JP2556177B2 - Magnetic particle type electromagnetic coupling device - Google Patents

Magnetic particle type electromagnetic coupling device

Info

Publication number
JP2556177B2
JP2556177B2 JP2177025A JP17702590A JP2556177B2 JP 2556177 B2 JP2556177 B2 JP 2556177B2 JP 2177025 A JP2177025 A JP 2177025A JP 17702590 A JP17702590 A JP 17702590A JP 2556177 B2 JP2556177 B2 JP 2556177B2
Authority
JP
Japan
Prior art keywords
magnetic
coupling device
electromagnetic coupling
torque
particle type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2177025A
Other languages
Japanese (ja)
Other versions
JPH0464733A (en
Inventor
良治 小林
良介 沖田
雅也 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2177025A priority Critical patent/JP2556177B2/en
Priority to US07/717,570 priority patent/US5137128A/en
Priority to DE4120243A priority patent/DE4120243C2/en
Publication of JPH0464733A publication Critical patent/JPH0464733A/en
Application granted granted Critical
Publication of JP2556177B2 publication Critical patent/JP2556177B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁性粒子を介して2つの回転体を連結す
る電磁クラッチで、特にクラッチ自体でトルク検出の行
える磁性粒子式電磁連結装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic clutch that connects two rotating bodies via magnetic particles, and more particularly to a magnetic particle type electromagnetic coupling device that can detect torque with the clutch itself. Is.

〔従来の技術〕[Conventional technology]

第3図は従来の磁性粒子式電磁連結装置の断面図を示
すもので、図において、1は固定体となるステータ、2
はこのステータ1内に内蔵された励磁コイル、3はステ
ータ1を支持するブラケットで、ベアリング4,5を介し
て駆動軸6を支承している。7は駆動軸6に軸着され、
上記ステータ1の内径側に所定の空隙を隔てて配された
第1の連結主体となるドライブメンバ、8はこのドライ
ブメンバ7の端部に固定されたプレート、9は上記ドラ
イブメンバ7内径側に所定の空隙を介して配設された第
2の連結主体となるドリブンメンバ、10は上記両メンバ
7と9の空隙内に充填された磁性粒子、11は上記ドリブ
ンメンバ9に固着され上記駆動軸6と一軸上に配置され
た従動軸、12は上記ステータ1に固定され従動軸11をベ
アリング13,14を介して回転自在に支承するブラケット
である。
FIG. 3 shows a cross-sectional view of a conventional magnetic particle type electromagnetic coupling device, in which 1 is a stator which is a fixed body, and 2 is a stator.
Is a magnetizing coil incorporated in the stator 1, and 3 is a bracket for supporting the stator 1, which supports the drive shaft 6 via bearings 4 and 5. 7 is attached to the drive shaft 6,
A drive member, which is a first connecting main body and is arranged on the inner diameter side of the stator 1 with a predetermined gap, is a plate fixed to the end of the drive member 7, and 9 is an inner diameter side of the drive member 7. A driven member serving as a second connecting main body disposed through a predetermined gap, 10 is a magnetic particle filled in the gap between both members 7 and 9, and 11 is fixed to the driven member 9 and the drive shaft. 6 and a driven shaft arranged on one axis, and 12 is a bracket which is fixed to the stator 1 and rotatably supports the driven shaft 11 via bearings 13 and 14.

次に動作について説明する。図示しない駆動源によっ
て駆動軸6が回転駆動され、これと共にドライブメンバ
7が一体的に回転しているとき、ステータ1に内蔵され
た励磁コイル2に電流を流すと、第1図中の点線で示す
ように時束Φが発生する。これによって磁路の一部であ
る磁性粒子10は回転しているドライブメンバ7と停止し
ているドリブンメンバ9との間に鎖状に連結することで
ドリブンメンバ9が回転されると共に従動軸11も回転さ
れる。なお、励磁コイル2への電流を遮断すると、磁束
Φは消失して磁性粒子10の鎖状の連結が解除されドリブ
ンメンバ9はフリーとなる。また、ドライブメンバ7か
らドリブンメンバ9へ伝達されるトルク値は、励磁コイ
ル2に流す電流値にほぼ直線的に比例している。
Next, the operation will be described. When the drive shaft 6 is rotationally driven by a drive source (not shown), and the drive member 7 is integrally rotated with the drive shaft 6, when a current is passed through the exciting coil 2 incorporated in the stator 1, a dotted line in FIG. As shown, the time flux Φ is generated. As a result, the magnetic particles 10 that are a part of the magnetic path are connected in a chain between the rotating drive member 7 and the stopped driven member 9, whereby the driven member 9 is rotated and the driven shaft 11 is rotated. Is also rotated. When the current to the exciting coil 2 is cut off, the magnetic flux Φ disappears, the chain-like connection of the magnetic particles 10 is released, and the driven member 9 becomes free. The torque value transmitted from the drive member 7 to the driven member 9 is almost linearly proportional to the value of the current flowing through the exciting coil 2.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来の磁性粒子式電磁連結装置は以上のように構成さ
れているので、励磁電流の値によりトルク管理または制
御が行われていた。そのために電磁連結装置の製品バラ
ツキ、パウダ(磁性粒子)の劣化または経時変化により
励磁電流とトルクの関係が変化すると、十分なトルク管
理、制御が行えないという問題があった。また、充分な
トルク管理を行うには上記電磁連結装置の外にトルク検
出器を別に設けなければならず、この結果、構成が煩雑
になり、かつ高価になるといった問題があった。
Since the conventional magnetic particle type electromagnetic coupling device is configured as described above, torque management or control is performed according to the value of the exciting current. Therefore, if the relationship between the exciting current and the torque changes due to variations in products of the electromagnetic coupling device, deterioration of powder (magnetic particles), or changes over time, there is a problem that sufficient torque management and control cannot be performed. Further, in order to perform sufficient torque management, a torque detector must be separately provided outside the electromagnetic coupling device, resulting in a problem that the configuration becomes complicated and expensive.

第4図はトルク検出器を備えかつ、電磁連結装置を用
いた一つの実施例を示す斜視図で、図において、15は駆
動源となるモータ、16は第3図で示した磁性粒子式電磁
連結装置で、この電磁連結装置16の出力軸となる従動軸
11に取付けたプーリ17と巻取軸20のプーリ18間にベルト
19を掛回してあり、上記巻取軸20にはフィルム材21が巻
取られている。22はフィルム材21のテンションローラ、
23,24はフィルム材21の張力を検出するための検出器
で、検出ローラ25によって検知される。26,27は検出ロ
ーラに張力を与えるローラ、28は上記検出器23,24から
の指令を受け、上記電磁連結装置16への電流を変化させ
るための制御装置である。
FIG. 4 is a perspective view showing an embodiment using a torque detector and an electromagnetic coupling device. In the figure, 15 is a motor as a drive source, and 16 is a magnetic particle type electromagnetic shown in FIG. In the coupling device, the driven shaft that is the output shaft of this electromagnetic coupling device 16.
Belt between the pulley 17 attached to 11 and the pulley 18 of the winding shaft 20.
A film material 21 is wound around the winding shaft 20. 22 is a tension roller of the film material 21,
Reference numerals 23 and 24 are detectors for detecting the tension of the film material 21, which are detected by the detection roller 25. Numerals 26 and 27 are rollers that give tension to the detection rollers, and numeral 28 is a control device for receiving a command from the detectors 23 and 24 and changing the current to the electromagnetic coupling device 16.

したがって、上記の構成によれば、フィルム21の左右
に張力を検出する検出器23,24が必要となり、さらに張
力を与えるためのローラ26,27も必要となるため、構成
が複雑となり高価であった。また、場所によっては検出
器が装着できないこともあり、この場合は、凡その感に
たよって運転するので巻取りが正確にできないこともあ
った。
Therefore, according to the above configuration, the detectors 23 and 24 for detecting the tension on the left and right of the film 21 are required, and the rollers 26 and 27 for further imparting the tension are also required, which makes the configuration complicated and expensive. It was In some places, the detector cannot be attached, and in this case, the winding operation cannot be performed accurately because the driver operates according to the feeling.

この発明は上記のような問題点を解消するためになさ
れたもので、簡単にトルク検出ができて十分なトルク管
理、制御の行える小型で安価な磁性粒子式電磁連結装置
を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a small and inexpensive magnetic particle type electromagnetic coupling device capable of easily detecting torque and performing sufficient torque management and control. To do.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る磁性粒子式電磁連結装置は、第1の連
結主体と、この第1の連結主体が固着された回転軸と、
この回転軸を軸方向の少なくとも2カ所で支承したベア
リングと、第1の連結主体と連結可能に配設された第2
の連結主体と、上記両連結主体間に充填された磁性粒子
と、この磁性粒子を磁化して連結主体間に伝達トルクを
与える励磁コイルとを備えた磁性粒子式電磁連結装置に
おいて、ベアリング間の回転軸の部位に設けられた磁性
材からなる磁性部と、この磁性部と所定の空隙を隔てて
対向して設けられたコイル手段と、このコイル手段から
の出力に基づき伝達トルクを検出するトルク検出手段と
を備えたことを特徴とする。
A magnetic particle type electromagnetic coupling device according to the present invention includes a first coupling body, a rotating shaft to which the first coupling body is fixed,
A bearing that supports the rotary shaft at at least two positions in the axial direction, and a second bearing that is arranged to be connectable to the first connecting body.
In the magnetic particle type electromagnetic coupling device including the coupling main body, the magnetic particles filled between the two coupling main bodies, and the exciting coil that magnetizes the magnetic particles to give a transfer torque between the coupling main bodies, A magnetic part made of a magnetic material provided on the part of the rotating shaft, a coil means provided facing the magnetic part with a predetermined gap, and a torque for detecting a transmission torque based on an output from the coil means. And a detection means.

〔作 用〕[Work]

この発明における磁性粒子式電磁連結装置は、非接触
式のトルクセンサを用いているので、長期感にわたって
安定してトルク検出でき、また磁性部およびコイル手段
をベアリング間に設けたので、従来デッドスペースであ
ったベアリング間の空間を活用して装置の小型化を図
れ、しかもスリップ熱の影響または磁束の影響を受けず
に正確なトルク値が測定可能となり、このトルク値によ
りトルク管理,制御を行うことができる。
Since the magnetic particle type electromagnetic coupling device of the present invention uses the non-contact type torque sensor, the torque can be stably detected over a long period of time. Further, since the magnetic portion and the coil means are provided between the bearings, the conventional dead space is eliminated. The space between the bearings was used to reduce the size of the device, and an accurate torque value can be measured without being affected by slip heat or magnetic flux. Torque management and control are performed by this torque value. be able to.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第
1図はこの発明による磁性粒子式電磁連結装置の断面図
を示し、図中、第3図で説明した従来例の電磁連結装置
と同一部分には同一符号を付して重複する説明は省略す
る。図において、29は駆動軸で、ドライブメンバ7が軸
着されている。30は駆動軸29の軸中心、31,32は上記駆
動軸29の外周面に取付けた高透磁率軟磁性材からなる磁
性層で、軸中心30に対して磁性層31は+45゜の方向に、
磁性層32は−45゜の方向にそれぞれ形成されている。33
はステータ1に固定されているブラケットで、ベアリン
グ34,35を介して駆動軸29を回軸自在に支承している。3
6はブラケット33の内径側に配設されたコイルボビン、3
7,38はコイルボビン36に巻回された検出コイル、39,40
はこの検出コイル37,38の周囲に設けた磁気収束層で、
高透磁率磁性材からなる。41は上記検出コイル37,38に
接続された検出回路で、第2図にそのブロック図を示
す。なお、この検出回路41は一般的に知られているイン
ダクタンス差動増幅回路で、その内容の説明は省略す
る。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a magnetic particle type electromagnetic coupling device according to the present invention. In the figure, the same parts as those in the conventional electromagnetic coupling device described in FIG. To do. In the figure, 29 is a drive shaft, to which the drive member 7 is attached. Reference numeral 30 denotes the axis center of the drive shaft 29, and 31 and 32 denote magnetic layers made of a high magnetic permeability soft magnetic material attached to the outer peripheral surface of the drive shaft 29. The magnetic layer 31 is oriented at + 45 ° with respect to the axis center 30. ,
The magnetic layers 32 are each formed in the direction of -45 °. 33
Is a bracket fixed to the stator 1 and rotatably supports the drive shaft 29 via bearings 34 and 35. 3
6 is a coil bobbin arranged on the inner diameter side of the bracket 33, 3
7,38 is a detection coil wound around the coil bobbin 36, 39,40
Is a magnetic focusing layer provided around the detection coils 37 and 38,
It is made of high permeability magnetic material. Reference numeral 41 is a detection circuit connected to the detection coils 37 and 38, and its block diagram is shown in FIG. The detection circuit 41 is a generally known inductance differential amplifier circuit, and description of its contents will be omitted.

次にこの発明の動作について説明する。励磁コイル2
に電流を流すことにより磁束Φが発生し、これによっ
て、磁性粒子10が磁化されドライブメンバ7とドリブン
メンバ9の間で鎖状に連結され、ドライブメンバとドリ
ブンメンバ9とが連結されて駆動軸29から従動軸11へ動
力が伝達される。ここで、駆動軸29には動力伝達分のト
ルクが印加されることになり、磁性層31,32の一方に引
張力が発生し、他方に圧縮力が発生し歪が生じる。この
歪が生じると透磁率が変化し、引張力の場合と圧縮力の
場合では透磁率が逆方向に変化する。検出コイル37,38
はこの透磁率変化を磁気的にインピーダンスの変化とし
て検出し、検出回路41は各検出コイル37,38の出力を差
動増幅して駆動軸29の歪量すなわちトルクに応じた検出
電圧を出力する。
Next, the operation of the present invention will be described. Excitation coil 2
A magnetic flux Φ is generated by passing an electric current through the magnetic particles 10, whereby the magnetic particles 10 are magnetized and are connected in a chain shape between the drive member 7 and the driven member 9, and the drive member and the driven member 9 are connected to each other to form a drive shaft. Power is transmitted from 29 to the driven shaft 11. Here, torque for power transmission is applied to the drive shaft 29, a tensile force is generated in one of the magnetic layers 31 and 32, and a compressive force is generated in the other, which causes strain. When this strain occurs, the magnetic permeability changes, and the magnetic permeability changes in the opposite direction between the tensile force and the compressive force. Detection coil 37,38
Detects this change in magnetic permeability as a change in impedance magnetically, and the detection circuit 41 differentially amplifies the output of each detection coil 37, 38 and outputs a detection voltage corresponding to the amount of distortion of the drive shaft 29, that is, the torque. .

ここで、磁性層31,32はベアリング34,35間に設けてい
るが、このベアリングのスパンは駆動軸29を支持する上
にもまた、ベアリングの寿命を延ばすためにも必要な空
間であり、この発明はこの空間に磁性層31,32を設ける
ようにしたので何ら装置自体を大型化することなくコン
パクトに内蔵することができる。さらに、従来装置で示
した機械に検出器を装着する必要もなくなり、また、装
着できないところでも、連結装置内部に設けるようにし
たため、トルク制御が容易となり機械装置を安価に製作
できると共に、第4図の装置においてフィルム材の巻取
りが正確に行える。
Here, the magnetic layers 31 and 32 are provided between the bearings 34 and 35, and the span of this bearing is a space necessary for supporting the drive shaft 29 and extending the life of the bearing. Since the magnetic layers 31 and 32 are provided in this space in the present invention, the device itself can be compactly incorporated without increasing the size. Further, it is not necessary to mount the detector on the machine shown in the conventional device, and since the detector is provided inside the coupling device even where it cannot be mounted, torque control is facilitated and the mechanical device can be manufactured at low cost. The apparatus shown in the figure can accurately wind the film material.

上記のようにこの発明の実施例では、従来では空間で
あった駆動軸29側のベアリング34,35間に検出コイル37,
38を配設し、その内側の駆動軸29の外周面上に磁性層3
1,32を固着しているため、装置全体が大型化することは
ない。
As described above, in the embodiment of the present invention, the detection coil 37, between the bearings 34, 35 on the side of the drive shaft 29, which is conventionally a space,
38 is provided, and the magnetic layer 3 is provided on the outer peripheral surface of the drive shaft 29 inside thereof.
Since 1,32 are fixed, the size of the entire device does not increase.

なお、上記実施例では、トルク検出方法として磁歪式
のものを示したが、位相差方式等の検出方法でもよい。
さらに、磁性粒子式電磁連結装置をクラッチ装置に適用
した場合を示したが、ブレーキ装置に適用してもよい。
この場合は、従動軸を固定すればよい。
In the above embodiment, the torque detection method is the magnetostrictive method, but a phase difference detection method or the like may be used.
Furthermore, although the case where the magnetic particle type electromagnetic coupling device is applied to the clutch device is shown, it may be applied to the brake device.
In this case, the driven shaft may be fixed.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、ベアリング
間の回転軸の部位に設けられた磁性材からなる磁性部
と、この磁性部と所定の空隙を隔てて対向して設けられ
たコイル手段と、このコイル手段からの出力に基づき伝
達トルクを検出するトルク検出手段とを備えたので、装
置を大型化することなく、正確な伝達トルクの検出を長
期間にわたって行うことができる。
As described above, according to the present invention, the magnetic portion made of a magnetic material provided at the portion of the rotating shaft between the bearings, and the coil means provided to face the magnetic portion with a predetermined gap therebetween. Since the torque detection means for detecting the transmission torque based on the output from the coil means is provided, the transmission torque can be accurately detected for a long period of time without increasing the size of the device.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による磁性粒子式電磁連結
装置の断面図、第2図は検出回路の一例を示すブロック
図、第3図は従来の磁性粒子式電磁連結装置の断面図、
第4図は従来の装置の使用例を示す斜視図である。 1……ステータ、2……励磁コイル、7……ドライブメ
ンバ、9……ドリブンメンバ、10……磁性粒子、11……
従動軸、29……駆動軸、31,32……磁性層、34,35……ベ
アリング、37,38……検出コイル、39,40……磁性収束
層、41……検出回路。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a sectional view of a magnetic particle type electromagnetic coupling device according to an embodiment of the present invention, FIG. 2 is a block diagram showing an example of a detection circuit, and FIG. 3 is a sectional view of a conventional magnetic particle type electromagnetic coupling device.
FIG. 4 is a perspective view showing an example of use of the conventional device. 1 ... Stator, 2 ... Excitation coil, 7 ... Drive member, 9 ... Driven member, 10 ... Magnetic particles, 11 ...
Driven shaft, 29 …… Drive shaft, 31,32 …… Magnetic layer, 34,35 …… Bearing, 37,38 …… Detecting coil, 39,40 …… Magnetic converging layer, 41 …… Detecting circuit. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の連結主体と、この第1の連結主体が
固着された回転軸と、この回転軸を軸方向の少なくとも
2カ所で支承したベアリングと、前記第1の連結主体と
連結可能に配設された第2の連結主体と、上記両連結主
体間に充填された磁性粒子と、この磁性粒子を磁化して
上記連結主体間に伝達トルクを与える励磁コイルとを備
えた磁性粒子式電磁連結装置において、前記ベアリング
間の回転軸の部位に設けられた磁性材からなる磁性部
と、この磁性部と所定の空隙を隔てて対向して設けられ
たコイル手段と、このコイル手段からの出力に基づき伝
達トルクを検出するトルク検出手段とを備えたことを特
徴とする磁性粒子式電磁連結装置。
1. A first connecting main body, a rotary shaft to which the first connecting main body is fixed, a bearing that supports the rotary shaft at at least two axial positions, and the first connecting main body. Magnetic particles provided with a second connecting main body arranged so as to be possible, magnetic particles filled between the two connecting main bodies, and an exciting coil for magnetizing the magnetic particles to give a transfer torque between the connecting main bodies. In the electromagnetic coupling device, a magnetic part made of a magnetic material is provided at a portion of the rotary shaft between the bearings, a coil means provided to face the magnetic part with a predetermined gap, and a coil means. And a torque detecting means for detecting a transmission torque based on the output of the magnetic particle type electromagnetic coupling device.
JP2177025A 1990-06-20 1990-07-02 Magnetic particle type electromagnetic coupling device Expired - Lifetime JP2556177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2177025A JP2556177B2 (en) 1990-07-02 1990-07-02 Magnetic particle type electromagnetic coupling device
US07/717,570 US5137128A (en) 1990-06-20 1991-06-19 Magnetic particle type electromagnetic clutch with torque detector
DE4120243A DE4120243C2 (en) 1990-06-20 1991-06-19 Magnetic powder clutch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177025A JP2556177B2 (en) 1990-07-02 1990-07-02 Magnetic particle type electromagnetic coupling device

Publications (2)

Publication Number Publication Date
JPH0464733A JPH0464733A (en) 1992-02-28
JP2556177B2 true JP2556177B2 (en) 1996-11-20

Family

ID=16023842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177025A Expired - Lifetime JP2556177B2 (en) 1990-06-20 1990-07-02 Magnetic particle type electromagnetic coupling device

Country Status (1)

Country Link
JP (1) JP2556177B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748407A (en) * 2012-06-15 2012-10-24 山东科技大学 Magnetorheogical fluid elastic coupling

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567555B1 (en) * 2005-03-04 2006-04-05 보라전기공업 주식회사 Powder clutch having torque transducer
JP2014021058A (en) * 2012-07-23 2014-02-03 Yanotec:Kk Deterioration degree evaluation method of powder brake, and deterioration degree measurement device used for the same
CN106499747B (en) * 2016-11-04 2018-10-09 武汉理工大学 The magnetorheological shaft coupling of close-coupled Cycloidal Wheel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61190038U (en) * 1985-05-17 1986-11-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102748407A (en) * 2012-06-15 2012-10-24 山东科技大学 Magnetorheogical fluid elastic coupling

Also Published As

Publication number Publication date
JPH0464733A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
KR920006499B1 (en) Torque sensor
US5137128A (en) Magnetic particle type electromagnetic clutch with torque detector
JPS6275328A (en) Torque sensor
JP2003507701A (en) Magnetic transducer for torque or force sensor
CA1316714C (en) Torque detecting apparatus
JP2003028195A (en) Electromagnetic clutch
JP2556177B2 (en) Magnetic particle type electromagnetic coupling device
JP2887338B2 (en) Magnetic coupling
JPH0454321A (en) Electromagnetic particle type connection device
JPS5946526A (en) Electromagnetic stress sensor
JPS59166827A (en) Magnetostriction type torque sensor by differential system
JPH088351Y2 (en) Magnetic particle type electromagnetic coupling device
JPH09304345A (en) Magnetic head device
KR900016739A (en) Torsion detector
JPH02281116A (en) Strain detecting apparatus
JPH088350Y2 (en) Magnetic particle type electromagnetic coupling device
JPH0454322A (en) Magnetic particle type electormagnetic connection device
JPS6439532A (en) Load state detection device for shaft
JPH03118435A (en) Motor-driven power steering apparatus
JPH0788894B2 (en) Torque detector for automatic transmission
JPH1194658A (en) Torque sensor
JP2000266619A (en) Torque sensor and device for detecting torque of steering shaft
JPH0826906B2 (en) Magnetic particle type electromagnetic coupling device
JPH0479757A (en) Hysteresis-type torque transmitter
JPH02102427A (en) Torque measuring instrument

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 14

EXPY Cancellation because of completion of term