention have been made in order to solve such problems, and their object is to obtain a magnetic particle type electromagnetic coupling device that can perform highly accurate and stable torque detection. .

[課題を解決するための手段] この発明に係る第1の発明は、磁性層の設けられた回転
軸を非磁性材で構成したものである。
[Means for Solving the Problems] A first aspect of the present invention is that a rotating shaft provided with a magnetic layer is made of a non-magnetic material.

この発明に係る第2の発明は、駆動回転軸を非磁性材で
構成したものである。
A second aspect of the present invention is that the drive rotation shaft is made of a non-magnetic material.

この発明に係る第3の発明は、磁性層の設けられた回転
軸を磁性層と熱膨張係数がほぼ等しい材料で構成したも
のである。
A third aspect of the present invention is that the rotating shaft provided with the magnetic layer is made of a material having a coefficient of thermal expansion substantially equal to that of the magnetic layer.

この発明に係る第4の発明は、駆動回転軸を磁性層と熱
膨張係数がほぼ等しい材料で構成したものである。
A fourth aspect of the present invention is that the driving rotation shaft is made of a material having a coefficient of thermal expansion substantially equal to that of the magnetic layer.

[作 用] この発明の第1の発明および第2の発明においては、回
転軸を非磁性材て構成したので、励磁コイルで発生した
磁束が磁性層に影響を及ぼさない。
[Function] In the first and second aspects of the present invention, since the rotating shaft is made of a non-magnetic material, the magnetic flux generated by the excitation coil does not affect the magnetic layer.

また、この発明の第3の発明および第4の発明において
は、回転軸を磁性層とほぼ等しい熱膨張係数の材料で構
成したので、温度変化により両者間で応力が生ずるよう
なことはない。
Furthermore, in the third and fourth aspects of the present invention, since the rotating shaft is made of a material having approximately the same coefficient of thermal expansion as the magnetic layer, stress will not be generated between the two due to temperature changes.

[実施例] 以下、この発明の実施例を図について説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の第1の発明ないし第4の発明の一実
施例を示すもので、第3図と同一または相当部分は同一
符号を付し、その説明は省略する。
FIG. 1 shows an embodiment of the first to fourth aspects of the present invention, and the same or corresponding parts as in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted.

図において、(30)は例えばN1基超合金のハステロ
イからなる、非磁性材の駆動回転軸で、この駆動回転軸
(30)の熱膨張係数はアモルファスからなる第1およ
び第2の磁性層(21)、(22)の熱膨張係数とほぼ
等しい10−12×10−6程度である。
In the figure, (30) is a drive rotation shaft made of a non-magnetic material, such as Hastelloy, an N1-based superalloy, and the thermal expansion coefficient of this drive rotation shaft (30) is the same as that of the first and second magnetic layers (made of amorphous). The coefficient of thermal expansion is approximately 10-12×10-6, which is approximately equal to the coefficient of thermal expansion of (21) and (22).

以上のように構成された磁性粒子式電磁連結装置では、
駆動回転軸(30)は非磁性材で構成されているので、
励磁コイル(2)で生じた磁束が駆動回転軸(30)を
介して第1および第2の磁性層(21)(22)に悪影
響を与えるようなことはない。
In the magnetic particle type electromagnetic coupling device configured as above,
Since the drive rotation shaft (30) is made of non-magnetic material,
The magnetic flux generated by the excitation coil (2) does not adversely affect the first and second magnetic layers (21) and (22) via the drive rotation shaft (30).

また、ハステロイ製の駆動回転軸(30)とアモルファ
ス製の第1および第2の磁性層(21)、(22)との
間では熱膨張にほとんど差はなく、温度変化により両者
(30) 、(21)、(22)間で応力が生ずるよう
なことはない。
Furthermore, there is almost no difference in thermal expansion between the drive rotation shaft (30) made of Hastelloy and the first and second magnetic layers (21) and (22) made of amorphous, and both (30) and No stress is generated between (21) and (22).

なお、上記実施例では駆動回転軸(30)に第1の磁性
層(21)、第2の磁性層が固着された磁性粒子式電磁
連続装置について説明したが、被駆動回転軸に第1の磁
性層(21)、第2の磁性層(22)が固着されたもの
であってもよい。
In addition, in the above embodiment, the magnetic particle type electromagnetic continuous device in which the first magnetic layer (21) and the second magnetic layer are fixed to the drive rotating shaft (30) has been described, but the first magnetic layer (21) and the second magnetic layer are fixed to the driven rotating shaft. The magnetic layer (21) and the second magnetic layer (22) may be fixed.

この場合には、被駆動回転軸がハステロイで構成される
In this case, the driven rotating shaft is made of Hastelloy.

また、この発明は第1の磁性層を駆動回転軸に固着し、
第2の磁性層を被駆動回転軸に固着したものにも適用で
きる。
Further, the present invention fixes the first magnetic layer to the drive rotation shaft,
It can also be applied to a structure in which the second magnetic layer is fixed to the driven rotating shaft.

さらに、上記実施例ではクラッチ機能を有する磁性粒子
式電磁連結装置について適用される発明について説明し
たが、この発明は駆動回転軸の回転がドリブンメンバで
阻止され被駆動回転軸の有しないフレーキ機能を備えた
磁性粒子式電磁連結装置にも適用できる。
Furthermore, in the above embodiments, the invention was explained that is applied to a magnetic particle type electromagnetic coupling device having a clutch function, but this invention prevents the rotation of the drive rotating shaft by the driven member and has a flake function that the driven rotating shaft does not have. It can also be applied to a magnetic particle type electromagnetic coupling device equipped with a magnetic particle type electromagnetic coupling device.

さらにまた、駆動回転軸(6)として例えばインコネル
製のものを用いてもよい。
Furthermore, the drive rotation shaft (6) may be made of, for example, Inconel.

[発明の効果] 以上説明したように、この発明の第1の発明および第2
の発明の磁性粒子式電磁連結装置によれば、磁性層の設
けられた回転軸を被磁性材で構成し、また駆動回転軸を
非磁性材で構成したことにより、励磁コイルにより発生
する磁束の影響を磁性層は受けるようなことはなく、そ
の影響により磁性層の磁気的動作点が移動することはな
く、精度の高い安定したトルク検出を行ない得るという
効果がある。
[Effect of the invention] As explained above, the first invention and the second invention of this invention
According to the magnetic particle type electromagnetic coupling device of the invention, the rotating shaft provided with the magnetic layer is made of a magnetic material, and the drive rotating shaft is made of a non-magnetic material, so that the magnetic flux generated by the excitation coil can be reduced. The magnetic layer is not affected, and the magnetic operating point of the magnetic layer does not shift due to the effect, resulting in the effect that highly accurate and stable torque detection can be performed.

また、この発明の第3の発明および第4の発明の磁性粒
子式電磁連結装置によれば、回転軸、駆動回転軸を磁性
層とほぼ熱膨張係数が等しい材料で構成したことにより
、温度変化により両者間で応力が生じることはなく、精
度の高い安定したトルク検出を行ない得るという効果が
ある。
Further, according to the magnetic particle type electromagnetic coupling device of the third invention and the fourth invention of the present invention, since the rotating shaft and the driving rotating shaft are made of a material having approximately the same coefficient of thermal expansion as the magnetic layer, temperature changes can be prevented. Therefore, stress is not generated between the two, and there is an effect that highly accurate and stable torque detection can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す断面図、第2図は従
来の磁性粒子式電磁連結装置の一例を示す断面図である
。 図において、(2)は励磁コイル、(7)はドライブメ
ンバ、(9)はドリブンメンバ、(10)は磁性粒子、
(11)は被駆動回転軸、(21)は第1の磁性層、(
22)は第2の磁性層、(24)は第1の検出コイル、
(25)は第2の検出コイル、(30)は駆動回転軸で
ある。 なお、各図中、同一符号は同−又は相当部分を示す。 手続補正書 平成 3年10月 4日
FIG. 1 is a sectional view showing an embodiment of the present invention, and FIG. 2 is a sectional view showing an example of a conventional magnetic particle type electromagnetic coupling device. In the figure, (2) is an excitation coil, (7) is a drive member, (9) is a driven member, (10) is a magnetic particle,
(11) is the driven rotating shaft, (21) is the first magnetic layer, (
22) is the second magnetic layer, (24) is the first detection coil,
(25) is a second detection coil, and (30) is a drive rotation shaft. In each figure, the same reference numerals indicate the same or corresponding parts. Written amendment October 4, 1991

Claims (4)

【特許請求の範囲】[Claims] (1)駆動回転軸に固着されたドライブメンバと、被駆
動回転軸に固着されたドリブンメンバと、このドリブン
メンバと前記ドライブメンバとの間に充填された磁性粒
子と、この磁性粒子を磁化して前記ドライブメンバと前
記ドリブンメンバとの間を鎖状連結する励磁コイルと、
前記駆動回転軸および前記被駆動回転軸の少なくとも一
方の外周面上に設けられた磁性層と、この磁性層の周囲
に設けられた検出コイルとを備えた磁性粒子式電磁連結
装置において、前記磁性層の設けられた回転軸を非磁性
材で構成したことをと特徴とする磁性粒子式電磁連結装
置。
(1) A drive member fixed to a driving rotating shaft, a driven member fixed to a driven rotating shaft, magnetic particles filled between the driven member and the drive member, and magnetizing the magnetic particles. an excitation coil that connects the drive member and the driven member in a chain;
In the magnetic particle electromagnetic coupling device, the magnetic particle type electromagnetic coupling device includes a magnetic layer provided on the outer circumferential surface of at least one of the driving rotation shaft and the driven rotation shaft, and a detection coil provided around the magnetic layer. A magnetic particle type electromagnetic coupling device characterized in that a rotating shaft provided with a layer is made of a non-magnetic material.
(2)駆動回転軸に固着されたドライブメンバと、この
ドライブメンバとドリブンメンバとの間に充填された磁
性粒子と、この磁性粒子を磁化して前記ドライブメンバ
と前記ドリブンメンバとの間を鎖状連結する励磁コイル
と、前記駆動回転軸の外周面上に設けられた磁性層と、
この磁性層の周囲に設けられた検出コイルとを備えた磁
性粒子式電磁連結装置において、前記駆動回転軸を非磁
性材料で構成したことを特徴とする磁性粒子式電磁連結
装置。
(2) A drive member fixed to a drive rotating shaft, magnetic particles filled between the drive member and the driven member, and a chain formed between the drive member and the driven member by magnetizing the magnetic particles. an excitation coil connected to each other; a magnetic layer provided on the outer peripheral surface of the drive rotation shaft;
A magnetic particle type electromagnetic coupling device comprising a detection coil provided around the magnetic layer, wherein the drive rotation shaft is made of a non-magnetic material.
(3)駆動回転軸に固着されたドライブメンバと、被駆
動回転軸に固着されたドリブンメンバと、このドリブン
メンバと前記ドライブメンバとの間に充填された磁性粒
子と、この磁性粒子を磁化して前記ドライブメンバと前
記ドリブンメンバとの間を鎖状連結する励磁コイルと、
前記駆動回転軸および前記被駆動回転軸の少なくとも一
方の外周面上に設けられた磁性層と、この磁性層の周囲
に設けられた検出コイルとを備えた磁性粒子式電磁連結
装置において、前記磁性層の設けられた回転軸を磁性層
と熱膨張係数がほぼ等しい材料で構成したことを特徴と
する磁性粒子式電磁連結装置。
(3) A drive member fixed to a driving rotating shaft, a driven member fixed to a driven rotating shaft, magnetic particles filled between the driven member and the drive member, and magnetizing the magnetic particles. an excitation coil that connects the drive member and the driven member in a chain;
In the magnetic particle electromagnetic coupling device, the magnetic particle type electromagnetic coupling device includes a magnetic layer provided on the outer circumferential surface of at least one of the driving rotation shaft and the driven rotation shaft, and a detection coil provided around the magnetic layer. A magnetic particle type electromagnetic coupling device characterized in that a rotating shaft provided with a layer is made of a material having a coefficient of thermal expansion substantially equal to that of the magnetic layer.
(4)駆動回転軸に固着されたドライブメンバと、この
ドライブメンバとドリブンメンバとの間に充填された磁
性粒子と、この磁性粒子を磁化して前記ドライブメンバ
と前記ドリブンメンバとの間を鎖状連結する励磁コイル
と、前記駆動回転軸の外周面上に設けられた磁性層と、
この磁性層の周囲に設けられた検出コイルとを備えた磁
性粒子式電磁連結装置において、前記駆動回転軸を磁性
層と熱膨張係数がほぼ等しい材料で構成したことを特徴
とする磁性粒子式電磁連結装置。
(4) A drive member fixed to a drive rotating shaft, magnetic particles filled between the drive member and the driven member, and a chain formed between the drive member and the driven member by magnetizing the magnetic particles. an excitation coil connected to each other; a magnetic layer provided on the outer peripheral surface of the drive rotation shaft;
A magnetic particle type electromagnetic coupling device comprising a detection coil provided around the magnetic layer, wherein the drive rotating shaft is made of a material having a coefficient of thermal expansion substantially equal to that of the magnetic layer. Coupling device.
JP2180427A 1990-06-20 1990-07-10 Magnetic particle type electromagnetic coupling device Expired - Fee Related JPH0826906B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2180427A JPH0826906B2 (en) 1990-07-10 1990-07-10 Magnetic particle type electromagnetic coupling device
DE4120243A DE4120243C2 (en) 1990-06-20 1991-06-19 Magnetic powder clutch
US07/717,570 US5137128A (en) 1990-06-20 1991-06-19 Magnetic particle type electromagnetic clutch with torque detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180427A JPH0826906B2 (en) 1990-07-10 1990-07-10 Magnetic particle type electromagnetic coupling device

Publications (2)

Publication Number Publication Date
JPH0469417A true JPH0469417A (en) 1992-03-04
JPH0826906B2 JPH0826906B2 (en) 1996-03-21

Family

ID=16083068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180427A Expired - Fee Related JPH0826906B2 (en) 1990-06-20 1990-07-10 Magnetic particle type electromagnetic coupling device

Country Status (1)

Country Link
JP (1) JPH0826906B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567554B1 (en) * 2005-03-04 2006-04-05 보라전기공업 주식회사 Powder brake having torque transducer
JP2012180939A (en) * 2001-10-25 2012-09-20 Lord Corp Brake with field responsive material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180939A (en) * 2001-10-25 2012-09-20 Lord Corp Brake with field responsive material
KR100567554B1 (en) * 2005-03-04 2006-04-05 보라전기공업 주식회사 Powder brake having torque transducer

Also Published As

Publication number Publication date
JPH0826906B2 (en) 1996-03-21

Similar Documents

Publication Publication Date Title
US20070227268A1 (en) Magnetostrictive torque sensor
JP2001041238A (en) Composite type electromagnet and radial magnetic bearing
JPS6275328A (en) Torque sensor
US5137128A (en) Magnetic particle type electromagnetic clutch with torque detector
JPH0469417A (en) Magnetic grain type electromagnetic connecting device
US5062307A (en) Strain detector
JPS5932835A (en) Torque sensor
JPS5946526A (en) Electromagnetic stress sensor
JPH0464733A (en) Magnetic particle type electromagnetic coupling device
JPH0454322A (en) Magnetic particle type electormagnetic connection device
JP2006010669A (en) Torque sensor device
JPH088351Y2 (en) Magnetic particle type electromagnetic coupling device
JPH02281116A (en) Strain detecting apparatus
JPS63182535A (en) Torque sensor
JPH0614939U (en) Magnetostrictive torque sensor
JP2514205B2 (en) Magnetostrictive torque sensor
JP2000074615A (en) Rotational angle sensor
JPH088350Y2 (en) Magnetic particle type electromagnetic coupling device
JPH02102427A (en) Torque measuring instrument
JPS63311136A (en) Magnetostriction type torque sensor
JPH10221186A (en) Magnetostriction type torque sensor
JPH08327473A (en) Torque sensor
JPH08114515A (en) Magnetostriction type torque sensor
JPS632668Y2 (en)
JPH0723713Y2 (en) Torque sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080321

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090321

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100321

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees